Getting Started

Overview

Transformer Engine (TE) is a library for accelerating Transformer models on NVIDIA GPUs, providing better performance with lower memory utilization in both training and inference. It provides support for 8-bit floating point (FP8) precision on Hopper GPUs, implements a collection of highly optimized building blocks for popular Transformer architectures, and exposes an automatic-mixed-precision-like API that can be used seamlessy with your PyTorch code. It also includes a framework-agnostic C++ API that can be integrated with other deep learning libraries to enable FP8 support for Transformers.

Let’s build a Transformer layer!

Summary

We build a basic Transformer layer using regular PyTorch modules. This will be our baseline for later comparisons with Transformer Engine.

Let’s start with creating a GPT encoder layer using plain PyTorch. Figure 1 shows the overall structure.

6a71f06133274440b2a92a8ebe15e758

Figure 1: Structure of a GPT encoder layer.

We construct the components as follows:

  • LayerNorm: torch.nn.LayerNorm

  • QKV Projection: torch.nn.Linear (conceptually three Linear layers for Q, K, and V separately, but we fuse into a single Linear layer that is three times larger)

  • DotProductAttention: DotProductAttention from quickstart_utils.py

  • Projection: torch.nn.Linear

  • Dropout: torch.nn.Dropout

  • MLP: BasicMLP from quickstart_utils.py

Over the course of this tutorial we will use a few modules and helper functions defined in quickstart_utils.py. Putting it all together:

[1]:
import torch
import quickstart_utils as utils

class BasicTransformerLayer(torch.nn.Module):
    def __init__(
        self,
        hidden_size: int,
        ffn_hidden_size: int,
        num_attention_heads: int,
        layernorm_eps: int = 1e-5,
        attention_dropout: float = 0.1,
        hidden_dropout: float = 0.1,
    ):
        super().__init__()
        self.num_attention_heads = num_attention_heads
        self.kv_channels = hidden_size // num_attention_heads
        self.ln1 = torch.nn.LayerNorm(hidden_size, eps=layernorm_eps)
        self.qkv_projection = torch.nn.Linear(hidden_size, 3 * hidden_size, bias=True)
        self.attention = utils.DotProductAttention(
            num_attention_heads=num_attention_heads,
            kv_channels=self.kv_channels,
            attention_dropout=attention_dropout,
        )
        self.projection = torch.nn.Linear(hidden_size, hidden_size, bias=True)
        self.dropout = torch.nn.Dropout(hidden_dropout)
        self.ln2 = torch.nn.LayerNorm(hidden_size, eps=layernorm_eps)
        self.mlp = utils.BasicMLP(
            hidden_size=hidden_size,
            ffn_hidden_size=ffn_hidden_size,
        )

    def forward(
        self,
        x: torch.Tensor,
        attention_mask: torch.Tensor
    ) -> torch.Tensor:
        res = x
        x = self.ln1(x)

        # Fused QKV projection
        qkv = self.qkv_projection(x)
        qkv = qkv.view(qkv.size(0), qkv.size(1), self.num_attention_heads, 3 * self.kv_channels)
        q, k, v = torch.split(qkv, qkv.size(3) // 3, dim=3)

        x = self.attention(q, k, v, attention_mask)
        x = self.projection(x)
        x = self.dropout(x)
        x = res + x
        res = x
        x = self.ln2(x)
        x = self.mlp(x)

        return x + res

That’s it! We now have a simple Transformer layer. We can test it:

[2]:
# Layer configuration
hidden_size = 4096
sequence_length = 2048
batch_size = 4
ffn_hidden_size = 16384
num_attention_heads = 32
dtype = torch.float16

# Synthetic data
x = torch.rand(sequence_length, batch_size, hidden_size).cuda().to(dtype=dtype)
dy = torch.rand(sequence_length, batch_size, hidden_size).cuda().to(dtype=dtype)
[3]:
basic_transformer = BasicTransformerLayer(
    hidden_size,
    ffn_hidden_size,
    num_attention_heads,
)
basic_transformer.to(dtype=dtype).cuda()
[3]:
BasicTransformerLayer(
  (ln1): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
  (qkv_projection): Linear(in_features=4096, out_features=12288, bias=True)
  (attention): DotProductAttention(
    (dropout): Dropout(p=0.1, inplace=False)
  )
  (projection): Linear(in_features=4096, out_features=4096, bias=True)
  (dropout): Dropout(p=0.1, inplace=False)
  (ln2): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
  (mlp): BasicMLP(
    (linear1): Linear(in_features=4096, out_features=16384, bias=True)
    (linear2): Linear(in_features=16384, out_features=4096, bias=True)
  )
)
[4]:
torch.manual_seed(1234)
y = basic_transformer(x, attention_mask=None)
[5]:
utils.speedometer(
    basic_transformer,
    x,
    dy,
    forward_kwargs = { "attention_mask": None },
)
Mean time: 43.0663916015625 ms

Meet Transformer Engine

Summary

We modify the example Transformer layer to include the simplest TE modules: Linear and LayerNorm.

Now that we have a basic Transformer layer, let’s use Transformer Engine to speed up the training.

[6]:
import transformer_engine.pytorch as te

TE provides a set of PyTorch modules that can be used to build Transformer layers. The simplest of the provided modules are the Linear and LayerNorm layers, which we can use instead of torch.nn.Linear and torch.nn.LayerNorm. Let’s modify BasicTransformerLayer:

[7]:
class BasicTEMLP(torch.nn.Module):
    def __init__(self,
                 hidden_size: int,
                 ffn_hidden_size: int) -> None:
        super().__init__()
        self.linear1 = te.Linear(hidden_size, ffn_hidden_size, bias=True)
        self.linear2 = te.Linear(ffn_hidden_size, hidden_size, bias=True)

    def forward(self, x):
        x = self.linear1(x)
        x = torch.nn.functional.gelu(x, approximate='tanh')
        x = self.linear2(x)
        return x

class BasicTETransformerLayer(torch.nn.Module):
    def __init__(self,
                 hidden_size: int,
                 ffn_hidden_size: int,
                 num_attention_heads: int,
                 layernorm_eps: int = 1e-5,
                 attention_dropout: float = 0.1,
                 hidden_dropout: float = 0.1):
        super().__init__()
        self.num_attention_heads = num_attention_heads
        self.kv_channels = hidden_size // num_attention_heads
        self.ln1 = te.LayerNorm(hidden_size, eps=layernorm_eps)
        self.qkv_projection = te.Linear(hidden_size, 3 * hidden_size, bias=True)
        self.attention = utils.DotProductAttention(
            num_attention_heads=num_attention_heads,
            kv_channels=self.kv_channels,
            attention_dropout=attention_dropout,
        )
        self.projection = te.Linear(hidden_size, hidden_size, bias=True)
        self.dropout = torch.nn.Dropout(hidden_dropout)
        self.ln2 = te.LayerNorm(hidden_size, eps=layernorm_eps)
        self.mlp = BasicTEMLP(
            hidden_size=hidden_size,
            ffn_hidden_size=ffn_hidden_size,
        )

    def forward(self,
                x: torch.Tensor,
                attention_mask: torch.Tensor):
        res = x
        x = self.ln1(x)

        # Fused QKV projection
        qkv = self.qkv_projection(x)
        qkv = qkv.view(qkv.size(0), qkv.size(1), self.num_attention_heads, 3 * self.kv_channels)
        q, k, v = torch.split(qkv, qkv.size(3) // 3, dim=3)

        x = self.attention(q, k, v, attention_mask)
        x = self.projection(x)
        x = self.dropout(x)
        x = res + x
        res = x
        x = self.ln2(x)
        x = self.mlp(x)

        return x + res
[8]:
basic_te_transformer = BasicTETransformerLayer(
    hidden_size,
    ffn_hidden_size,
    num_attention_heads,
)
basic_te_transformer.to(dtype=dtype).cuda()
utils.share_parameters_with_basic_te_model(basic_te_transformer, basic_transformer)
[9]:
torch.manual_seed(1234)
y = basic_te_transformer(x, attention_mask=None)
[10]:
utils.speedometer(
    basic_te_transformer,
    x,
    dy,
    forward_kwargs = { "attention_mask": None },
)
Mean time: 43.1413232421875 ms

Fused TE Modules

Summary

We optimize the example Transformer layer with TE modules for fused operations.

The Linear layer is enough to build any Transformer model and it enables usage of Transformer Engine even for very custom Transformers. However, having more knowledge about the model allows for additional optimizations like kernel fusion, increasing the achievable speedup.

Transformer Engine therefore provides coarser modules that span multiple layers:

  • LayerNormLinear

  • LayerNormMLP

  • TransformerLayer

Building a third iteration of our Transformer layer with LayerNormLinear and LayerNormMLP:

[11]:
class FusedTETransformerLayer(torch.nn.Module):
    def __init__(self,
                 hidden_size: int,
                 ffn_hidden_size: int,
                 num_attention_heads: int,
                 layernorm_eps: int = 1e-5,
                 attention_dropout: float = 0.1,
                 hidden_dropout: float = 0.1):
        super().__init__()
        self.num_attention_heads = num_attention_heads
        self.kv_channels = hidden_size // num_attention_heads
        self.ln_qkv = te.LayerNormLinear(hidden_size, 3 * hidden_size, eps=layernorm_eps, bias=True)
        self.attention = utils.DotProductAttention(
            num_attention_heads=num_attention_heads,
            kv_channels=self.kv_channels,
            attention_dropout=attention_dropout,
        )
        self.projection = te.Linear(hidden_size, hidden_size, bias=True)
        self.dropout = torch.nn.Dropout(hidden_dropout)
        self.ln_mlp = te.LayerNormMLP(hidden_size, ffn_hidden_size, eps=layernorm_eps, bias=True)


    def forward(self,
                x: torch.Tensor,
                attention_mask: torch.Tensor):
        res = x
        qkv = self.ln_qkv(x)

        # Split qkv into query, key and value
        qkv = qkv.view(qkv.size(0), qkv.size(1), self.num_attention_heads, 3 * self.kv_channels)
        q, k, v = torch.split(qkv, qkv.size(3) // 3, dim=3)

        x = self.attention(q, k, v, attention_mask)
        x = self.projection(x)
        x = self.dropout(x)
        x = res + x
        res = x
        x = self.ln_mlp(x)

        return x + res
[12]:
fused_te_transformer = FusedTETransformerLayer(hidden_size, ffn_hidden_size, num_attention_heads)
fused_te_transformer.to(dtype=dtype).cuda()
utils.share_parameters_with_fused_te_model(fused_te_transformer, basic_transformer)
[13]:
torch.manual_seed(1234)
y = fused_te_transformer(x, attention_mask=None)
[14]:
utils.speedometer(
    fused_te_transformer,
    x,
    dy,
    forward_kwargs = { "attention_mask": None },
)
Mean time: 43.1981201171875 ms

Finally, the TransformerLayer module is convenient for creating standard Transformer architectures and it provides the highest degree of performance optimization:

[15]:
te_transformer = te.TransformerLayer(hidden_size, ffn_hidden_size, num_attention_heads)
te_transformer.to(dtype=dtype).cuda()
utils.share_parameters_with_transformerlayer_te_model(te_transformer, basic_transformer)
[16]:
torch.manual_seed(1234)
y = te_transformer(x, attention_mask=None)
[17]:
utils.speedometer(
    te_transformer,
    x,
    dy,
    forward_kwargs = { "attention_mask": None },
)
Mean time: 39.99169921875 ms

Enabling FP8

Summary

We configure a TE module to perform compute in FP8.

Enabling FP8 support is very simple in Transformer Engine. We just need to wrap the modules within an fp8_autocast context manager. Note that fp8_autocast should only be used to wrap the forward pass and must exit before starting a backward pass. See the FP8 tutorial for a detailed explanation of FP8 recipes and the supported options.

[18]:
from transformer_engine.common.recipe import Format, DelayedScaling

te_transformer = te.TransformerLayer(hidden_size, ffn_hidden_size, num_attention_heads)
te_transformer.to(dtype=dtype).cuda()
utils.share_parameters_with_transformerlayer_te_model(te_transformer, basic_transformer)

fp8_format = Format.HYBRID
fp8_recipe = DelayedScaling(fp8_format=fp8_format, amax_history_len=16, amax_compute_algo="max")
torch.manual_seed(1234)
with te.fp8_autocast(enabled=True, fp8_recipe=fp8_recipe):
    y = te_transformer(x, attention_mask=None)
[19]:
utils.speedometer(
    te_transformer,
    x,
    dy,
    forward_kwargs = { "attention_mask": None },
    fp8_autocast_kwargs = { "enabled": True, "fp8_recipe": fp8_recipe },
)
Mean time: 28.61394775390625 ms