Source code for apex.optimizers.fused_sgd

import torch
from torch.optim.optimizer import Optimizer, required

from apex.multi_tensor_apply import multi_tensor_applier

[docs]class FusedSGD(Optimizer): r"""Implements stochastic gradient descent (optionally with momentum). Currently GPU-only. Requires Apex to be installed via ``pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./``. This version of fused SGD implements 2 fusions. * Fusion of the SGD update's elementwise operations * A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches. :class:`apex.optimizers.FusedSGD` may be used as a drop-in replacement for ``torch.optim.SGD``:: opt = apex.optimizers.FusedSGD(model.parameters(), lr = ....) ... opt.step() :class:`apex.optimizers.FusedSGD` may be used with or without Amp. If you wish to use :class:`FusedSGD` with Amp, you may choose any ``opt_level``:: opt = apex.optimizers.FusedSGD(model.parameters(), lr = ....) model, opt = amp.initialize(model, opt, opt_level="O0" or "O1 or "O2") ... opt.step() In general, ``opt_level="O1"`` is recommended. Nesterov momentum is based on the formula from `On the importance of initialization and momentum in deep learning`__. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float): learning rate momentum (float, optional): momentum factor (default: 0) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) dampening (float, optional): dampening for momentum (default: 0) nesterov (bool, optional): enables Nesterov momentum (default: False) Example: >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() __ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf .. note:: The implementation of SGD with Momentum/Nesterov subtly differs from Sutskever et. al. and implementations in some other frameworks. Considering the specific case of Momentum, the update can be written as .. math:: v = \rho * v + g \\ p = p - lr * v where p, g, v and :math:`\rho` denote the parameters, gradient, velocity, and momentum respectively. This is in contrast to Sutskever et. al. and other frameworks which employ an update of the form .. math:: v = \rho * v + lr * g \\ p = p - v The Nesterov version is analogously modified. """ def __init__(self, params, lr=required, momentum=0, dampening=0, weight_decay=0, nesterov=False, wd_after_momentum=False, materialize_master_grads=True): if lr is not required and lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if momentum < 0.0: raise ValueError("Invalid momentum value: {}".format(momentum)) if weight_decay < 0.0: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov) if nesterov and (momentum <= 0 or dampening != 0): raise ValueError("Nesterov momentum requires a momentum and zero dampening") super(FusedSGD, self).__init__(params, defaults) self.wd_after_momentum = wd_after_momentum self.materialize_master_grads = materialize_master_grads self.most_recent_scale = 1.0 self.scale_set_by_backward = False if multi_tensor_applier.available: import amp_C # Skip buffer self._dummy_overflow_buf = torch.cuda.IntTensor([0]) self.multi_tensor_sgd = amp_C.multi_tensor_sgd else: raise RuntimeError('apex.optimizers.FusedSGD requires cuda extensions') def __setstate__(self, state): super(FusedSGD, self).__setstate__(state) for group in self.param_groups: group.setdefault('nesterov', False) def get_momentums(self, params): momentums = [] first_run = True for p in params: param_state = self.state[p] # torch.optim.SGD initializes momentum in the main loop, we have # to do it here, and track whether or not we've done so, so that # momentum application can be skipped in the main kernel. if 'momentum_buffer' not in param_state: first_run = True buf = param_state['momentum_buffer'] = torch.zeros_like(p.data) momentums.append(buf) else: first_run = False momentums.append(param_state['momentum_buffer']) return momentums, first_run
[docs] def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() explicit_master_params = (hasattr(self, "_amp_stash") and hasattr(self._amp_stash, "fp32_from_fp16_groups")) for gid, group in enumerate(self.param_groups): weight_decay = group['weight_decay'] momentum = group['momentum'] dampening = group['dampening'] nesterov = group['nesterov'] # For each group, there are 3 possible combinations we need to consider: # grad_type, param_to_update_type, momentum_type, requires_fp16_model_copy # 1. fp16, fp16, fp16, No # 2. fp32, fp32, fp32, No # 3. fp16, fp32, fp32, Yes first_runs = [True, True] # I think a bit of code divergence in exchange for naming clarity is worthwhile if explicit_master_params: stash = self._amp_stash fp32_params = [p for p in stash.fp32_from_fp32_groups[gid] if p.grad is not None] fp32_grads = [p.grad for p in stash.fp32_from_fp32_groups[gid] if p.grad is not None] fp32_momentums, first_runs[1] = self.get_momentums(fp32_params) if self.materialize_master_grads: fp16_model_params = [p for i, p in enumerate( stash.fp16_groups[gid]) if stash.fp32_from_fp16_groups[gid][i].grad is not None] fp32_from_fp16_grads = [p.grad for p in stash.fp32_from_fp16_groups[gid] if p.grad is not None] fp32_from_fp16_params = [p for p in stash.fp32_from_fp16_groups[gid] if p.grad is not None] fp32_from_fp16_momentums, first_runs[0] = self.get_momentums(fp32_from_fp16_params) fp16_set = [fp32_from_fp16_grads, fp32_from_fp16_params, fp32_from_fp16_momentums, fp16_model_params] else: fp16_model_params = [p for p in stash.fp16_groups[gid] if p.grad is not None] fp16_model_grads = [p.grad for p in stash.fp16_groups[gid] if p.grad is not None] fp32_from_fp16_params = [p for i, p in enumerate( stash.fp32_from_fp16_groups[gid]) if stash.fp16_groups[gid][i].grad is not None] fp32_from_fp16_momentums, first_runs[0] = self.get_momentums(fp32_from_fp16_params) fp16_set = [fp16_model_grads, fp32_from_fp16_params, fp32_from_fp16_momentums, fp16_model_params] launch_sets= [fp16_set, [fp32_grads, fp32_params, fp32_momentums]] else: fp16_params = [p for p in group['params'] if (p.dtype == torch.float16 and p.grad is not None)] fp16_grads = [p.grad for p in group['params'] if (p.dtype == torch.float16 and p.grad is not None)] fp16_momentums, first_runs[0] = self.get_momentums(fp16_params) fp32_params = [p for p in group['params'] if (p.dtype == torch.float32 and p.grad is not None)] fp32_grads = [p.grad for p in group['params'] if (p.dtype == torch.float32 and p.grad is not None)] fp32_momentums, first_runs[1] = self.get_momentums(fp32_params) launch_sets = [[fp16_grads, fp16_params, fp16_momentums], [fp32_grads, fp32_params, fp32_momentums]] for s, (launch_set, first_run) in enumerate(zip(launch_sets, first_runs)): assert len(launch_set[0]) == len(launch_set[1]) assert len(launch_set[0]) == len(launch_set[2]) if len(launch_set[0]) > 0: multi_tensor_applier( self.multi_tensor_sgd, self._dummy_overflow_buf, launch_set, weight_decay, momentum, dampening, group['lr'], nesterov, first_run, self.wd_after_momentum, 1.0/self.most_recent_scale) self.most_recent_scale = 1.0 self.scale_set_by_backward = False return loss