Finetune regressor
ESM2FineTuneSeqConfig
dataclass
Bases: ESM2GenericConfig[ESM2FineTuneSeqModel, RegressorLossReduction]
, IOMixinWithGettersSetters
ExampleConfig is a dataclass that is used to configure the model.
Timers from ModelParallelConfig are required for megatron forward compatibility.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
|
get_loss_reduction_class()
Returns RegressorLossReduction class.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
178 179 180 |
|
ESM2FineTuneSeqModel
Bases: ESM2Model
ESM2 model that is suitable for fine-tuning on downstream tasks.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
|
__init__(config, *args, post_process=True, include_embeddings=False, **kwargs)
Constructs an instance of the ESM2 model suitable for fine-tuning.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
|
forward(*args, **kwargs)
Inference.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
|
InMemorySingleValueDataset
Bases: Dataset
An in-memory dataset that tokenizes strings into BertSample instances.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
|
__getitem__(index)
Obtains the BertSample at the given index.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
|
__init__(data, tokenizer=tokenizer.get_tokenizer(), seed=np.random.SeedSequence().entropy)
Initializes a dataset for single-value regression fine-tuning.
This is an in-memory dataset that does not apply masking to the sequence.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Sequence[Tuple[str, float]]
|
A sequence of tuples containing the sequence and target data. |
required |
tokenizer
|
BioNeMoESMTokenizer
|
The tokenizer to use. Defaults to tokenizer.get_tokenizer(). |
get_tokenizer()
|
seed
|
int
|
Random seed for reproducibility. This seed is mixed with the index of the sample to retrieve to ensure that getitem is deterministic, but can be random across different runs. If None, a random seed is generated. |
entropy
|
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
|
__len__()
The size of the dataset.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
208 209 210 |
|
MegatronMLPHead
Bases: MegatronModule
An MLP class for sequence-level regression.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
|
__init__(config)
Constructor.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
97 98 99 100 101 102 103 104 105 106 |
|
forward(hidden_states)
Inference.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
108 109 110 111 112 113 114 115 |
|
RegressorLossReduction
Bases: BERTMLMLossWithReduction
A class for calculating the MSE loss of regression output.
This class used for calculating the loss, and for logging the reduced loss across micro batches.
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
|
forward(batch, forward_out)
Calculates the loss within a micro-batch. A micro-batch is a batch of data on a single GPU.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
Dict[str, Tensor]
|
A batch of data that gets passed to the original forward inside LitAutoEncoder. |
required |
forward_out
|
Dict[str, Tensor]
|
the output of the forward method inside classification head. |
required |
Returns:
Type | Description |
---|---|
Tuple[Tensor, PerTokenLossDict | SameSizeLossDict]
|
A tuple containing [ |
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
|
reduce(losses_reduced_per_micro_batch)
Works across micro-batches. (data on single gpu).
Note: This currently only works for logging and this loss will not be used for backpropagation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
losses_reduced_per_micro_batch
|
Sequence[SameSizeLossDict]
|
a list of the outputs of forward |
required |
Returns:
Type | Description |
---|---|
Tensor
|
A tensor that is the mean of the losses. (used for logging). |
Source code in bionemo/esm2/model/finetune/finetune_regressor.py
79 80 81 82 83 84 85 86 87 88 89 90 91 |
|