Source code for tensorrt_edgellm.onnx_export.visual_export

# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Visual model export functionality for TensorRT Edge-LLM.

This module provides functions to export visual components of multimodal models
(Qwen2-VL, Qwen2.5-VL, InternVL3) to ONNX format with optional quantization support.
"""

import json
import os
import shutil
from typing import Optional

import torch

from tensorrt_edgellm.quantization.visual_quantization import quantize_visual
# Import visual model wrappers
from tensorrt_edgellm.visual_models.internvl3_model import (
    InternVLVisionModel, export_internvl3_visual)
from tensorrt_edgellm.visual_models.phi4mm_model import (Phi4MMVisionModel,
                                                         export_phi4mm_visual)
from tensorrt_edgellm.visual_models.qwen2_5_vl_model import (
    Qwen2_5_VisionTransformerPretrainedModelPatch, export_qwen2_5_vl_visual)
from tensorrt_edgellm.visual_models.qwen2_vl_model import (
    Qwen2VisionTransformerPretrainedModelPatch, export_qwen2_vl_visual)
from tensorrt_edgellm.visual_models.qwen3_vl_model import (
    Qwen3VLVisionModelPatch, export_qwen3_vl_visual)

from ..llm_models.model_utils import load_hf_model
from .config_export import export_vision_config


[docs] def visual_export(model_dir: str, output_dir: str, dtype: str, quantization: Optional[str], dataset_dir: Optional[str] = "lmms-lab/MMMU", device: str = "cuda") -> str: """ Export visual model using the appropriate wrapper based on model architecture. This function loads a multimodal model, extracts its visual component, wraps it in the appropriate model wrapper, applies quantization if requested, and exports it to ONNX format. Args: model_dir: Directory containing the torch model output_dir: Directory to save the exported ONNX model dtype: Data type for export (currently only "fp16" supported) quantization: Quantization type ("fp8" or None) device: Device to load the model on (default: "cuda", options: cpu, cuda, cuda:0, cuda:1, etc.) Returns: str: Path to the output directory where the exported model is saved Raises: ValueError: If unsupported dtype or quantization is provided ValueError: If unsupported model type is detected """ # Validate input parameters assert dtype == "fp16", f"Only fp16 is supported for dtype. You passed: {dtype}" # TODO: Add quantization support assert quantization in [ "fp8", None ], f"Only fp8 or None is supported for quantization. You passed: {quantization}" # Load the model and processor try: model, _, processor = load_hf_model(model_dir, dtype, device) except Exception as e: raise ValueError(f"Could not load model from {model_dir}. Error: {e}") # Get visual model from the multimodal model model_type = model.config.model_type # Convert dtype string to torch dtype # TODO: Add support for bf16 torch_dtype = torch.float16 # Create output directory os.makedirs(output_dir, exist_ok=True) # Detect model architecture and use appropriate wrapper if model_type == 'qwen2_vl': print(f"Exporting Qwen2-VL visual model from {model_dir}") # Create Qwen2-VL wrapper model wrapped_model = Qwen2VisionTransformerPretrainedModelPatch._from_config( model.visual.config, torch_dtype=torch_dtype, ) wrapped_model.load_state_dict(model.visual.state_dict()) wrapped_model.eval().to(device) # Apply quantization to wrapped model if requested if quantization == "fp8": wrapped_model = quantize_visual(wrapped_model, quantization, processor, dataset_dir) # Export using the wrapper's export function export_qwen2_vl_visual(wrapped_model, output_dir, torch_dtype) elif model_type == 'qwen2_5_vl': print(f"Exporting Qwen2.5-VL visual model from {model_dir}") # Create Qwen2.5-VL wrapper model wrapped_model = Qwen2_5_VisionTransformerPretrainedModelPatch._from_config( model.visual.config, torch_dtype=torch_dtype, ) wrapped_model.load_state_dict(model.visual.state_dict()) wrapped_model.eval().to(device) # Apply quantization to wrapped model if requested if quantization == "fp8": wrapped_model = quantize_visual(wrapped_model, quantization, processor, dataset_dir) # Export using the wrapper's export function export_qwen2_5_vl_visual(wrapped_model, output_dir, torch_dtype) elif model_type == 'qwen3_vl': print(f"Exporting Qwen3-VL visual model from {model_dir}") # Create Qwen3-VL wrapper model wrapped_model = Qwen3VLVisionModelPatch._from_config( model.visual.config, torch_dtype=torch_dtype, ) wrapped_model.load_state_dict(model.visual.state_dict()) wrapped_model.eval().to(device) # Apply quantization to wrapped model if requested if quantization == "fp8": wrapped_model = quantize_visual(wrapped_model, quantization, processor, dataset_dir) # Export using the wrapper's export function export_qwen3_vl_visual(wrapped_model, output_dir, torch_dtype) elif model_type == 'internvl': print(f"Exporting InternVL3 visual model from {model_dir}") # Create InternVL3 wrapper model wrapped_model = InternVLVisionModel(model) wrapped_model.eval().to(device) # Apply quantization to wrapped model if requested if quantization == "fp8": wrapped_model = quantize_visual(wrapped_model, quantization, processor.image_processor, dataset_dir) # Export using the wrapper's export function export_internvl3_visual(wrapped_model, output_dir, torch_dtype) elif model_type == 'phi4mm': print(f"Exporting Phi4MM visual model from {model_dir}") # Create Phi4MM wrapper model wrapped_model = Phi4MMVisionModel(model) wrapped_model.eval().to(device) # Apply quantization to wrapped model if requested if quantization == "fp8": wrapped_model = quantize_visual(wrapped_model, quantization, processor.image_processor, dataset_dir) export_phi4mm_visual(wrapped_model, output_dir, torch_dtype) else: raise ValueError(f"Unsupported model type: {model_type}") # Export model configuration to JSON config_dict = export_vision_config(model.config) with open(os.path.join(output_dir, "config.json"), "w") as f: json.dump(config_dict, f, indent=2) # Export processor configuration to JSON if exists if os.path.exists(os.path.join(model_dir, "preprocessor_config.json")): shutil.copy(os.path.join(model_dir, "preprocessor_config.json"), os.path.join(output_dir, "preprocessor_config.json")) print( f"Visual export completed for {model_type} with dtype={dtype}, quantization={quantization}, device={device}" ) print(f"Exported to: {output_dir}") return output_dir