Loss
ClassifierLossReduction
Bases: BERTMLMLossWithReduction
A class for calculating the cross entropy loss of classification output.
This class used for calculating the loss, and for logging the reduced loss across micro batches.
Source code in bionemo/esm2/model/finetune/loss.py
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
|
forward(batch, forward_out)
Calculates the loss within a micro-batch. A micro-batch is a batch of data on a single GPU.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
Dict[str, Tensor]
|
A batch of data that gets passed to the original forward inside LitAutoEncoder. |
required |
forward_out
|
Dict[str, Tensor]
|
the output of the forward method inside classification head. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
A tuple where the loss tensor will be used for backpropagation and the dict will be passed to |
PerTokenLossDict | SameSizeLossDict
|
the reduce method, which currently only works for logging. |
Source code in bionemo/esm2/model/finetune/loss.py
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
|
reduce(losses_reduced_per_micro_batch)
Works across micro-batches. (data on single gpu).
Note: This currently only works for logging and this loss will not be used for backpropagation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
losses_reduced_per_micro_batch
|
Sequence[SameSizeLossDict]
|
a list of the outputs of forward |
required |
Returns:
Type | Description |
---|---|
Tensor
|
A tensor that is the mean of the losses. (used for logging). |
Source code in bionemo/esm2/model/finetune/loss.py
120 121 122 123 124 125 126 127 128 129 130 131 132 |
|
RegressorLossReduction
Bases: BERTMLMLossWithReduction
A class for calculating the MSE loss of regression output.
This class used for calculating the loss, and for logging the reduced loss across micro batches.
Source code in bionemo/esm2/model/finetune/loss.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
|
forward(batch, forward_out)
Calculates the loss within a micro-batch. A micro-batch is a batch of data on a single GPU.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
Dict[str, Tensor]
|
A batch of data that gets passed to the original forward inside LitAutoEncoder. |
required |
forward_out
|
Dict[str, Tensor]
|
the output of the forward method inside classification head. |
required |
Returns:
Type | Description |
---|---|
Tuple[Tensor, PerTokenLossDict | SameSizeLossDict]
|
A tuple containing [ |
Source code in bionemo/esm2/model/finetune/loss.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
|
reduce(losses_reduced_per_micro_batch)
Works across micro-batches. (data on single gpu).
Note: This currently only works for logging and this loss will not be used for backpropagation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
losses_reduced_per_micro_batch
|
Sequence[SameSizeLossDict]
|
a list of the outputs of forward |
required |
Returns:
Type | Description |
---|---|
Tensor
|
A tensor that is the mean of the losses. (used for logging). |
Source code in bionemo/esm2/model/finetune/loss.py
63 64 65 66 67 68 69 70 71 72 73 74 75 |
|