Skip to content

Recipes

GeneformerRecipes

Bases: BaseModel

Pre-baked recipes for Geneformer.

THIS PYDANTIC MODEL IS NOT MEANT FOR SERIALIZATION. Only used to facilitate argparse. Each recipe should take args as the only argument. We use partials so we can provide this information at runtime. Add new recipes to this model.

Source code in bionemo/geneformer/run/recipes.py
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
class GeneformerRecipes(BaseModel):
    """Pre-baked recipes for Geneformer.

    THIS PYDANTIC MODEL IS NOT MEANT FOR SERIALIZATION. Only used to facilitate argparse. Each recipe should take `args`
    as the only argument. We use partials so we can provide this information at runtime. Add new recipes to this model.
    """

    # Use partials so we can still parameterize the recipes from the CLI (e.g. data paths.)
    geneformer_10m_finetune_recipe: Callable[
        [argparse.Namespace], MainConfig[ExposedFineTuneSeqLenBioBertConfig, GeneformerPretrainingDataConfig]
    ] = partial(geneformer_10m_finetune_recipe)
    geneformer_10m_pretrain_recipe: Callable[
        [argparse.Namespace], MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig]
    ] = partial(geneformer_10m_pretrain_recipe)
    geneformer_10m_shortpretrain_recipe: Callable[
        [argparse.Namespace], MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig]
    ] = partial(geneformer_10m_shortpretrain_recipe)
    geneformer_106m_pretrain_recipe: Callable[
        [argparse.Namespace], MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig]
    ] = partial(geneformer_106m_pretrain_recipe)
    geneformer_tiny_test_recipe: Callable[
        [argparse.Namespace], MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig]
    ] = partial(pretrain_tiny_test_recipe)
    finetune_test_recipe: Callable[
        [argparse.Namespace], MainConfig[ExposedFineTuneSeqLenBioBertConfig, GeneformerPretrainingDataConfig]
    ] = partial(finetune_test_recipe)

default_adam_optimizer_with_cosine_annealing_recipe()

Default optimizer scheduler config for Geneformer. See OptimizerSchedulerConfig for defaults.

Source code in bionemo/geneformer/run/recipes.py
366
367
368
def default_adam_optimizer_with_cosine_annealing_recipe() -> OptimizerSchedulerConfig:
    """Default optimizer scheduler config for Geneformer. See OptimizerSchedulerConfig for defaults."""
    return OptimizerSchedulerConfig()

default_trainer_config_recipe()

Default trainer config for Geneformer.

Source code in bionemo/geneformer/run/recipes.py
273
274
275
def default_trainer_config_recipe() -> TrainingConfig:
    """Default trainer config for Geneformer."""
    return TrainingConfig(max_steps=55000, limit_val_batches=2, val_check_interval=100)

experiment_config_recipe()

Default experiment config for Geneformer. Used in testing.

Source code in bionemo/geneformer/run/recipes.py
371
372
373
374
375
376
377
378
379
380
381
382
def experiment_config_recipe() -> ExperimentConfig:
    """Default experiment config for Geneformer. Used in testing."""
    return ExperimentConfig(
        save_every_n_steps=100,
        result_dir="./results",
        experiment_name="default_experiment",
        restore_from_checkpoint_path=None,
        save_last_checkpoint=True,
        metric_to_monitor_for_checkpoints="reduced_train_loss",
        save_top_k=2,
        create_tensorboard_logger=False,
    )

finetune_test_recipe(args)

Recipe for finetuning a regression head on the masked tokens.

Source code in bionemo/geneformer/run/recipes.py
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
def finetune_test_recipe(args) -> MainConfig[ExposedFineTuneSeqLenBioBertConfig, GeneformerPretrainingDataConfig]:
    """Recipe for finetuning a regression head on the masked tokens."""
    data_path = args.data_path
    result_dir = args.result_dir

    parallel_config = ParallelConfig(
        tensor_model_parallel_size=1, pipeline_model_parallel_size=1, num_devices=1, accumulate_grad_batches=2
    )
    training_config = TrainingConfig(
        max_steps=10, limit_val_batches=2, val_check_interval=2, precision="bf16-mixed", accelerator="gpu"
    )
    data_config = GeneformerPretrainingDataConfig(
        seq_length=128,
        micro_batch_size=2,
        num_dataset_workers=0,
        data_dir=data_path,
    )
    experiment_config = ExperimentConfig(
        save_every_n_steps=training_config.val_check_interval,
        result_dir=result_dir,
        experiment_name="test-experiment",
        restore_from_checkpoint_path=None,
        save_last_checkpoint=True,
        metric_to_monitor_for_checkpoints="reduced_train_loss",
        save_top_k=2,
        create_tensorboard_logger=False,
    )

    optim_config = OptimizerSchedulerConfig(lr_scheduler="cosine")
    geneformer_config = geneformer_10m_finetune_config(
        seq_length=data_config.seq_length, initial_ckpt_path=args.initial_ckpt_path
    )

    return MainConfig(
        data_config=data_config,
        parallel_config=parallel_config,
        training_config=training_config,
        bionemo_model_config=geneformer_config,
        optim_config=optim_config,
        experiment_config=experiment_config,
    )

geneformer_106m_experiment_config(result_dir)

Experiment config for Geneformer 106m.

Source code in bionemo/geneformer/run/recipes.py
160
161
162
163
164
165
166
167
def geneformer_106m_experiment_config(result_dir) -> ExperimentConfig:
    """Experiment config for Geneformer 106m."""
    return ExperimentConfig(
        save_every_n_steps=100,
        result_dir=result_dir,
        experiment_name="geneformer-106m",
        restore_from_checkpoint_path=None,
    )

geneformer_106m_model_config(seq_length=2048, precision='bf16-mixed', nemo1_init_path=None, initial_ckpt_path=None, biobert_spec_option=BiobertSpecOption.bert_layer_with_transformer_engine_spec)

Geneformer 106m model config settings.

Source code in bionemo/geneformer/run/recipes.py
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
def geneformer_106m_model_config(
    seq_length: int = 2048,
    precision: PrecisionTypes = "bf16-mixed",
    nemo1_init_path: Optional[str] = None,
    initial_ckpt_path: Optional[str] = None,
    biobert_spec_option: BiobertSpecOption = BiobertSpecOption.bert_layer_with_transformer_engine_spec,
) -> ExposedGeneformerPretrainConfig:
    """Geneformer 106m model config settings."""
    geneformer_config = ExposedGeneformerPretrainConfig(
        num_layers=12,
        hidden_size=768,
        ffn_hidden_size=3072,
        num_attention_heads=12,
        seq_length=seq_length,
        fp32_residual_connection=False,
        hidden_dropout=0.02,
        init_method_std=0.02,
        kv_channels=None,
        apply_query_key_layer_scaling=False,
        make_vocab_size_divisible_by=128,
        masked_softmax_fusion=True,
        fp16_lm_cross_entropy=False,
        params_dtype=precision,
        pipeline_dtype=precision,
        autocast_dtype=precision,
        gradient_accumulation_fusion=False,
        layernorm_zero_centered_gamma=False,
        layernorm_epsilon=1.0e-12,
        activation_func="gelu",
        qk_layernorm=False,
        apply_residual_connection_post_layernorm=False,
        bias_activation_fusion=True,
        bias_dropout_fusion=True,
        get_attention_mask_from_fusion=True,
        attention_dropout=0.1,
        share_embeddings_and_output_weights=True,
        enable_autocast=False,
        biobert_spec_option=biobert_spec_option,
        nemo1_ckpt_path=nemo1_init_path,
        initial_ckpt_path=initial_ckpt_path,
    )
    return geneformer_config

geneformer_106m_parallel_config()

Base parallel config for Geneformer.

Source code in bionemo/geneformer/run/recipes.py
148
149
150
151
152
153
154
155
156
157
def geneformer_106m_parallel_config() -> ParallelConfig:
    """Base parallel config for Geneformer."""
    return ParallelConfig(
        tensor_model_parallel_size=1,
        pipeline_model_parallel_size=1,
        accumulate_grad_batches=1,
        ddp="megatron",
        num_devices=8,
        num_nodes=1,
    )

geneformer_106m_pretrain_recipe(args)

Recipe for pretraining the 106m model. Uses 8 GPUs for data parallelism.

Source code in bionemo/geneformer/run/recipes.py
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
def geneformer_106m_pretrain_recipe(
    args,
) -> MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig]:
    """Recipe for pretraining the 106m model. Uses 8 GPUs for data parallelism."""
    data_config: GeneformerPretrainingDataConfig = geneformer_data_recipe(data_dir=args.data_path)
    parallel_config = geneformer_106m_parallel_config()
    training_config = geneformer_base_training_config()
    bionemo_model_config = geneformer_106m_model_config(initial_ckpt_path=args.initial_ckpt_path)
    optim_config = geneformer_base_optimizer_scheduler_config()
    experiment_config = geneformer_106m_experiment_config(result_dir=args.result_dir)
    wandb_config = geneformer_106m_wandb_config()
    main_config = MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig](
        data_config=data_config,
        parallel_config=parallel_config,
        training_config=training_config,
        bionemo_model_config=bionemo_model_config,
        optim_config=optim_config,
        experiment_config=experiment_config,
        wandb_config=wandb_config,
    )
    return main_config

geneformer_106m_wandb_config()

Wandb config for Geneformer 106m.

Source code in bionemo/geneformer/run/recipes.py
170
171
172
173
174
175
176
177
178
179
180
181
182
def geneformer_106m_wandb_config() -> WandbConfig:
    """Wandb config for Geneformer 106m."""
    wandb_config = WandbConfig(
        entity="geneformer-106m_pretraining",
        project="geneformer-106m_pretraining",
        group="geneformer-106m",
        tags=["geneformer-106m"],
        offline=True,
        anonymous=True,
        id="1",
        log_model=False,
    )
    return wandb_config

geneformer_10m_experiment_config(result_dir)

Experiment config for Geneformer 10m.

Source code in bionemo/geneformer/run/recipes.py
122
123
124
125
126
127
128
129
def geneformer_10m_experiment_config(result_dir) -> ExperimentConfig:
    """Experiment config for Geneformer 10m."""
    return ExperimentConfig(
        save_every_n_steps=100,
        result_dir=result_dir,
        experiment_name="geneformer-10m",
        restore_from_checkpoint_path=None,
    )

geneformer_10m_finetune_config(seq_length=2048, precision='bf16-mixed', nemo1_init_path=None, initial_ckpt_path=None, biobert_spec_option=BiobertSpecOption.bert_layer_with_transformer_engine_spec)

Geneformer 10m finetuning config settings.

Source code in bionemo/geneformer/run/recipes.py
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
def geneformer_10m_finetune_config(
    seq_length: int = 2048,
    precision: PrecisionTypes = "bf16-mixed",
    nemo1_init_path: Optional[str] = None,
    initial_ckpt_path: Optional[str] = None,
    biobert_spec_option=BiobertSpecOption.bert_layer_with_transformer_engine_spec,
) -> ExposedFineTuneSeqLenBioBertConfig:
    """Geneformer 10m finetuning config settings."""
    geneformer_config = ExposedFineTuneSeqLenBioBertConfig(
        num_layers=6,
        hidden_size=256,
        ffn_hidden_size=512,
        num_attention_heads=4,
        seq_length=seq_length,
        fp32_residual_connection=False,
        hidden_dropout=0.02,
        init_method_std=0.02,
        kv_channels=None,
        apply_query_key_layer_scaling=False,
        make_vocab_size_divisible_by=128,
        masked_softmax_fusion=True,
        fp16_lm_cross_entropy=False,
        params_dtype=precision,
        pipeline_dtype=precision,
        autocast_dtype=precision,
        gradient_accumulation_fusion=False,
        layernorm_zero_centered_gamma=False,
        layernorm_epsilon=1.0e-12,
        activation_func="gelu",
        qk_layernorm=False,
        apply_residual_connection_post_layernorm=False,
        bias_activation_fusion=True,
        bias_dropout_fusion=True,
        get_attention_mask_from_fusion=True,
        attention_dropout=0.1,
        share_embeddings_and_output_weights=True,
        enable_autocast=False,
        biobert_spec_option=biobert_spec_option,
        nemo1_ckpt_path=nemo1_init_path,
        initial_ckpt_path=initial_ckpt_path,
    )
    return geneformer_config

geneformer_10m_finetune_recipe(args)

Recipe for finetuning the 10m model on a token regression head. Used as an example and for testing.

Source code in bionemo/geneformer/run/recipes.py
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
def geneformer_10m_finetune_recipe(
    args,
) -> MainConfig[ExposedFineTuneSeqLenBioBertConfig, GeneformerPretrainingDataConfig]:
    """Recipe for finetuning the 10m model on a token regression head. Used as an example and for testing."""
    data_config: GeneformerPretrainingDataConfig = geneformer_data_recipe(data_dir=args.data_path)
    parallel_config = simple_parallel_recipe()
    training_config = default_trainer_config_recipe()
    bionemo_model_config = geneformer_finetuning_regression_head_recipe(initial_ckpt_path=args.initial_ckpt_path)
    optim_config = default_adam_optimizer_with_cosine_annealing_recipe()
    experiment_config = experiment_config_recipe()
    wandb_config = WandbConfig(
        project="bionemo2-demo",
        entity="nvidia",
        offline=True,
        tags=[],
        group="dev",
        id="dev",
        log_model=False,
        anonymous=True,
    )
    main_config = MainConfig[ExposedFineTuneSeqLenBioBertConfig, GeneformerPretrainingDataConfig](
        data_config=data_config,
        parallel_config=parallel_config,
        training_config=training_config,
        bionemo_model_config=bionemo_model_config,
        optim_config=optim_config,
        experiment_config=experiment_config,
        wandb_config=wandb_config,
    )
    return main_config

geneformer_10m_model_config(seq_length=2048, precision='bf16-mixed', nemo1_init_path=None, initial_ckpt_path=None, biobert_spec_option=BiobertSpecOption.bert_layer_with_transformer_engine_spec)

Geneformer 10m model config settings.

Source code in bionemo/geneformer/run/recipes.py
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
def geneformer_10m_model_config(
    seq_length: int = 2048,
    precision: PrecisionTypes = "bf16-mixed",
    nemo1_init_path: Optional[str] = None,
    initial_ckpt_path: Optional[str] = None,
    biobert_spec_option: BiobertSpecOption = BiobertSpecOption.bert_layer_with_transformer_engine_spec,
) -> ExposedGeneformerPretrainConfig:
    """Geneformer 10m model config settings."""
    geneformer_config = ExposedGeneformerPretrainConfig(
        num_layers=6,
        hidden_size=256,
        ffn_hidden_size=512,
        num_attention_heads=4,
        seq_length=seq_length,
        fp32_residual_connection=False,
        hidden_dropout=0.02,
        init_method_std=0.02,
        kv_channels=None,
        apply_query_key_layer_scaling=False,
        make_vocab_size_divisible_by=128,
        masked_softmax_fusion=True,
        fp16_lm_cross_entropy=False,
        params_dtype=precision,
        pipeline_dtype=precision,
        autocast_dtype=precision,
        gradient_accumulation_fusion=False,
        layernorm_zero_centered_gamma=False,
        layernorm_epsilon=1.0e-12,
        activation_func="gelu",
        qk_layernorm=False,
        apply_residual_connection_post_layernorm=False,
        bias_activation_fusion=True,
        bias_dropout_fusion=True,
        get_attention_mask_from_fusion=True,
        attention_dropout=0.1,
        share_embeddings_and_output_weights=True,
        enable_autocast=False,
        biobert_spec_option=biobert_spec_option,
        nemo1_ckpt_path=nemo1_init_path,
        initial_ckpt_path=initial_ckpt_path,
    )
    return geneformer_config

geneformer_10m_pretrain_recipe(args)

Recipe for pretraining the 10m model.

Source code in bionemo/geneformer/run/recipes.py
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
def geneformer_10m_pretrain_recipe(
    args,
) -> MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig]:
    """Recipe for pretraining the 10m model."""
    data_config: GeneformerPretrainingDataConfig = geneformer_data_recipe(data_dir=args.data_path)
    parallel_config = simple_parallel_recipe()
    training_config = geneformer_base_training_config()
    bionemo_model_config = geneformer_10m_model_config(initial_ckpt_path=args.initial_ckpt_path)
    optim_config = geneformer_base_optimizer_scheduler_config()
    experiment_config = geneformer_10m_experiment_config(result_dir=args.result_dir)
    wandb_config = geneformer_10m_wandb_config()
    main_config = MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig](
        data_config=data_config,
        parallel_config=parallel_config,
        training_config=training_config,
        bionemo_model_config=bionemo_model_config,
        optim_config=optim_config,
        experiment_config=experiment_config,
        wandb_config=wandb_config,
    )
    return main_config

geneformer_10m_shortpretrain_recipe(args)

Recipe for pretraining the 10m model.

Source code in bionemo/geneformer/run/recipes.py
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
def geneformer_10m_shortpretrain_recipe(
    args,
) -> MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig]:
    """Recipe for pretraining the 10m model."""
    data_config: GeneformerPretrainingDataConfig = geneformer_data_recipe(data_dir=args.data_path)
    parallel_config = simple_parallel_recipe()
    training_config = geneformer_short_base_training_config()
    bionemo_model_config = geneformer_10m_model_config(initial_ckpt_path=args.initial_ckpt_path)
    optim_config = geneformer_base_optimizer_scheduler_config()
    experiment_config = geneformer_10m_experiment_config(result_dir=args.result_dir)
    wandb_config = geneformer_10m_wandb_config()
    main_config = MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig](
        data_config=data_config,
        parallel_config=parallel_config,
        training_config=training_config,
        bionemo_model_config=bionemo_model_config,
        optim_config=optim_config,
        experiment_config=experiment_config,
        wandb_config=wandb_config,
    )
    return main_config

geneformer_10m_wandb_config()

Wandb config for Geneformer 10m.

Source code in bionemo/geneformer/run/recipes.py
132
133
134
135
136
137
138
139
140
141
142
143
144
def geneformer_10m_wandb_config() -> WandbConfig:
    """Wandb config for Geneformer 10m."""
    wandb_config = WandbConfig(
        entity="geneformer-10m_pretraining",
        project="geneformer-10m_pretraining",
        group="geneformer-10m",
        tags=["geneformer-10m"],
        offline=True,
        anonymous=True,
        id="1",
        log_model=False,
    )
    return wandb_config

geneformer_base_optimizer_scheduler_config()

Base optimizer scheduler config for Geneformer.

Source code in bionemo/geneformer/run/recipes.py
53
54
55
def geneformer_base_optimizer_scheduler_config() -> OptimizerSchedulerConfig:
    """Base optimizer scheduler config for Geneformer."""
    return OptimizerSchedulerConfig(lr=1e-3, lr_scheduler="cosine")  # Matches bionemo1

geneformer_base_parallel_config()

Base parallel config for Geneformer.

Source code in bionemo/geneformer/run/recipes.py
41
42
43
44
45
46
47
48
49
50
def geneformer_base_parallel_config() -> ParallelConfig:
    """Base parallel config for Geneformer."""
    return ParallelConfig(
        tensor_model_parallel_size=1,
        pipeline_model_parallel_size=1,
        accumulate_grad_batches=1,
        ddp="megatron",
        num_devices=1,
        num_nodes=1,
    )

geneformer_base_training_config()

Base training config for Geneformer.

Source code in bionemo/geneformer/run/recipes.py
58
59
60
61
62
def geneformer_base_training_config() -> TrainingConfig:
    """Base training config for Geneformer."""
    return TrainingConfig(
        max_steps=400000, limit_val_batches=8, val_check_interval=100, precision="bf16-mixed"
    )  # matches bionemo1

geneformer_data_recipe(data_dir)

Recipe that produces the base geneformer small data configuration.

Source code in bionemo/geneformer/run/recipes.py
72
73
74
def geneformer_data_recipe(data_dir) -> GeneformerPretrainingDataConfig:
    """Recipe that produces the base geneformer small data configuration."""
    return GeneformerPretrainingDataConfig(data_dir=data_dir)

geneformer_finetuning_regression_head_recipe(precision='bf16-mixed', nemo1_init_path=None, initial_ckpt_path=None, initial_ckpt_skip_keys_with_these_prefixes=None)

Recipe for finetuning a regression head on the masked tokens.

Source code in bionemo/geneformer/run/recipes.py
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
def geneformer_finetuning_regression_head_recipe(
    precision: PrecisionTypes = "bf16-mixed",
    nemo1_init_path: Optional[str] = None,
    initial_ckpt_path: Optional[str] = None,
    initial_ckpt_skip_keys_with_these_prefixes: Optional[List[str]] = None,
) -> ExposedFineTuneSeqLenBioBertConfig:
    """Recipe for finetuning a regression head on the masked tokens."""
    partial_finetuning_config = partial(
        ExposedFineTuneSeqLenBioBertConfig,
        params_dtype=precision,
        pipeline_dtype=precision,
        autocast_dtype=precision,
        nemo1_ckpt_path=nemo1_init_path,
        initial_ckpt_path=initial_ckpt_path,
        biobert_spec_option=BiobertSpecOption.bert_layer_with_transformer_engine_spec,
    )
    if initial_ckpt_skip_keys_with_these_prefixes:
        finetuning_config = partial_finetuning_config(
            initial_ckpt_skip_keys_with_these_prefixes=initial_ckpt_skip_keys_with_these_prefixes
        )
    else:
        # Use the sensible default when None is passed
        finetuning_config = partial_finetuning_config()
    return finetuning_config

geneformer_short_base_training_config()

Base training config for Geneformer.

Source code in bionemo/geneformer/run/recipes.py
65
66
67
68
69
def geneformer_short_base_training_config() -> TrainingConfig:
    """Base training config for Geneformer."""
    return TrainingConfig(
        max_steps=500, limit_val_batches=8, val_check_interval=100, precision="bf16-mixed"
    )  # matches bionemo1

geneformer_tiny_config(seq_length=2048, precision='bf16-mixed', nemo1_init_path=None, initial_ckpt_path=None, biobert_spec_option=BiobertSpecOption.bert_layer_with_transformer_engine_spec)

Geneformer tiny model config settings, used in testing.

Source code in bionemo/geneformer/run/recipes.py
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
def geneformer_tiny_config(
    seq_length: int = 2048,
    precision: PrecisionTypes = "bf16-mixed",
    nemo1_init_path: Optional[str] = None,
    initial_ckpt_path: Optional[str] = None,
    biobert_spec_option: BiobertSpecOption = BiobertSpecOption.bert_layer_with_transformer_engine_spec,
) -> ExposedGeneformerPretrainConfig:
    """Geneformer tiny model config settings, used in testing."""
    geneformer_config = ExposedGeneformerPretrainConfig(
        num_layers=2,
        hidden_size=32,
        ffn_hidden_size=4 * 32,
        num_attention_heads=2,
        seq_length=seq_length,
        fp32_residual_connection=False,
        hidden_dropout=0.02,
        init_method_std=0.02,
        kv_channels=None,
        apply_query_key_layer_scaling=False,
        make_vocab_size_divisible_by=128,
        masked_softmax_fusion=True,
        fp16_lm_cross_entropy=False,
        params_dtype=precision,
        pipeline_dtype=precision,
        autocast_dtype=precision,
        gradient_accumulation_fusion=False,
        layernorm_zero_centered_gamma=False,
        layernorm_epsilon=1.0e-12,
        activation_func="gelu",
        qk_layernorm=False,
        apply_residual_connection_post_layernorm=False,
        bias_activation_fusion=True,
        bias_dropout_fusion=True,
        get_attention_mask_from_fusion=True,
        attention_dropout=0.1,
        share_embeddings_and_output_weights=True,
        enable_autocast=False,
        biobert_spec_option=biobert_spec_option,
        nemo1_ckpt_path=nemo1_init_path,
        initial_ckpt_path=initial_ckpt_path,
    )
    return geneformer_config

pretrain_tiny_test_recipe(args)

Recipe for pretraining a tiny model. Used in testing.

Source code in bionemo/geneformer/run/recipes.py
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
def pretrain_tiny_test_recipe(args) -> MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig]:
    """Recipe for pretraining a tiny model. Used in testing."""
    data_path = args.data_path
    result_dir = args.result_dir

    parallel_config = ParallelConfig(
        tensor_model_parallel_size=1, pipeline_model_parallel_size=1, num_devices=1, accumulate_grad_batches=2
    )
    training_config = TrainingConfig(
        max_steps=10, limit_val_batches=2, val_check_interval=2, precision="bf16-mixed", accelerator="gpu"
    )
    data_config = GeneformerPretrainingDataConfig(
        seq_length=128,
        micro_batch_size=2,
        num_dataset_workers=0,
        data_dir=data_path,
    )
    experiment_config = ExperimentConfig(
        save_every_n_steps=training_config.val_check_interval,
        result_dir=result_dir,
        experiment_name="test-experiment",
        restore_from_checkpoint_path=None,
        save_last_checkpoint=True,
        metric_to_monitor_for_checkpoints="reduced_train_loss",
        save_top_k=2,
        create_tensorboard_logger=False,
    )

    optim_config = OptimizerSchedulerConfig(lr_scheduler="cosine")
    geneformer_config = geneformer_tiny_config(
        seq_length=data_config.seq_length, initial_ckpt_path=args.initial_ckpt_path
    )

    return MainConfig(
        data_config=data_config,
        parallel_config=parallel_config,
        training_config=training_config,
        bionemo_model_config=geneformer_config,
        optim_config=optim_config,
        experiment_config=experiment_config,
    )

simple_parallel_recipe(tensor_model_parallel_size=1, pipeline_model_parallel_size=1, num_devices=1, accumulate_grad_batches=1)

Simple parallel config for Geneformer, only used in testing.

Source code in bionemo/geneformer/run/recipes.py
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
def simple_parallel_recipe(
    tensor_model_parallel_size: int = 1,
    pipeline_model_parallel_size: int = 1,
    num_devices: int = 1,
    accumulate_grad_batches: int = 1,
) -> ParallelConfig:
    """Simple parallel config for Geneformer, only used in testing."""
    assert num_devices >= tensor_model_parallel_size * pipeline_model_parallel_size, (
        "devices must be divisible by tensor_model_parallel_size * pipeline_model_parallel_size"
    )
    return ParallelConfig(
        tensor_model_parallel_size=tensor_model_parallel_size,
        pipeline_model_parallel_size=pipeline_model_parallel_size,
        accumulate_grad_batches=accumulate_grad_batches,
        num_devices=num_devices,
    )