Convert
HFESM2Importer
Bases: ModelConnector[AutoModelForMaskedLM, BionemoLightningModule]
Converts a Hugging Face ESM-2 model to a NeMo ESM-2 model.
Source code in bionemo/esm2/model/convert.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
|
config
property
Returns the transformed ESM-2 config given the model tag.
tokenizer
property
We just have the one tokenizer for ESM-2.
apply(output_path)
Applies the transformation.
Largely inspired by https://docs.nvidia.com/nemo-framework/user-guide/latest/nemo-2.0/features/hf-integration.html
Source code in bionemo/esm2/model/convert.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
convert_state(source, target)
Converting HF state dict to NeMo state dict.
Source code in bionemo/esm2/model/convert.py
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
|
init()
Initialize the converted model.
Source code in bionemo/esm2/model/convert.py
35 36 37 |
|
_import_qkv_bias(ctx, query, key, value)
Pad the embedding layer to the new input dimension.
Source code in bionemo/esm2/model/convert.py
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
|
_import_qkv_weight(ctx, query, key, value)
Pad the embedding layer to the new input dimension.
Source code in bionemo/esm2/model/convert.py
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
_pad_bias(ctx, source_bias)
Pad the embedding layer to the new input dimension.
Source code in bionemo/esm2/model/convert.py
125 126 127 128 129 130 131 132 133 134 135 |
|
_pad_embeddings(ctx, source_embed)
Pad the embedding layer to the new input dimension.
Source code in bionemo/esm2/model/convert.py
112 113 114 115 116 117 118 119 120 121 122 |
|