Dataset
InMemoryPerTokenValueDataset
Bases: InMemoryProteinDataset
An in-memory dataset of labeled strings, which are tokenized on demand.
Source code in bionemo/esm2/model/finetune/dataset.py
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
|
__init__(sequences, labels=None, tokenizer=tokenizer.get_tokenizer(), seed=np.random.SeedSequence().entropy)
Initializes a dataset for per-token classification fine-tuning.
This is an in-memory dataset that does not apply masking to the sequence. But keeps track of
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sequences
|
Series
|
A pandas Series containing protein sequences. |
required |
labels
|
Series
|
A pandas Series containing labels. Defaults to None. |
None
|
tokenizer
|
BioNeMoESMTokenizer
|
The tokenizer to use. Defaults to tokenizer.get_tokenizer(). |
get_tokenizer()
|
seed
|
int
|
Random seed for reproducibility. This seed is mixed with the index of the sample to retrieve to ensure that getitem is deterministic, but can be random across different runs. If None, a random seed is generated. |
entropy
|
Source code in bionemo/esm2/model/finetune/dataset.py
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
|
transform_label(label)
Transform the sequence label by tokenizing them.
This method tokenizes the secondary structure token sequences.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
label
|
str
|
secondary structure token sequences to be transformed |
required |
Returns:
Type | Description |
---|---|
Tensor
|
tokenized label |
Source code in bionemo/esm2/model/finetune/dataset.py
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
|
InMemoryProteinDataset
Bases: Dataset
An in-memory dataset that tokenize strings into BertSample instances.
Source code in bionemo/esm2/model/finetune/dataset.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
|
__getitem__(index)
Obtains the BertSample at the given index.
Source code in bionemo/esm2/model/finetune/dataset.py
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
|
__init__(sequences, labels=None, tokenizer=tokenizer.get_tokenizer(), seed=np.random.SeedSequence().entropy)
Initializes a dataset of protein sequences.
This is an in-memory dataset that does not apply masking to the sequence. But keeps track of
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sequences
|
Series
|
A pandas Series containing protein sequences. |
required |
labels
|
Series
|
A pandas Series containing labels. Defaults to None. |
None
|
tokenizer
|
BioNeMoESMTokenizer
|
The tokenizer to use. Defaults to tokenizer.get_tokenizer(). |
get_tokenizer()
|
seed
|
int
|
Random seed for reproducibility. This seed is mixed with the index of the sample to retrieve to ensure that getitem is deterministic, but can be random across different runs. If None, a random seed is generated. |
entropy
|
Source code in bionemo/esm2/model/finetune/dataset.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
__len__()
The size of the dataset.
Source code in bionemo/esm2/model/finetune/dataset.py
85 86 87 |
|
from_csv(csv_path, tokenizer=tokenizer.get_tokenizer())
classmethod
Class method to create a ProteinDataset instance from a CSV file.
Source code in bionemo/esm2/model/finetune/dataset.py
70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
|
transform_label(label)
Transform the label.
This method should be implemented by subclass if label needs additional transformation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
label
|
label to be transformed |
required |
Returns:
Type | Description |
---|---|
transformed_label |
Source code in bionemo/esm2/model/finetune/dataset.py
119 120 121 122 123 124 125 126 127 128 129 130 |
|
InMemorySingleValueDataset
Bases: InMemoryProteinDataset
An in-memory dataset that tokenizes strings into BertSample instances.
Source code in bionemo/esm2/model/finetune/dataset.py
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
|
__init__(sequences, labels=None, tokenizer=tokenizer.get_tokenizer(), seed=np.random.SeedSequence().entropy)
Initializes a dataset for single-value regression fine-tuning.
This is an in-memory dataset that does not apply masking to the sequence. But keeps track of
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sequences
|
Series
|
A pandas Series containing protein sequences. |
required |
labels
|
Series
|
A pandas Series containing labels. Defaults to None. |
None
|
tokenizer
|
BioNeMoESMTokenizer
|
The tokenizer to use. Defaults to tokenizer.get_tokenizer(). |
get_tokenizer()
|
seed
|
int
|
Random seed for reproducibility. This seed is mixed with the index of the sample to retrieve to ensure that getitem is deterministic, but can be random across different runs. If None, a random seed is generated. |
entropy
|
Source code in bionemo/esm2/model/finetune/dataset.py
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
transform_label(label)
Transform the regression label.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
label
|
float
|
regression value |
required |
Returns:
Type | Description |
---|---|
Tensor
|
tokenized label |
Source code in bionemo/esm2/model/finetune/dataset.py
158 159 160 161 162 163 164 165 166 167 |
|