# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import TYPE_CHECKING, Any, Dict, Optional
from tensorrt_llm.models.gemma.convert import (QuantizeModifiers, Weights,
load_gemma_weights_from_hf_model,
non_modelopt_quantize_if_needed)
from tensorrt_llm.quantization.mode import (MODELOPT_FLOW_QUANTIZATIONS,
QuantAlgo)
from ..._common import default_net
from ..._utils import pad_vocab_size
from ...functional import (AllReduceFusionOp, AllReduceParams, LayerNormType,
Tensor, cast, recv, send)
from ...layers import (Attention, AttentionMaskType, AttentionParams,
ColumnLinear, Embedding, GatedMLP, KeyValueCacheParams,
LoraParams, PositionEmbeddingType, RmsNorm)
from ...lora_manager import LoraConfig, use_lora
from ...mapping import Mapping
from ...module import Module
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
QuantConfig, save_checkpoint, save_config)
from .config import GemmaConfig
if TYPE_CHECKING:
from .config import HfConfigOrDir
class GemmaDecoderLayer(Module):
def __init__(self, config: GemmaConfig, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.config = config
self.input_layernorm = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
self.local_layer_idx = layer_idx - layers_range[0]
q_scaling = 1.0
max_attn_value = 0.0
qk_layernorm = False
is_sliding = False
rotary_base = config.rotary_base
rotary_base_local = None
gemma2_config = config.gemma2_config()
gemma3_config = config.gemma3_config()
if gemma2_config:
q_scaling = math.sqrt(
gemma2_config.query_pre_attn_scalar) / math.sqrt(
config.head_size)
max_attn_value = config.attn_logit_softcapping or 0.0
elif gemma3_config:
qk_layernorm = True
q_scaling = math.sqrt(
gemma3_config.query_pre_attn_scalar) / math.sqrt(
config.head_size)
is_sliding = bool(
(layer_idx + 1) % gemma3_config.sliding_window_pattern)
rotary_base_local = config.rope_local_base_freq
self.attention = Attention(
local_layer_idx=self.local_layer_idx,
hidden_size=config.hidden_size,
num_attention_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
attention_head_size=config.head_size,
qk_layernorm=qk_layernorm,
layernorm_type=LayerNormType.RmsNorm,
max_position_embeddings=config.max_position_embeddings,
dtype=config.dtype,
attention_mask_type=AttentionMaskType.causal,
bias=config.attn_bias,
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
rotary_embedding_base=rotary_base,
rotary_embedding_base_local=rotary_base_local,
rotary_embedding_scaling=config.rotary_scaling,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
quant_mode=config.quant_mode,
q_scaling=q_scaling,
max_attn_value=max_attn_value,
is_local=is_sliding,
)
mlp_hidden_size = config.hidden_size * 4 if config.intermediate_size is None else config.intermediate_size
self.mlp = GatedMLP(hidden_size=config.hidden_size,
ffn_hidden_size=mlp_hidden_size,
hidden_act=config.hidden_act,
dtype=config.dtype,
bias=config.mlp_bias,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
quant_mode=config.quant_mode)
if self.config.inter_layernorms:
self.pre_feedforward_layernorm = RmsNorm(
normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
self.post_feedforward_layernorm = RmsNorm(
normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
self.post_layernorm = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
def forward(self,
hidden_states: Tensor,
attention_mask: Optional[Tensor] = None,
use_cache: bool = False,
kv_cache_params: Optional[KeyValueCacheParams] = None,
attention_params: Optional[AttentionParams] = None,
lora_layer_params: Optional[LoraParams] = None,
next_layer_input_layernorm_args=None):
# assert not (
# default_net().plugin_config.reduce_fusion and self.has_residual_mlp
# ), "Custom all reduce and residual mlp can't be enabled at the same time."
if default_net(
).plugin_config.reduce_fusion and self.local_layer_idx > 0:
hidden_states, residual = hidden_states #FIXME:AN need to check if appropriate residual value is hidden state is pulled out.
else:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
attention_output = self.attention(
hidden_states,
attention_mask=attention_mask,
use_cache=use_cache,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
norm_before_bmm1=True,
lora_layer_params=lora_layer_params,
all_reduce_params=AllReduceParams(
fusion_op=AllReduceFusionOp.RESIDUAL_RMS_PREPOST_NORM
if default_net().plugin_config.reduce_fusion else
AllReduceFusionOp.NONE,
residual=residual,
norm_weight=self.post_layernorm.weight.value,
norm_pre_residual_weight=self.pre_feedforward_layernorm.weight.
value if self.config.inter_layernorms else None,
eps=self.post_layernorm.eps))
if use_cache:
attention_output, presents = attention_output
if default_net().plugin_config.reduce_fusion:
hidden_states, residual = attention_output
else:
if self.config.inter_layernorms:
attention_output = self.post_layernorm(attention_output)
hidden_states = residual + attention_output
residual = hidden_states
if self.config.inter_layernorms:
hidden_states = self.pre_feedforward_layernorm(hidden_states)
else:
hidden_states = self.post_layernorm(hidden_states)
if next_layer_input_layernorm_args is not None:
hidden_states = self.mlp(
hidden_states,
lora_layer_params=lora_layer_params,
all_reduce_params=AllReduceParams(
fusion_op=AllReduceFusionOp.RESIDUAL_RMS_PREPOST_NORM
if default_net().plugin_config.reduce_fusion else
AllReduceFusionOp.NONE,
residual=residual,
norm_weight=next_layer_input_layernorm_args[0],
norm_pre_residual_weight=self.post_feedforward_layernorm.
weight.value,
eps=next_layer_input_layernorm_args[1]))
else:
hidden_states = self.mlp(hidden_states,
lora_layer_params=lora_layer_params)
if self.config.inter_layernorms:
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + hidden_states
if use_cache:
return (hidden_states, presents)
return hidden_states
class GemmaModel(Module):
def __init__(self, config: GemmaConfig) -> None:
super().__init__()
self.mapping = config.mapping
if self.mapping.is_first_pp_rank():
self.vocab_embedding = Embedding(config.vocab_size,
config.hidden_size,
dtype=config.dtype)
self.layers = DecoderLayerList(GemmaDecoderLayer, config)
if self.mapping.is_last_pp_rank():
self.ln_f = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
self.hidden_size = config.hidden_size
def forward(self,
input_ids,
position_ids=None,
use_cache=False,
attention_mask=None,
kv_cache_params=None,
attention_params=None,
hidden_states=None,
prompt_embedding_table: Optional[Tensor] = None,
prompt_tasks: Optional[Tensor] = None,
prompt_vocab_size: Optional[Tensor] = None,
lora_params=None):
ptuning_args = [
prompt_embedding_table, prompt_tasks, prompt_vocab_size
] if prompt_embedding_table is not None else []
if self.mapping.is_first_pp_rank():
hidden_states = self.vocab_embedding(input_ids, *ptuning_args)
hidden_states = cast(hidden_states * math.sqrt(self.hidden_size),
hidden_states.dtype)
else:
hidden_states = recv(hidden_states, self.mapping.prev_pp_rank())
hidden_states = self.layers.forward(
hidden_states,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
lora_params=lora_params,
)
if use_cache:
hidden_states, presents = hidden_states
if self.mapping.is_last_pp_rank():
hidden_states = self.ln_f(hidden_states)
else:
hidden_states = send(hidden_states, self.mapping.next_pp_rank())
if use_cache:
return (hidden_states, tuple(presents))
return hidden_states
[docs]
class GemmaForCausalLM(DecoderModelForCausalLM):
config_class = GemmaConfig
def __init__(self, config: GemmaConfig):
transformer = GemmaModel(config)
vocab_size_padded = pad_vocab_size(config.vocab_size,
config.mapping.tp_size)
if config.mapping.is_last_pp_rank():
lm_head = ColumnLinear(config.hidden_size,
vocab_size_padded,
bias=False,
dtype=config.dtype,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
gather_output=True)
else:
lm_head = None
self.quant_mode = config.quant_mode
self.mapping = config.mapping
super().__init__(config, transformer, lm_head)
@staticmethod
def _load_gemma_weights_from_hf(hf_model_dir: "HfConfigOrDir",
trt_llm_config: GemmaConfig, *,
load_model_on_cpu: bool) -> Weights:
"""`AutoModelForCausalLM.from_pretrained` will parse the correct gemma, whether Gemma or Gemma2 or future versions."""
import transformers
hf_gemma = transformers.AutoModelForCausalLM.from_pretrained(
hf_model_dir,
device_map="cpu" if load_model_on_cpu else "auto",
torch_dtype='auto',
)
weights = load_gemma_weights_from_hf_model(hf_gemma, trt_llm_config)
del hf_gemma
return weights
[docs]
@classmethod
def from_hugging_face(cls,
hf_model_dir: "HfConfigOrDir",
dtype='float16',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
load_model_on_cpu: bool = True,
**kwargs):
config = GemmaConfig.from_hugging_face(hf_config_or_dir=hf_model_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
**kwargs)
model = GemmaForCausalLM(config)
weights = cls._load_gemma_weights_from_hf(
hf_model_dir, config, load_model_on_cpu=load_model_on_cpu)
model.load(weights)
return model
NATIVE_QUANT_FLOW = {
QuantAlgo.W8A16, QuantAlgo.W4A16,
QuantAlgo.W8A8_SQ_PER_CHANNEL_PER_TOKEN_PLUGIN,
QuantAlgo.W8A8_SQ_PER_TENSOR_PLUGIN,
QuantAlgo.W8A8_SQ_PER_CHANNEL_PER_TENSOR_PLUGIN,
QuantAlgo.W8A8_SQ_PER_TENSOR_PER_TOKEN_PLUGIN
}
[docs]
@classmethod
def assert_valid_quant_algo(cls, quant_algo: Optional[QuantAlgo]):
allowed_quant_values = {
None
} | cls.NATIVE_QUANT_FLOW | MODELOPT_FLOW_QUANTIZATIONS
assert quant_algo in allowed_quant_values, f"{quant_algo} isn't in the allowed `QuantAlgo` values for this model: {allowed_quant_values}"
[docs]
@classmethod
def quantize(
cls,
hf_model_dir: str,
output_dir: str,
dtype: str = 'float16',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
*,
gemma_config_kwargs: Dict[str, Any] = None,
**quantize_kwargs: Dict[str, Any],
):
config = GemmaConfig.from_hugging_face(hf_model_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
**(gemma_config_kwargs or {}))
quant_algo = config.quantization.quant_algo
if quant_algo is None and config.quantization.kv_cache_quant_algo is None:
raise ValueError(
"There is no point in calling `quantize()` if both `quant_algo` and `kv_cache_quant_algo` are `None`"
)
elif quant_algo in MODELOPT_FLOW_QUANTIZATIONS:
super().quantize(hf_model_dir,
output_dir,
dtype=config.dtype,
mapping=config.mapping,
quant_config=config.quantization,
**quantize_kwargs)
elif quant_algo in cls.NATIVE_QUANT_FLOW:
save_config(config, output_dir=output_dir, log=True)
for config in config.for_each_rank():
hf_weights = cls._load_gemma_weights_from_hf(
hf_model_dir, config)
ranked_weights = non_modelopt_quantize_if_needed(
hf_weights,
model_dir=hf_model_dir,
quantize_modifiers=QuantizeModifiers(),
trt_llm_config=config)
save_checkpoint(
output_dir=output_dir,
weights=ranked_weights,
rank=config.mapping.rank,
)
del hf_weights
else:
cls.assert_valid_quant_algo(quant_algo)
[docs]
def use_lora(self, lora_config: LoraConfig) -> None:
return use_lora(
self, lora_config) # Use the default trtllm->hf module mapping