Skip to content

Datamodule

SingleCellDataModule

Bases: MegatronDataModule

LightningDataModule wrapper of SingleCellDataset

Parameters:

Name Type Description Default
data_path Union[str, PosixPath]

Path to preprocessed single-cell data files

required
tokenizer Tokenizer

Maps gene names to ids and vice-versa

required
collator

Used to batch samples

required
process_item

Function defining how each item should be processed

required
num_workers int

Number of workers to use

10
num_mask_per_sample int

Number of masked versions of a single sample to be returned by each worker

required
train_batch_size int

Batch size for training

required
val_batch_size int

Batch size for validation

required
include_unrecognized_vocab_in_dataset bool

If set to True, a hard-check is performed to verify all gene identifers are in the user supplied tokenizer vocab. Defaults to False which means any gene identifier not in the user supplied tokenizer vocab will be excluded.

False

Attributes:

Name Type Description
cfg Config

Configuration object

data_path Union[str, PosixPath]

Path to preprocessed single-cell data files

median_dict dict

Dictionary containing median values

tokenizer Tokenizer

Tokenizer object

setup_called bool

Flag indicating if the setup method has been called

dataset SingleCellDataset

Single-cell dataset object

Source code in bionemo/geneformer/data/singlecell/datamodule.py
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
class SingleCellDataModule(MegatronDataModule):
    """LightningDataModule wrapper of `SingleCellDataset`

    Args:
        data_path (Union[str, PosixPath]): Path to preprocessed single-cell data files
        tokenizer (Tokenizer): Maps gene names to ids and vice-versa
        collator: Used to batch samples
        process_item: Function defining how each item should be processed
        num_workers (int): Number of workers to use
        num_mask_per_sample (int): Number of masked versions of a single sample to be returned by each worker
        train_batch_size (int): Batch size for training
        val_batch_size (int): Batch size for validation
        include_unrecognized_vocab_in_dataset (bool, optional): If set to True, a hard-check is performed to verify all gene identifers are in the user supplied tokenizer vocab. Defaults to False which means any gene identifier not in the user supplied tokenizer vocab will be excluded.

    Attributes:
        cfg (Config): Configuration object
        data_path (Union[str, PosixPath]): Path to preprocessed single-cell data files
        median_dict (dict): Dictionary containing median values
        tokenizer (Tokenizer): Tokenizer object
        setup_called (bool): Flag indicating if the setup method has been called
        dataset (SingleCellDataset): Single-cell dataset object

    """  # noqa: D415

    # Nothing says we cant pass in the dataset...
    def __init__(  # noqa: D107
        self,
        tokenizer: Tokenizer,
        median_dict: dict[str, float],
        train_dataset_path: str | Path | None = None,
        val_dataset_path: str | Path | None = None,
        test_dataset_path: str | Path | None = None,
        predict_dataset_path: str | Path | None = None,
        mask_prob: float = 0.15,
        mask_token_prob: float = 0.8,  # 80% mask token
        random_token_prob: float = 0.1,  # 10% random token, remaining 1-(mask+random) will be identity.
        seq_length: int = 2048,
        micro_batch_size: int = 4,
        global_batch_size: int = 8,
        rampup_batch_size: Optional[List[int]] = None,
        seed: int = 42,
        num_workers: int = 10,  # TODO can this be automatically set?
        persistent_workers: bool = True,
        pin_memory: bool = True,
        include_unrecognized_vocab_in_dataset: bool = False,
    ) -> None:
        super().__init__()
        if predict_dataset_path is None:
            assert (
                train_dataset_path is not None and val_dataset_path is not None and test_dataset_path is not None
            ), "Provide either predict_dataset_path or (train_dataset_path, val_dataset_path, and test_dataset_path)"
        elif train_dataset_path is None:
            assert (
                val_dataset_path is None and test_dataset_path is None
            ), "Provide either predict_dataset_path or (train_dataset_path, val_dataset_path, and test_dataset_path)"
            assert (
                predict_dataset_path is not None
            ), "Provide either predict_dataset_path or (train_dataset_path, val_dataset_path, and test_dataset_path)"
        self.data_path_predict = predict_dataset_path
        self.data_path_train = train_dataset_path
        self.data_path_val = val_dataset_path
        self.data_path_test = test_dataset_path
        self.tokenizer = tokenizer
        self.median_dict = median_dict
        self.max_len = seq_length
        self.mask_prob = mask_prob
        self.mask_token_prob = mask_token_prob
        self.random_token_prob = random_token_prob
        self.seed = seed
        self.num_workers = num_workers
        self.persistent_workers = persistent_workers
        self.pin_memory = pin_memory

        rng = np.random.default_rng(seed)
        if self.data_path_train is not None:
            assert self.data_path_val is not None and self.data_path_test is not None
            self._train_dataset_ori = SingleCellDataset(
                self.data_path_train,
                self.tokenizer,
                self.median_dict,
                self.max_len,
                mask_prob=self.mask_prob,
                mask_token_prob=self.mask_token_prob,
                random_token_prob=self.random_token_prob,
                seed=random_utils.get_seed_from_rng(rng),
                include_unrecognized_vocab_in_dataset=include_unrecognized_vocab_in_dataset,
            )
            self._val_dataset_ori = SingleCellDataset(
                self.data_path_val,
                self.tokenizer,
                self.median_dict,
                self.max_len,
                mask_prob=self.mask_prob,
                mask_token_prob=self.mask_token_prob,
                random_token_prob=self.random_token_prob,
                seed=random_utils.get_seed_from_rng(rng),
                include_unrecognized_vocab_in_dataset=include_unrecognized_vocab_in_dataset,
            )
            self._test_dataset_ori = SingleCellDataset(
                self.data_path_test,
                self.tokenizer,
                self.median_dict,
                self.max_len,
                mask_prob=self.mask_prob,
                mask_token_prob=self.mask_token_prob,
                random_token_prob=self.random_token_prob,
                seed=random_utils.get_seed_from_rng(rng),
                include_unrecognized_vocab_in_dataset=include_unrecognized_vocab_in_dataset,
            )
            self._predict_dataset_ori = None
        else:
            assert self.data_path_predict is not None
            self._predict_dataset_ori = SingleCellDataset(
                self.data_path_predict,
                self.tokenizer,
                self.median_dict,
                self.max_len,
                mask_prob=self.mask_prob,
                mask_token_prob=self.mask_token_prob,
                random_token_prob=self.random_token_prob,
                seed=random_utils.get_seed_from_rng(rng),
                include_unrecognized_vocab_in_dataset=include_unrecognized_vocab_in_dataset,
            )
            self._train_dataset_ori = None
            self._val_dataset_ori = None
            self._test_dataset_ori = None

        # This is needed here, or you need to specify it in the megatron adapter thing TODO name?
        #  Note that this sampler is sequential, meaning it does not do any shuffling. Let's wrap our data in a shuffler.
        if self.data_path_predict is not None:
            n_predict = len(self._predict_dataset_ori)
            self.data_sampler = MegatronDataSampler(
                seq_len=self.max_len,
                micro_batch_size=min(micro_batch_size, n_predict),
                global_batch_size=min(global_batch_size, n_predict),
                rampup_batch_size=rampup_batch_size,
                output_log=False,  # this is needed for predict step to work
            )
        else:
            self.data_sampler = MegatronDataSampler(
                seq_len=self.max_len,
                micro_batch_size=micro_batch_size,
                global_batch_size=global_batch_size,
                rampup_batch_size=rampup_batch_size,
            )

    def setup(self, stage: str = "") -> None:  # noqa: D102
        assert getattr(self, "trainer", None) is not None, "Please only call setup after trainer is attached."

        if self._train_dataset_ori is not None:
            assert self._val_dataset_ori is not None and self._test_dataset_ori is not None
            # Trainer API
            max_train_steps = self.trainer.max_steps
            if self.trainer.max_epochs > 1:
                logging.warning(
                    "Trainer is set to run for multiple epochs. This is not recommended due to the same shuffle being used in each. Instead set max_epochs to 1 and increase the number of max_steps."
                )
            assert max_train_steps > 0, "Please specify trainer.max_steps"

            num_train_samples = int(max_train_steps * self.data_sampler.global_batch_size)

            # This happens exactly once during setup.
            self._train_ds = MultiEpochDatasetResampler(
                self._train_dataset_ori,
                num_samples=num_train_samples,
                shuffle=True,
                seed=self.seed,
            )
            if self.trainer.limit_val_batches == 0:  # disable validation
                logging.info("Skip creating validation dataset because trainer.limit_val_batches=0.")
            else:
                num_val_samples = infer_num_samples(
                    limit_batches=self.trainer.limit_val_batches,
                    num_samples_in_dataset=len(self._val_dataset_ori),
                    global_batch_size=self.data_sampler.global_batch_size,
                    stage="val",
                )
                self._validation_ds = MultiEpochDatasetResampler(
                    self._val_dataset_ori,
                    num_samples=num_val_samples,
                    shuffle=False,
                    seed=self.seed,
                )
            if self.trainer.limit_test_batches == 0:  # disable testing
                logging.info("Skip creating test dataset because trainer.limit_test_batches=0.")

            else:
                num_test_samples = infer_num_samples(
                    limit_batches=self.trainer.limit_test_batches,
                    num_samples_in_dataset=len(self._test_dataset_ori),
                    global_batch_size=self.data_sampler.global_batch_size,
                    stage="test",
                )
                self._test_ds = MultiEpochDatasetResampler(
                    self._test_dataset_ori,
                    num_samples=num_test_samples,
                    shuffle=False,
                    seed=self.seed,
                )
        else:
            assert self._predict_dataset_ori is not None
            self._predict_ds = MultiEpochDatasetResampler(
                self._predict_dataset_ori,
                shuffle=False,
                seed=self.seed,
            )

    def train_dataloader(self) -> TRAIN_DATALOADERS:  # noqa: D102
        return self._create_dataloader(self._train_ds, mode="train")

    def val_dataloader(self) -> EVAL_DATALOADERS:  # noqa: D102
        return self._create_dataloader(self._validation_ds, mode="validation")

    def test_dataloader(self) -> EVAL_DATALOADERS:  # noqa: D102
        return self._create_dataloader(self._test_ds, mode="test")

    def predict_dataloader(self) -> EVAL_DATALOADERS:  # noqa: D102
        return self._create_dataloader(self._predict_ds, mode="predict", drop_last=False)

    def _create_dataloader(self, dataset, mode: Mode, **kwargs) -> WrappedDataLoader:
        """Create dataloader for train, validation, and test stages.

        Args:
            dataset: The dataset to create the dataloader for.
            mode: Stage of training, which is used to determined if consumed_samples in MegatronPretrainingSampler should be initialized to 0 (validation/test), or be set to the previous value from state_dict in case of checkpoint resumption (train).
            **kwargs: Additional arguments to pass to the dataloader.
        """
        self.update_init_global_step()
        return WrappedDataLoader(
            mode=mode,
            dataset=dataset,
            num_workers=self.num_workers,
            pin_memory=self.pin_memory,
            persistent_workers=self.persistent_workers,
            collate_fn=functools.partial(
                collate.bert_padding_collate_fn,
                padding_value=self.tokenizer.token_to_id(GeneTokenizer.pad_token),
                min_length=self.max_len,
                max_length=self.max_len,
            ),
            **kwargs,
        )