Skip to content

Finetune esm2

finetune_esm2_entrypoint()

Entrypoint for running ESM2 finetuning.

Source code in bionemo/esm2/scripts/finetune_esm2.py
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
def finetune_esm2_entrypoint():
    """Entrypoint for running ESM2 finetuning."""
    # 1. get arguments
    parser = get_parser()
    args = parser.parse_args()
    # 2. Call pretrain with args
    train_model(
        train_data_path=args.train_data_path,
        valid_data_path=args.valid_data_path,
        num_nodes=args.num_nodes,
        devices=args.num_gpus,
        min_seq_length=args.min_seq_length,
        max_seq_length=args.max_seq_length,
        result_dir=args.result_dir,
        wandb_entity=args.wandb_entity,
        wandb_project=args.wandb_project,
        wandb_tags=args.wandb_tags,
        wandb_group=args.wandb_group,
        wandb_id=args.wandb_id,
        wandb_anonymous=args.wandb_anonymous,
        wandb_log_model=args.wandb_log_model,
        wandb_offline=args.wandb_offline,
        num_steps=args.num_steps,
        limit_val_batches=args.limit_val_batches,
        val_check_interval=args.val_check_interval,
        log_every_n_steps=args.log_every_n_steps,
        num_dataset_workers=args.num_dataset_workers,
        lr=args.lr,
        micro_batch_size=args.micro_batch_size,
        pipeline_model_parallel_size=args.pipeline_model_parallel_size,
        tensor_model_parallel_size=args.tensor_model_parallel_size,
        accumulate_grad_batches=args.accumulate_grad_batches,
        precision=args.precision,
        scale_lr_layer=args.scale_lr_layer,
        lr_multiplier=args.lr_multiplier,
        experiment_name=args.experiment_name,
        resume_if_exists=args.resume_if_exists,
        restore_from_checkpoint_path=args.restore_from_checkpoint_path,
        save_last_checkpoint=args.save_last_checkpoint,
        metric_to_monitor_for_checkpoints=args.metric_to_monitor_for_checkpoints,
        save_top_k=args.save_top_k,
        nsys_profiling=args.nsys_profiling,
        nsys_start_step=args.nsys_start_step,
        nsys_end_step=args.nsys_end_step,
        nsys_ranks=args.nsys_ranks,
        dataset_class=args.dataset_class,
        config_class=args.config_class,
        overlap_grad_reduce=not args.no_overlap_grad_reduce,
        overlap_param_gather=not args.no_overlap_param_gather,
        average_in_collective=not args.no_average_in_collective,
        grad_reduce_in_fp32=args.grad_reduce_in_fp32,
    )

get_parser()

Return the cli parser for this tool.

Source code in bionemo/esm2/scripts/finetune_esm2.py
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
def get_parser():
    """Return the cli parser for this tool."""
    # TODO migrate to hydra config
    # Parse the arguments and pull them out into local variables for ease of future refactor to a
    #   config management system.
    parser = argparse.ArgumentParser(description="Pretrain ESM2 with UR data.")
    parser.add_argument(
        "--train-data-path",
        type=Path,
        required=True,
        help="Path to the train data CSV file",
    )
    parser.add_argument(
        "--valid-data-path",
        type=Path,
        required=True,
        help="Path to the valid data CSV file",
    )
    parser.add_argument(
        "--precision",
        type=str,
        choices=get_args(PrecisionTypes),
        required=False,
        default="bf16-mixed",
        help="Precision type to use for training.",
    )
    parser.add_argument(
        "--lr",
        type=float,
        required=False,
        default=4e-4,
        help="Learning rate for training. Default is 4e-4",
    )
    parser.add_argument(
        "--scale-lr-layer",
        type=str,
        required=False,
        default=None,
        help="Layer name for which we scale the lr by lr-multiplier",
    )
    parser.add_argument(
        "--lr-multiplier",
        type=float,
        required=False,
        default=1.0,
        help="Learning rate multiplier for layers with scale-lr-layer in their name",
    )
    parser.add_argument(
        "--create-tensorboard-logger", action="store_true", default=False, help="Create a tensorboard logger."
    )
    # FIXME (@skothenhill) figure out how checkpointing and resumption should work with the new nemo trainer
    parser.add_argument(
        "--resume-if-exists", action="store_true", default=False, help="Resume training if a checkpoint exists."
    )
    parser.add_argument(
        "--result-dir", type=Path, required=False, default=Path("./results"), help="Path to the result directory."
    )
    parser.add_argument("--experiment-name", type=str, required=False, default="esm2", help="Name of the experiment.")

    parser.add_argument("--wandb-entity", type=str, default=None, help="The team posting this run")
    parser.add_argument("--wandb-project", type=str, default=None, help="Wandb project name ")
    parser.add_argument("--wandb-tags", nargs="+", type=str, default=None, help="Tags associated with this run")
    parser.add_argument(
        "--wandb-group", type=str, default=None, help="A unique string shared by all runs in a given group"
    )
    parser.add_argument(
        "--wandb-id", type=str, default=None, help="Sets the version, mainly used to resume a previous run"
    )
    parser.add_argument(
        "--wandb-anonymous", action="store_true", help="Enable or explicitly disable anonymous logging"
    )
    parser.add_argument(
        "--wandb-log-model", action="store_true", help="Save checkpoints in wandb dir to upload on W&B servers"
    )
    parser.add_argument("--wandb-offline", action="store_true", help="Use wandb in offline mode")
    parser.add_argument(
        "--num-gpus",
        type=int,
        required=False,
        default=1,
        help="Number of GPUs to use for training. Default is 1.",
    )
    parser.add_argument(
        "--num-nodes",
        type=int,
        required=False,
        default=1,
        help="Number of nodes to use for training. Default is 1.",
    )
    parser.add_argument(
        "--num-steps",
        type=int,
        required=False,
        default=500000,
        help="Number of steps to use for training. Default is 500000.",
    )
    parser.add_argument(
        "--num-dataset-workers",
        type=int,
        required=False,
        default=1,
        help="Number of workers to use for training. Default is 1.",
    )
    parser.add_argument(
        "--val-check-interval",
        type=int,
        required=False,
        default=10000,
        help="Number of steps between validation. Default is 10000.",
    )
    parser.add_argument(
        "--log-every-n-steps",
        type=int,
        required=False,
        help="Number of steps between logging. Default is 50.",
    )
    parser.add_argument(
        "--min-seq-length",
        type=float_or_int_or_none,
        required=False,
        default=1024,
        help="Minimum sequence length. Sampled will be padded if less than this value. Set 'None' to unset minimum.",
    )
    parser.add_argument(
        "--max-seq-length",
        type=int,
        required=False,
        default=1024,
        help="Maximum sequence length. Samples will be truncated if exceeds this value.",
    )
    parser.add_argument(
        "--limit-val-batches",
        type=float_or_int_or_none,
        required=False,
        default=2,
        help="Number of global batches used for validation if int. Fraction of validation dataset if float. Default is 2.",
    )
    parser.add_argument(
        "--micro-batch-size",
        type=int,
        required=False,
        default=64,
        help="Micro-batch size. Global batch size is inferred from this.",
    )
    parser.add_argument(
        "--pipeline-model-parallel-size",
        type=int,
        required=False,
        default=1,
        help="Pipeline model parallel size. Default is 1.",
    )
    parser.add_argument(
        "--tensor-model-parallel-size",
        type=int,
        required=False,
        default=1,
        help="Tensor model parallel size. Default is 1.",
    )
    parser.add_argument(
        "--accumulate-grad-batches",
        type=int,
        required=False,
        default=1,
        help="Gradient accumulation steps. Global batch size is inferred from this.",
    )
    parser.add_argument(
        "--save-last-checkpoint",
        action="store_true",
        default=True,
        help="Save the last checkpoint.",
    )
    parser.add_argument(
        "--metric-to-monitor-for-checkpoints",
        type=str,
        required=False,
        default="val_loss",
        help="The metric to monitor for checkpointing.",
    )
    parser.add_argument(
        "--save-top-k",
        type=int,
        required=False,
        default=2,
        help="Save the top k checkpoints.",
    )
    parser.add_argument(
        "--restore-from-checkpoint-path",
        type=Path,
        required=False,
        default=None,
        help="Path to the checkpoint directory to restore from. Will override `--resume-if-exists` when set.",
    )
    parser.add_argument(
        "--nsys-profiling",
        action="store_true",
        default=False,
        help="Enable targeted `nsys` profiling on the training loop for a defined step range. To actually get profiling output you must run the whole program with `nsys`. For example: "
        " `nsys profile -s none -o output_report_name -t cuda,nvtx --force-overwrite true --capture-range=cudaProfilerApi --capture-range-end=stop  [regular python command here]`",
    )
    # start, end, rank
    parser.add_argument(
        "--nsys-start-step",
        type=int,
        required=False,
        default=0,
        help="Start nsys profiling after this step.",
    )
    parser.add_argument(
        "--nsys-end-step",
        type=int,
        required=False,
        help="End nsys profiling after this step.",
    )
    # rank as list of integers
    parser.add_argument(
        "--nsys-ranks",
        type=int,
        nargs="+",
        required=False,
        default=[0],
        help="Enable nsys profiling for these ranks.",
    )
    # DDP config
    parser.add_argument(
        "--no-overlap-grad-reduce",
        action="store_true",
        default=False,
    )
    parser.add_argument(
        "--no-overlap-param-gather",
        action="store_true",
        default=False,
    )
    parser.add_argument(
        "--no-average-in-collective",
        action="store_true",
        default=False,
    )
    parser.add_argument(
        "--grad-reduce-in-fp32",
        action="store_true",
        default=False,
    )

    config_class_options: Dict[str, Type[BioBertConfig]] = SUPPORTED_CONFIGS

    def config_class_type(desc: str) -> Type[BioBertConfig]:
        try:
            return config_class_options[desc]
        except KeyError:
            raise argparse.ArgumentTypeError(
                f"Do not recognize key {desc}, valid options are: {config_class_options.keys()}"
            )

    parser.add_argument(
        "--config-class",
        type=config_class_type,
        default=ESM2FineTuneSeqConfig,
        help="Model configs link model classes with losses, and handle model initialization (including from a prior "
        "checkpoint). This is how you can fine-tune a model. First train with one config class that points to one model "
        "class and loss, then implement and provide an alternative config class that points to a variant of that model "
        "and alternative loss. In the future this script should also provide similar support for picking different data "
        f"modules for fine-tuning with different data types. Choices: {config_class_options.keys()}",
    )

    dataset_class_options: Dict[str, Type[InMemoryProteinDataset]] = SUPPORTED_DATASETS

    def dataset_class_type(desc: str) -> Type[InMemoryProteinDataset]:
        try:
            return dataset_class_options[desc]
        except KeyError:
            raise argparse.ArgumentTypeError(
                f"Do not recognize key {desc}, valid options are: {dataset_class_options.keys()}"
            )

    parser.add_argument(
        "--dataset-class",
        type=dataset_class_type,
        default=InMemorySingleValueDataset,
        help=f"Dataset class name for finetuning. Choices: {config_class_options.keys()}",
    )
    return parser

train_model(train_data_path, valid_data_path, num_nodes, devices, min_seq_length, max_seq_length, result_dir, num_steps, limit_val_batches, val_check_interval, log_every_n_steps, num_dataset_workers, lr, micro_batch_size, accumulate_grad_batches, experiment_name, resume_if_exists, precision, scale_lr_layer=None, lr_multiplier=1.0, wandb_entity=None, wandb_project=None, wandb_offline=False, wandb_tags=None, wandb_group=None, wandb_id=None, wandb_anonymous=False, wandb_log_model=False, pipeline_model_parallel_size=1, tensor_model_parallel_size=1, create_tensorboard_logger=False, restore_from_checkpoint_path=None, save_last_checkpoint=True, metric_to_monitor_for_checkpoints='val_loss', save_top_k=2, nsys_profiling=False, nsys_start_step=0, nsys_end_step=None, nsys_ranks=[0], dataset_class=InMemorySingleValueDataset, config_class=ESM2FineTuneSeqConfig, metric_tracker=None, overlap_grad_reduce=True, overlap_param_gather=True, average_in_collective=True, grad_reduce_in_fp32=False)

Train an ESM2 model on UR data.

Parameters:

Name Type Description Default
train_data_path Path

path to train CSV

required
valid_data_path Path

path to validation CSV

required
num_nodes int

Number of nodes to run on

required
devices int

number of devices

required
min_seq_length Optional[int]

minimum sequence length

required
max_seq_length int

maximum sequence length

required
result_dir Path

directory to store results, logs and checkpoints

required
num_steps int

number of steps to train the model for

required
limit_val_batches int

limit the number of validation global batches to this many

required
val_check_interval int

number of steps to periodically check the validation loss

required
log_every_n_steps Optional[int]

log every n steps

required
num_dataset_workers int

number of dataset workers

required
lr float

learning rate

required
micro_batch_size int

micro batch size, from this and parallelism settings we infer the global batch size

required
accumulate_grad_batches int

number of batches to accumulate gradients for

required
experiment_name str

experiment name, this is the name used for the wandb run, and the sub-directory of the result_dir that stores the logs and checkpoints.

required
resume_if_exists bool

attempt to resume if the checkpoint exists [FIXME @skothenhill this doesn't work yet]

required
precision PrecisionTypes

Precision type for training (e.g., float16, float32)

required
scale_lr_layer Optional[str]

layer names for which the lr is scaled by lr_multiplier

None
lr_multiplier float

lr multiplier for parameters in scale_lr_layer

1.0
wandb_entity Optional[str]

The team posting this run (default: your username or your default team)

None
wandb_project Optional[str]

The name of the project to which this run will belong

None
wandb_offline bool

Run offline (data can be streamed later to wandb servers).

False
wandb_tags Optional[List[str]]

Tags associated with this run

None
wandb_group Optional[str]

A unique string shared by all runs in a given group

None
wandb_id Optional[str]

Sets the version, mainly used to resume a previous run

None
wandb_anonymous Optional[bool]

Enables or explicitly disables anonymous logging

False
wandb_log_model bool

Save checkpoints in wandb dir to upload on W&B servers

False
pipeline_model_parallel_size int

pipeline model parallel size

1
tensor_model_parallel_size int

tensor model parallel size

1
create_tensorboard_logger bool

create the tensorboard logger

False
restore_from_checkpoint_path Optional[str]

If set, restores the model from the directory passed in. Expects the checkpoint to be created by using the ModelCheckpoint class and always_save_context=True.

None
save_last_checkpoint bool

whether to save the last checkpoint

True
metric_to_monitor_for_checkpoints str

metric to monitor for checkpoints

'val_loss'
save_top_k int

number of top checkpoints to save

2
nsys_profiling bool

whether to enable nsys profiling

False
nsys_start_step int

start step for nsys profiling

0
nsys_end_step Optional[int]

end step for nsys profiling

None
nsys_ranks List[int]

ranks for nsys profiling

[0]
dataset_class Type[InMemoryProteinDataset]

The dataset class for loading the data from a CSV file

InMemorySingleValueDataset
config_class Type[BioBertConfig]

The config class for configuring the model using checkpoint provided

ESM2FineTuneSeqConfig
metric_tracker Callback | None

Optional callback to track metrics (used for testing)

None
overlap_grad_reduce bool

overlap gradient reduction

True
overlap_param_gather bool

overlap parameter gather

True
average_in_collective bool

average in collective

True
grad_reduce_in_fp32 bool

gradient reduction in fp32

False
Source code in bionemo/esm2/scripts/finetune_esm2.py
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
def train_model(
    train_data_path: Path,
    valid_data_path: Path,
    num_nodes: int,
    devices: int,
    min_seq_length: Optional[int],
    max_seq_length: int,
    result_dir: Path,
    num_steps: int,
    limit_val_batches: int,
    val_check_interval: int,
    log_every_n_steps: Optional[int],
    num_dataset_workers: int,
    lr: float,
    micro_batch_size: int,
    accumulate_grad_batches: int,
    experiment_name: str,
    resume_if_exists: bool,
    precision: PrecisionTypes,
    scale_lr_layer: Optional[str] = None,
    lr_multiplier: float = 1.0,
    wandb_entity: Optional[str] = None,
    wandb_project: Optional[str] = None,
    wandb_offline: bool = False,
    wandb_tags: Optional[List[str]] = None,
    wandb_group: Optional[str] = None,
    wandb_id: Optional[str] = None,
    wandb_anonymous: Optional[bool] = False,
    wandb_log_model: bool = False,
    pipeline_model_parallel_size: int = 1,
    tensor_model_parallel_size: int = 1,
    create_tensorboard_logger: bool = False,
    restore_from_checkpoint_path: Optional[str] = None,
    save_last_checkpoint: bool = True,
    metric_to_monitor_for_checkpoints: str = "val_loss",
    save_top_k: int = 2,
    nsys_profiling: bool = False,
    nsys_start_step: int = 0,
    nsys_end_step: Optional[int] = None,
    nsys_ranks: List[int] = [0],
    dataset_class: Type[InMemoryProteinDataset] = InMemorySingleValueDataset,
    config_class: Type[BioBertConfig] = ESM2FineTuneSeqConfig,
    metric_tracker: Callback | None = None,
    overlap_grad_reduce: bool = True,
    overlap_param_gather: bool = True,
    average_in_collective: bool = True,
    grad_reduce_in_fp32: bool = False,
) -> Tuple[Path, Callback | None, nl.Trainer]:
    """Train an ESM2 model on UR data.

    Args:
        train_data_path (Path): path to train CSV
        valid_data_path (Path): path to validation CSV
        num_nodes (int): Number of nodes to run on
        devices (int): number of devices
        min_seq_length (Optional[int]): minimum sequence length
        max_seq_length (int): maximum sequence length
        result_dir (Path): directory to store results, logs and checkpoints
        num_steps (int): number of steps to train the model for
        limit_val_batches (int): limit the number of validation global batches to this many
        val_check_interval (int): number of steps to periodically check the validation loss
        log_every_n_steps (Optional[int]): log every n steps
        num_dataset_workers (int): number of dataset workers
        lr (float): learning rate
        micro_batch_size (int): micro batch size, from this and parallelism settings we infer the global batch size
        accumulate_grad_batches (int): number of batches to accumulate gradients for
        experiment_name (str): experiment name, this is the name used for the wandb run, and the sub-directory of the
            result_dir that stores the logs and checkpoints.
        resume_if_exists (bool): attempt to resume if the checkpoint exists [FIXME @skothenhill this doesn't work yet]
        precision (PrecisionTypes): Precision type for training (e.g., float16, float32)
        scale_lr_layer (Optional[str]): layer names for which the lr is scaled by lr_multiplier
        lr_multiplier (float): lr multiplier for parameters in scale_lr_layer
        wandb_entity (Optional[str]): The team posting this run (default: your username or your default team)
        wandb_project (Optional[str]): The name of the project to which this run will belong
        wandb_offline (bool): Run offline (data can be streamed later to wandb servers).
        wandb_tags (Optional[List[str]]): Tags associated with this run
        wandb_group (Optional[str]): A unique string shared by all runs in a given group
        wandb_id (Optional[str]): Sets the version, mainly used to resume a previous run
        wandb_anonymous (Optional[bool]): Enables or explicitly disables anonymous logging
        wandb_log_model (bool): Save checkpoints in wandb dir to upload on W&B servers
        pipeline_model_parallel_size (int): pipeline model parallel size
        tensor_model_parallel_size (int): tensor model parallel size
        create_tensorboard_logger (bool): create the tensorboard logger
        restore_from_checkpoint_path (Optional[str]): If set, restores the model from the directory passed in. Expects the
            checkpoint to be created by using the ModelCheckpoint class and always_save_context=True.
        save_last_checkpoint (bool): whether to save the last checkpoint
        metric_to_monitor_for_checkpoints (str): metric to monitor for checkpoints
        save_top_k (int): number of top checkpoints to save
        nsys_profiling (bool): whether to enable nsys profiling
        nsys_start_step (int): start step for nsys profiling
        nsys_end_step (Optional[int]): end step for nsys profiling
        nsys_ranks (List[int]): ranks for nsys profiling
        dataset_class (Type[InMemoryProteinDataset]): The dataset class for loading the data from a CSV file
        config_class (Type[BioBertConfig]): The config class for configuring the model using checkpoint provided
        metric_tracker: Optional callback to track metrics (used for testing)
        overlap_grad_reduce (bool): overlap gradient reduction
        overlap_param_gather (bool): overlap parameter gather
        average_in_collective (bool): average in collective
        grad_reduce_in_fp32 (bool): gradient reduction in fp32
    """
    # Create the result directory if it does not exist.
    result_dir.mkdir(parents=True, exist_ok=True)

    # Setup the strategy and trainer
    global_batch_size = infer_global_batch_size(
        micro_batch_size=micro_batch_size,
        num_nodes=num_nodes,
        devices=devices,
        accumulate_grad_batches=accumulate_grad_batches,
        tensor_model_parallel_size=tensor_model_parallel_size,
        pipeline_model_parallel_size=pipeline_model_parallel_size,
    )

    strategy = nl.MegatronStrategy(
        tensor_model_parallel_size=tensor_model_parallel_size,
        pipeline_model_parallel_size=pipeline_model_parallel_size,
        ddp=DistributedDataParallelConfig(
            check_for_nan_in_grad=True,
            overlap_grad_reduce=overlap_grad_reduce,
            overlap_param_gather=overlap_param_gather,
            average_in_collective=average_in_collective,
            grad_reduce_in_fp32=grad_reduce_in_fp32,
            use_distributed_optimizer=True,
        ),
        find_unused_parameters=True,
        gradient_as_bucket_view=True,
        ckpt_include_optimizer=True,
        ckpt_async_save=True,
        ckpt_parallel_load=True,
    )

    # for wandb integration
    # Please refer to https://pytorch-lightning.readthedocs.io/en/0.7.6/api/lightning.pytorch.loggers.html"
    wandb_config: Optional[WandbConfig] = (
        None
        if wandb_project is None
        else WandbConfig(
            offline=wandb_offline,
            project=wandb_project,
            entity=wandb_entity,
            tags=wandb_tags,
            group=wandb_group,
            id=wandb_id,
            anonymous=wandb_anonymous,
            log_model=wandb_log_model,
        )
    )

    callbacks = [
        RichModelSummary(max_depth=4),
        LearningRateMonitor(),
        nl_callbacks.PreemptionCallback(),
    ]
    if metric_tracker is not None:
        callbacks.append(metric_tracker)
    if nsys_profiling:
        if nsys_end_step is None:
            nsys_end_step = num_steps
        callbacks.append(
            nl_callbacks.NsysCallback(
                start_step=nsys_start_step, end_step=nsys_end_step, ranks=nsys_ranks, gen_shape=True
            )
        )

    trainer = nl.Trainer(
        devices=devices,
        max_steps=num_steps,
        accelerator="gpu",
        strategy=strategy,
        limit_val_batches=limit_val_batches,  # This controls upsampling and downsampling
        val_check_interval=val_check_interval,
        log_every_n_steps=log_every_n_steps,
        num_nodes=num_nodes,
        callbacks=callbacks,
        plugins=nl.MegatronMixedPrecision(
            precision=precision,
            params_dtype=get_autocast_dtype(precision),
            pipeline_dtype=get_autocast_dtype(precision),
            grad_reduce_in_fp32=grad_reduce_in_fp32,
            autocast_enabled=False,
        ),
    )

    tokenizer = get_tokenizer()

    # Initialize the data module.
    train_dataset = dataset_class.from_csv(train_data_path)
    valid_dataset = dataset_class.from_csv(valid_data_path)

    data_module = ESM2FineTuneDataModule(
        train_dataset=train_dataset,
        valid_dataset=valid_dataset,
        global_batch_size=global_batch_size,
        micro_batch_size=micro_batch_size,
        min_seq_length=min_seq_length,
        max_seq_length=max_seq_length,
        num_workers=num_dataset_workers,
        tokenizer=tokenizer,
    )
    # Configure the model
    config = config_class(
        params_dtype=get_autocast_dtype(precision),
        pipeline_dtype=get_autocast_dtype(precision),
        autocast_dtype=get_autocast_dtype(precision),  # setting this speeds things up a lot
        tensor_model_parallel_size=tensor_model_parallel_size,
        pipeline_model_parallel_size=pipeline_model_parallel_size,
        initial_ckpt_path=str(restore_from_checkpoint_path),
        # initial_ckpt_skip_keys_with_these_prefixes=[],  # load everything from the checkpoint.
    )

    optimizer = MegatronOptimizerModule(
        config=OptimizerConfig(
            lr=lr,
            optimizer="adam",  # fused_adam not supported
            use_distributed_optimizer=True,
            weight_decay=0.01,
            adam_beta1=0.9,
            adam_beta2=0.98,
        ),
    )
    # fiddle is not serializing lambda fn
    # to bypass serialization of lambda fn scale_lr_condition as part of optimizer configuration
    if scale_lr_layer:
        optimizer.scale_lr_cond = lambda name, param: scale_lr_layer in name
        optimizer.lr_mult = lr_multiplier

    module = biobert_lightning_module(config=config, tokenizer=tokenizer, optimizer=optimizer)

    # Configure our custom Checkpointer
    checkpoint_callback = nl_callbacks.ModelCheckpoint(
        save_last=save_last_checkpoint,
        monitor=metric_to_monitor_for_checkpoints,  # "val_loss",
        save_top_k=save_top_k,
        every_n_train_steps=val_check_interval,
        always_save_context=True,  # Enables the .nemo file-like checkpointing where all IOMixins are under SerDe
        filename="checkpoint-{step}-{consumed_samples}",  # Including step and consumed_samples in the checkpoint filename prevents duplicate filenames and bugs related to this.
    )

    # Setup the logger and train the model
    nemo_logger = setup_nemo_lightning_logger(
        root_dir=result_dir,
        name=experiment_name,
        initialize_tensorboard_logger=create_tensorboard_logger,
        wandb_config=wandb_config,
        ckpt_callback=checkpoint_callback,
    )

    llm.train(
        model=module,
        data=data_module,
        trainer=trainer,
        log=nemo_logger,
        resume=resume.AutoResume(
            resume_if_exists=resume_if_exists,  # Looks for the -last checkpoint to continue training.
            resume_ignore_no_checkpoint=True,  # When false this will throw an error with no existing checkpoint.
        ),
    )
    ckpt_path = Path(checkpoint_callback.last_model_path.replace(".ckpt", ""))
    return ckpt_path, metric_tracker, trainer