Finetune regressor
ESM2FineTuneSeqConfig
dataclass
Bases: ESM2GenericConfig[ESM2FineTuneSeqModel, RegressorLossReduction]
, IOMixinWithGettersSetters
ExampleConfig is a dataclass that is used to configure the model.
Timers from ModelParallelConfig are required for megatron forward compatibility.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
|
get_loss_reduction_class()
Returns RegressorLossReduction class.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
173 174 175 |
|
ESM2FineTuneSeqModel
Bases: ESM2Model
ESM2 model that is suitable for fine-tuning on downstream tasks.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
|
__init__(config, *args, post_process=True, include_embeddings=False, **kwargs)
Constructs an instance of the ESM2 model suitable for fine-tuning.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
|
forward(*args, **kwargs)
Inference.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
|
MegatronMLPHead
Bases: MegatronModule
An MLP class for sequence-level regression.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
|
__init__(config)
Constructor.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
92 93 94 95 96 97 98 99 100 101 |
|
forward(hidden_states)
Inference.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
103 104 105 106 107 108 109 110 |
|
RegressorLossReduction
Bases: BERTMLMLossWithReduction
A class for calculating the MSE loss of regression output.
This class used for calculating the loss, and for logging the reduced loss across micro batches.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
|
forward(batch, forward_out)
Calculates the loss within a micro-batch. A micro-batch is a batch of data on a single GPU.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
Dict[str, Tensor]
|
A batch of data that gets passed to the original forward inside LitAutoEncoder. |
required |
forward_out
|
Dict[str, Tensor]
|
the output of the forward method inside classification head. |
required |
Returns:
Type | Description |
---|---|
Tuple[Tensor, PerTokenLossDict | SameSizeLossDict]
|
A tuple containing [ |
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
|
reduce(losses_reduced_per_micro_batch)
Works across micro-batches. (data on single gpu).
Note: This currently only works for logging and this loss will not be used for backpropagation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
losses_reduced_per_micro_batch
|
Sequence[SameSizeLossDict]
|
a list of the outputs of forward |
required |
Returns:
Type | Description |
---|---|
Tensor
|
A tensor that is the mean of the losses. (used for logging). |
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
74 75 76 77 78 79 80 81 82 83 84 85 86 |
|