conversion
PEFT conversion and restore utilities for LoRA modules.
Functions
Freeze LoRA adapter weights to prevent gradient updates during training. |
|
Replace modules with LoRA modules. |
- freeze_lora_weights(model, *, layer_patterns=None, adapter_patterns=None)
Freeze LoRA adapter weights to prevent gradient updates during training.
This function sets requires_grad=False for LoRA adapter parameters (lora_a and lora_b). Useful when you want to train only the base model weights or evaluate the model without updating LoRA adapters.
- Parameters:
model – Model containing LoRA modules whose adapter weights should be frozen
layer_patterns – Optional patterns (str, bytes, or Iterable) to match specific layer names. If provided, only layers matching these patterns will be affected. Supports Unix-style wildcards (e.g., “.linear”, “transformer.”)
adapter_patterns – Optional patterns (str or Iterable) to match specific adapter names. If provided, only adapters matching these patterns will be affected. Supports Unix-style wildcards
- replace_lora_module(model, version=None, config=None, registry=<modelopt.torch.opt.dynamic._DMRegistryCls object>)
Replace modules with LoRA modules.
- Parameters:
model (Module)
config (PEFTConfig)