Datamodule
ESM2FineTuneDataModule
Bases: MegatronDataModule
A PyTorch Lightning DataModule for fine-tuning ESM2 models.
This DataModule is designed to handle the data preparation and loading for fine-tuning ESM2 models. It provides a flexible way to create and manage datasets, data loaders, and sampling strategies.
Source code in bionemo/esm2/model/finetune/datamodule.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
|
__init__(train_dataset=None, valid_dataset=None, predict_dataset=None, seed=42, min_seq_length=None, max_seq_length=1024, micro_batch_size=4, global_batch_size=8, num_workers=10, persistent_workers=True, pin_memory=True, rampup_batch_size=None, tokenizer=tokenizer.get_tokenizer())
Initialize the ESM2FineTuneDataModule.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train_dataset
|
DATASET_TYPES
|
The training dataset. |
None
|
valid_dataset
|
DATASET_TYPES
|
The validation dataset. |
None
|
predict_dataset
|
DATASET_TYPES
|
The prediction dataset. Should not be set together with train/valid datasets |
None
|
seed
|
int
|
The random seed to use for shuffling the datasets. Defaults to 42. |
42
|
min_seq_length
|
int | None
|
The minimum sequence length for the datasets. Defaults to None. |
None
|
max_seq_length
|
int
|
The maximum sequence length for the datasets. Defaults to 1024. |
1024
|
micro_batch_size
|
int
|
The micro-batch size for the data loader. Defaults to 4. |
4
|
global_batch_size
|
int
|
The global batch size for the data loader. Defaults to 8. |
8
|
num_workers
|
int
|
The number of worker processes for the data loader. Defaults to 10. |
10
|
persistent_workers
|
bool
|
Whether to persist the worker processes. Defaults to True. |
True
|
pin_memory
|
bool
|
Whether to pin the data in memory. Defaults to True. |
True
|
rampup_batch_size
|
list[int] | None
|
The batch size ramp-up schedule. Defaults to None. |
None
|
tokenizer
|
BioNeMoESMTokenizer
|
The tokenizer to use for tokenization. Defaults to the BioNeMoESMTokenizer. |
get_tokenizer()
|
Returns:
Type | Description |
---|---|
None
|
None |
Source code in bionemo/esm2/model/finetune/datamodule.py
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
|
predict_dataloader()
Returns the dataloader for prediction data.
Source code in bionemo/esm2/model/finetune/datamodule.py
279 280 281 282 |
|
setup(stage)
Setup the ESMDataModule.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stage
|
str
|
Unused. |
required |
Raises:
Type | Description |
---|---|
RuntimeError
|
If the trainer is not attached, or if the trainer's max_steps is not set. |
Source code in bionemo/esm2/model/finetune/datamodule.py
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
|
test_dataloader()
Raises a not implemented error.
Source code in bionemo/esm2/model/finetune/datamodule.py
284 285 286 |
|
train_dataloader()
Returns the dataloader for training data.
Source code in bionemo/esm2/model/finetune/datamodule.py
269 270 271 272 |
|
val_dataloader()
Returns the dataloader for validation data.
Source code in bionemo/esm2/model/finetune/datamodule.py
274 275 276 277 |
|
InMemoryCSVDataset
Bases: Dataset
An in-memory dataset that tokenize strings into BertSample instances.
Source code in bionemo/esm2/model/finetune/datamodule.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
|
__getitem__(index)
Obtains the BertSample at the given index.
Source code in bionemo/esm2/model/finetune/datamodule.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
__init__(data_path, tokenizer=tokenizer.get_tokenizer(), seed=np.random.SeedSequence().entropy)
Initializes a dataset for single-value regression fine-tuning.
This is an in-memory dataset that does not apply masking to the sequence. But keeps track of
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_path
|
str | PathLike
|
A path to the CSV file containing sequences. |
required |
labels
|
Optional[Sequence[float | str]]
|
An optional sequence of labels with 1:1 mapping to sequences. |
required |
tokenizer
|
BioNeMoESMTokenizer
|
The tokenizer to use. Defaults to tokenizer.get_tokenizer(). |
get_tokenizer()
|
seed
|
int
|
Random seed for reproducibility. This seed is mixed with the index of the sample to retrieve to ensure that getitem is deterministic, but can be random across different runs. If None, a random seed is generated. |
entropy
|
Source code in bionemo/esm2/model/finetune/datamodule.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
|
__len__()
The size of the dataset.
Source code in bionemo/esm2/model/finetune/datamodule.py
69 70 71 |
|
load_data(csv_path)
Loads data from a CSV file, returning sequences and optionally labels.
This method should be implemented by subclasses to process labels for their specific dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
csv_path
|
str | PathLike
|
The path to the CSV file containing the data. |
required |
Returns:
Type | Description |
---|---|
Sequence
|
Tuple[Sequence, Sequence]: A tuple where the first element is a list of sequences and the second element is |
Sequence
|
a list of labels. If the 'label' column is not present, an empty list is returned for labels. |
Source code in bionemo/esm2/model/finetune/datamodule.py
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
|