Skip to content

Recipes

GeneformerRecipes

Bases: BaseModel

Pre-baked recipes for Geneformer.

THIS PYDANTIC MODEL IS NOT MEANT FOR SERIALIZATION. Only used to facilitate argparse. Each recipe should take args as the only argument. We use partials so we can provide this information at runtime. Add new recipes to this model.

Source code in bionemo/geneformer/run/recipes.py
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
class GeneformerRecipes(BaseModel):
    """Pre-baked recipes for Geneformer.

    THIS PYDANTIC MODEL IS NOT MEANT FOR SERIALIZATION. Only used to facilitate argparse. Each recipe should take `args`
    as the only argument. We use partials so we can provide this information at runtime. Add new recipes to this model.
    """

    # Use partials so we can still parameterize the recipes from the CLI (e.g. data paths.)
    geneformer_10m_finetune_recipe: Callable[
        [argparse.Namespace], MainConfig[ExposedFineTuneSeqLenBioBertConfig, GeneformerPretrainingDataConfig]
    ] = partial(geneformer_10m_finetune_recipe)
    geneformer_10m_pretrain_recipe: Callable[
        [argparse.Namespace], MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig]
    ] = partial(geneformer_10m_pretrain_recipe)
    geneformer_10m_shortpretrain_recipe: Callable[
        [argparse.Namespace], MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig]
    ] = partial(geneformer_10m_shortpretrain_recipe)
    geneformer_106m_pretrain_recipe: Callable[
        [argparse.Namespace], MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig]
    ] = partial(geneformer_106m_pretrain_recipe)
    geneformer_1b_pretrain_recipe: Callable[
        [argparse.Namespace], MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig]
    ] = partial(geneformer_1b_pretrain_recipe)
    geneformer_tiny_test_recipe: Callable[
        [argparse.Namespace], MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig]
    ] = partial(pretrain_tiny_test_recipe)
    finetune_test_recipe: Callable[
        [argparse.Namespace], MainConfig[ExposedFineTuneSeqLenBioBertConfig, GeneformerPretrainingDataConfig]
    ] = partial(finetune_test_recipe)

default_adam_optimizer_with_cosine_annealing_recipe()

Default optimizer scheduler config for Geneformer. See OptimizerSchedulerConfig for defaults.

Source code in bionemo/geneformer/run/recipes.py
468
469
470
def default_adam_optimizer_with_cosine_annealing_recipe() -> OptimizerSchedulerConfig:
    """Default optimizer scheduler config for Geneformer. See OptimizerSchedulerConfig for defaults."""
    return OptimizerSchedulerConfig()

default_trainer_config_recipe()

Default trainer config for Geneformer.

Source code in bionemo/geneformer/run/recipes.py
375
376
377
def default_trainer_config_recipe() -> TrainingConfig:
    """Default trainer config for Geneformer."""
    return TrainingConfig(max_steps=55000, limit_val_batches=2, val_check_interval=100)

experiment_config_recipe()

Default experiment config for Geneformer. Used in testing.

Source code in bionemo/geneformer/run/recipes.py
473
474
475
476
477
478
479
480
481
482
483
484
def experiment_config_recipe() -> ExperimentConfig:
    """Default experiment config for Geneformer. Used in testing."""
    return ExperimentConfig(
        save_every_n_steps=100,
        result_dir="./results",
        experiment_name="default_experiment",
        restore_from_checkpoint_path=None,
        save_last_checkpoint=True,
        metric_to_monitor_for_checkpoints="reduced_train_loss",
        save_top_k=2,
        create_tensorboard_logger=False,
    )

finetune_test_recipe(args)

Recipe for finetuning a regression head on the masked tokens.

Source code in bionemo/geneformer/run/recipes.py
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
def finetune_test_recipe(args) -> MainConfig[ExposedFineTuneSeqLenBioBertConfig, GeneformerPretrainingDataConfig]:
    """Recipe for finetuning a regression head on the masked tokens."""
    data_path = args.data_path
    result_dir = args.result_dir

    parallel_config = ParallelConfig(
        tensor_model_parallel_size=1, pipeline_model_parallel_size=1, num_devices=1, accumulate_grad_batches=2
    )
    training_config = TrainingConfig(
        max_steps=10, limit_val_batches=2, val_check_interval=2, precision="bf16-mixed", accelerator="gpu"
    )
    data_config = GeneformerPretrainingDataConfig(
        seq_length=128,
        micro_batch_size=2,
        num_dataset_workers=0,
        data_dir=data_path,
    )
    experiment_config = ExperimentConfig(
        save_every_n_steps=training_config.val_check_interval,
        result_dir=result_dir,
        experiment_name="test-experiment",
        restore_from_checkpoint_path=None,
        save_last_checkpoint=True,
        metric_to_monitor_for_checkpoints="reduced_train_loss",
        save_top_k=2,
        create_tensorboard_logger=False,
    )

    optim_config = OptimizerSchedulerConfig(lr_scheduler="cosine")
    geneformer_config = geneformer_10m_finetune_config(
        seq_length=data_config.seq_length, initial_ckpt_path=args.initial_ckpt_path
    )

    return MainConfig(
        data_config=data_config,
        parallel_config=parallel_config,
        training_config=training_config,
        bionemo_model_config=geneformer_config,
        optim_config=optim_config,
        experiment_config=experiment_config,
    )

geneformer_106m_experiment_config(result_dir)

Experiment config for Geneformer 106m.

Source code in bionemo/geneformer/run/recipes.py
180
181
182
183
184
185
186
187
def geneformer_106m_experiment_config(result_dir) -> ExperimentConfig:
    """Experiment config for Geneformer 106m."""
    return ExperimentConfig(
        save_every_n_steps=100,
        result_dir=result_dir,
        experiment_name="geneformer-106m",
        restore_from_checkpoint_path=None,
    )

geneformer_106m_model_config(seq_length=2048, precision='bf16-mixed', nemo1_init_path=None, initial_ckpt_path=None, biobert_spec_option=BiobertSpecOption.bert_layer_with_transformer_engine_spec)

Geneformer 106m model config settings.

Source code in bionemo/geneformer/run/recipes.py
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
def geneformer_106m_model_config(
    seq_length: int = 2048,
    precision: PrecisionTypes = "bf16-mixed",
    nemo1_init_path: Optional[str] = None,
    initial_ckpt_path: Optional[str] = None,
    biobert_spec_option: BiobertSpecOption = BiobertSpecOption.bert_layer_with_transformer_engine_spec,
) -> ExposedGeneformerPretrainConfig:
    """Geneformer 106m model config settings."""
    geneformer_config = ExposedGeneformerPretrainConfig(
        num_layers=12,
        hidden_size=768,
        ffn_hidden_size=3072,
        num_attention_heads=12,
        seq_length=seq_length,
        fp32_residual_connection=False,
        hidden_dropout=0.02,
        init_method_std=0.02,
        kv_channels=None,
        apply_query_key_layer_scaling=False,
        make_vocab_size_divisible_by=128,
        masked_softmax_fusion=True,
        fp16_lm_cross_entropy=False,
        params_dtype=precision,
        pipeline_dtype=precision,
        autocast_dtype=precision,
        gradient_accumulation_fusion=False,
        layernorm_zero_centered_gamma=False,
        layernorm_epsilon=1.0e-12,
        activation_func="gelu",
        qk_layernorm=False,
        apply_residual_connection_post_layernorm=False,
        bias_activation_fusion=True,
        bias_dropout_fusion=True,
        get_attention_mask_from_fusion=True,
        attention_dropout=0.1,
        share_embeddings_and_output_weights=True,
        enable_autocast=False,
        biobert_spec_option=biobert_spec_option,
        nemo1_ckpt_path=nemo1_init_path,
        initial_ckpt_path=initial_ckpt_path,
    )
    return geneformer_config

geneformer_106m_parallel_config()

Base parallel config for Geneformer.

Source code in bionemo/geneformer/run/recipes.py
168
169
170
171
172
173
174
175
176
177
def geneformer_106m_parallel_config() -> ParallelConfig:
    """Base parallel config for Geneformer."""
    return ParallelConfig(
        tensor_model_parallel_size=1,
        pipeline_model_parallel_size=1,
        accumulate_grad_batches=1,
        ddp="megatron",
        num_devices=8,
        num_nodes=1,
    )

geneformer_106m_pretrain_recipe(args)

Recipe for pretraining the 106m model. Uses 8 GPUs for data parallelism.

Source code in bionemo/geneformer/run/recipes.py
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
def geneformer_106m_pretrain_recipe(
    args,
) -> MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig]:
    """Recipe for pretraining the 106m model. Uses 8 GPUs for data parallelism."""
    data_config: GeneformerPretrainingDataConfig = geneformer_data_recipe(data_dir=args.data_path)
    parallel_config = geneformer_106m_parallel_config()
    training_config = geneformer_base_training_config()
    bionemo_model_config = geneformer_106m_model_config(initial_ckpt_path=args.initial_ckpt_path)
    optim_config = geneformer_base_optimizer_scheduler_config()
    experiment_config = geneformer_106m_experiment_config(result_dir=args.result_dir)
    wandb_config = geneformer_106m_wandb_config()
    main_config = MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig](
        data_config=data_config,
        parallel_config=parallel_config,
        training_config=training_config,
        bionemo_model_config=bionemo_model_config,
        optim_config=optim_config,
        experiment_config=experiment_config,
        wandb_config=wandb_config,
    )
    return main_config

geneformer_106m_wandb_config()

Wandb config for Geneformer 106m.

Source code in bionemo/geneformer/run/recipes.py
190
191
192
193
194
195
196
197
198
199
200
201
202
def geneformer_106m_wandb_config() -> WandbConfig:
    """Wandb config for Geneformer 106m."""
    wandb_config = WandbConfig(
        entity="geneformer-106m_pretraining",
        project="geneformer-106m_pretraining",
        group="geneformer-106m",
        tags=["geneformer-106m"],
        offline=True,
        anonymous=True,
        id="1",
        log_model=False,
    )
    return wandb_config

geneformer_10m_experiment_config(result_dir)

Experiment config for Geneformer 10m.

Source code in bionemo/geneformer/run/recipes.py
142
143
144
145
146
147
148
149
def geneformer_10m_experiment_config(result_dir) -> ExperimentConfig:
    """Experiment config for Geneformer 10m."""
    return ExperimentConfig(
        save_every_n_steps=100,
        result_dir=result_dir,
        experiment_name="geneformer-10m",
        restore_from_checkpoint_path=None,
    )

geneformer_10m_finetune_config(seq_length=2048, precision='bf16-mixed', nemo1_init_path=None, initial_ckpt_path=None, biobert_spec_option=BiobertSpecOption.bert_layer_with_transformer_engine_spec)

Geneformer 10m finetuning config settings.

Source code in bionemo/geneformer/run/recipes.py
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
def geneformer_10m_finetune_config(
    seq_length: int = 2048,
    precision: PrecisionTypes = "bf16-mixed",
    nemo1_init_path: Optional[str] = None,
    initial_ckpt_path: Optional[str] = None,
    biobert_spec_option=BiobertSpecOption.bert_layer_with_transformer_engine_spec,
) -> ExposedFineTuneSeqLenBioBertConfig:
    """Geneformer 10m finetuning config settings."""
    geneformer_config = ExposedFineTuneSeqLenBioBertConfig(
        num_layers=6,
        hidden_size=256,
        ffn_hidden_size=512,
        num_attention_heads=4,
        seq_length=seq_length,
        fp32_residual_connection=False,
        hidden_dropout=0.02,
        init_method_std=0.02,
        kv_channels=None,
        apply_query_key_layer_scaling=False,
        make_vocab_size_divisible_by=128,
        masked_softmax_fusion=True,
        fp16_lm_cross_entropy=False,
        params_dtype=precision,
        pipeline_dtype=precision,
        autocast_dtype=precision,
        gradient_accumulation_fusion=False,
        layernorm_zero_centered_gamma=False,
        layernorm_epsilon=1.0e-12,
        activation_func="gelu",
        qk_layernorm=False,
        apply_residual_connection_post_layernorm=False,
        bias_activation_fusion=True,
        bias_dropout_fusion=True,
        get_attention_mask_from_fusion=True,
        attention_dropout=0.1,
        share_embeddings_and_output_weights=True,
        enable_autocast=False,
        biobert_spec_option=biobert_spec_option,
        nemo1_ckpt_path=nemo1_init_path,
        initial_ckpt_path=initial_ckpt_path,
    )
    return geneformer_config

geneformer_10m_finetune_recipe(args)

Recipe for finetuning the 10m model on a token regression head. Used as an example and for testing.

Source code in bionemo/geneformer/run/recipes.py
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
def geneformer_10m_finetune_recipe(
    args,
) -> MainConfig[ExposedFineTuneSeqLenBioBertConfig, GeneformerPretrainingDataConfig]:
    """Recipe for finetuning the 10m model on a token regression head. Used as an example and for testing."""
    data_config: GeneformerPretrainingDataConfig = geneformer_data_recipe(data_dir=args.data_path)
    parallel_config = simple_parallel_recipe()
    training_config = default_trainer_config_recipe()
    bionemo_model_config = geneformer_finetuning_regression_head_recipe(initial_ckpt_path=args.initial_ckpt_path)
    optim_config = default_adam_optimizer_with_cosine_annealing_recipe()
    experiment_config = experiment_config_recipe()
    wandb_config = WandbConfig(
        project="bionemo2-demo",
        entity="nvidia",
        offline=True,
        tags=[],
        group="dev",
        id="dev",
        log_model=False,
        anonymous=True,
    )
    main_config = MainConfig[ExposedFineTuneSeqLenBioBertConfig, GeneformerPretrainingDataConfig](
        data_config=data_config,
        parallel_config=parallel_config,
        training_config=training_config,
        bionemo_model_config=bionemo_model_config,
        optim_config=optim_config,
        experiment_config=experiment_config,
        wandb_config=wandb_config,
    )
    return main_config

geneformer_10m_model_config(seq_length=2048, precision='bf16-mixed', nemo1_init_path=None, initial_ckpt_path=None, biobert_spec_option=BiobertSpecOption.bert_layer_with_transformer_engine_spec)

Geneformer 10m model config settings.

Source code in bionemo/geneformer/run/recipes.py
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
def geneformer_10m_model_config(
    seq_length: int = 2048,
    precision: PrecisionTypes = "bf16-mixed",
    nemo1_init_path: Optional[str] = None,
    initial_ckpt_path: Optional[str] = None,
    biobert_spec_option: BiobertSpecOption = BiobertSpecOption.bert_layer_with_transformer_engine_spec,
) -> ExposedGeneformerPretrainConfig:
    """Geneformer 10m model config settings."""
    geneformer_config = ExposedGeneformerPretrainConfig(
        num_layers=6,
        hidden_size=256,
        ffn_hidden_size=512,
        num_attention_heads=4,
        seq_length=seq_length,
        fp32_residual_connection=False,
        hidden_dropout=0.02,
        init_method_std=0.02,
        kv_channels=None,
        apply_query_key_layer_scaling=False,
        make_vocab_size_divisible_by=128,
        masked_softmax_fusion=True,
        fp16_lm_cross_entropy=False,
        params_dtype=precision,
        pipeline_dtype=precision,
        autocast_dtype=precision,
        gradient_accumulation_fusion=False,
        layernorm_zero_centered_gamma=False,
        layernorm_epsilon=1.0e-12,
        activation_func="gelu",
        qk_layernorm=False,
        apply_residual_connection_post_layernorm=False,
        bias_activation_fusion=True,
        bias_dropout_fusion=True,
        get_attention_mask_from_fusion=True,
        attention_dropout=0.1,
        share_embeddings_and_output_weights=True,
        enable_autocast=False,
        biobert_spec_option=biobert_spec_option,
        nemo1_ckpt_path=nemo1_init_path,
        initial_ckpt_path=initial_ckpt_path,
    )
    return geneformer_config

geneformer_10m_pretrain_recipe(args)

Recipe for pretraining the 10m model.

Source code in bionemo/geneformer/run/recipes.py
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
def geneformer_10m_pretrain_recipe(
    args,
) -> MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig]:
    """Recipe for pretraining the 10m model."""
    data_config: GeneformerPretrainingDataConfig = geneformer_data_recipe(data_dir=args.data_path)
    parallel_config = simple_parallel_recipe()
    training_config = geneformer_base_training_config()
    bionemo_model_config = geneformer_10m_model_config(initial_ckpt_path=args.initial_ckpt_path)
    optim_config = geneformer_base_optimizer_scheduler_config()
    experiment_config = geneformer_10m_experiment_config(result_dir=args.result_dir)
    wandb_config = geneformer_10m_wandb_config()
    main_config = MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig](
        data_config=data_config,
        parallel_config=parallel_config,
        training_config=training_config,
        bionemo_model_config=bionemo_model_config,
        optim_config=optim_config,
        experiment_config=experiment_config,
        wandb_config=wandb_config,
    )
    return main_config

geneformer_10m_shortpretrain_recipe(args)

Recipe for pretraining the 10m model.

Source code in bionemo/geneformer/run/recipes.py
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
def geneformer_10m_shortpretrain_recipe(
    args,
) -> MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig]:
    """Recipe for pretraining the 10m model."""
    data_config: GeneformerPretrainingDataConfig = geneformer_data_recipe(data_dir=args.data_path)
    parallel_config = simple_parallel_recipe()
    training_config = geneformer_short_base_training_config()
    bionemo_model_config = geneformer_10m_model_config(initial_ckpt_path=args.initial_ckpt_path)
    optim_config = geneformer_base_optimizer_scheduler_config()
    experiment_config = geneformer_10m_experiment_config(result_dir=args.result_dir)
    wandb_config = geneformer_10m_wandb_config()
    main_config = MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig](
        data_config=data_config,
        parallel_config=parallel_config,
        training_config=training_config,
        bionemo_model_config=bionemo_model_config,
        optim_config=optim_config,
        experiment_config=experiment_config,
        wandb_config=wandb_config,
    )
    return main_config

geneformer_10m_wandb_config()

Wandb config for Geneformer 10m.

Source code in bionemo/geneformer/run/recipes.py
152
153
154
155
156
157
158
159
160
161
162
163
164
def geneformer_10m_wandb_config() -> WandbConfig:
    """Wandb config for Geneformer 10m."""
    wandb_config = WandbConfig(
        entity="geneformer-10m_pretraining",
        project="geneformer-10m_pretraining",
        group="geneformer-10m",
        tags=["geneformer-10m"],
        offline=True,
        anonymous=True,
        id="1",
        log_model=False,
    )
    return wandb_config

geneformer_1b_experiment_config(result_dir)

Experiment config for Geneformer 1B.

Source code in bionemo/geneformer/run/recipes.py
262
263
264
265
266
267
268
269
def geneformer_1b_experiment_config(result_dir) -> ExperimentConfig:
    """Experiment config for Geneformer 1B."""
    return ExperimentConfig(
        save_every_n_steps=100,
        result_dir=result_dir,
        experiment_name="geneformer-1b",
        restore_from_checkpoint_path=None,
    )

geneformer_1b_model_config(seq_length=2048, precision='bf16-mixed', nemo1_init_path=None, initial_ckpt_path=None, biobert_spec_option=BiobertSpecOption.bert_layer_with_transformer_engine_spec)

Geneformer 1B model config settings.

Source code in bionemo/geneformer/run/recipes.py
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
def geneformer_1b_model_config(
    seq_length: int = 2048,
    precision: PrecisionTypes = "bf16-mixed",
    nemo1_init_path: Optional[str] = None,
    initial_ckpt_path: Optional[str] = None,
    biobert_spec_option: BiobertSpecOption = BiobertSpecOption.bert_layer_with_transformer_engine_spec,
) -> ExposedGeneformerPretrainConfig:
    """Geneformer 1B model config settings."""
    geneformer_config = ExposedGeneformerPretrainConfig(
        num_layers=48,
        hidden_size=1280,
        ffn_hidden_size=5120,
        num_attention_heads=20,
        seq_length=seq_length,
        fp32_residual_connection=False,
        hidden_dropout=0.1,
        init_method_std=0.02,
        kv_channels=None,
        apply_query_key_layer_scaling=True,
        make_vocab_size_divisible_by=128,
        masked_softmax_fusion=True,
        fp16_lm_cross_entropy=False,
        params_dtype=precision,
        pipeline_dtype=precision,
        autocast_dtype=precision,
        gradient_accumulation_fusion=True,
        layernorm_zero_centered_gamma=False,
        layernorm_epsilon=1.0e-12,
        activation_func="gelu",
        qk_layernorm=False,
        apply_residual_connection_post_layernorm=False,
        bias_activation_fusion=True,
        bias_dropout_fusion=True,
        get_attention_mask_from_fusion=True,
        attention_dropout=0.1,
        share_embeddings_and_output_weights=True,
        enable_autocast=False,
        biobert_spec_option=biobert_spec_option,
        nemo1_ckpt_path=nemo1_init_path,
        initial_ckpt_path=initial_ckpt_path,
    )
    return geneformer_config

geneformer_1b_optimizer_scheduler_config()

Optimizer scheduler config for Geneformer 1B.

Source code in bionemo/geneformer/run/recipes.py
58
59
60
61
62
63
64
65
66
67
68
69
70
def geneformer_1b_optimizer_scheduler_config() -> OptimizerSchedulerConfig:
    """Optimizer scheduler config for Geneformer 1B."""
    return OptimizerSchedulerConfig(
        lr=0.0004,
        lr_scheduler="warmup_anneal",
        cosine_hold_frac=0.05,
        cosine_rampup_frac=0.01,
        interval="step",
        max_steps=123125,
        monitor="val_loss",
        optimizer="adam",
        warmup_steps=500,
    )

geneformer_1b_parallel_config()

Base parallel config for Geneformer 1B. Increase devices as needed for DDP.

Source code in bionemo/geneformer/run/recipes.py
250
251
252
253
254
255
256
257
258
259
def geneformer_1b_parallel_config() -> ParallelConfig:
    """Base parallel config for Geneformer 1B. Increase devices as needed for DDP."""
    return ParallelConfig(
        tensor_model_parallel_size=1,
        pipeline_model_parallel_size=1,
        accumulate_grad_batches=1,
        ddp="megatron",
        num_devices=1,
        num_nodes=1,
    )

geneformer_1b_pretrain_recipe(args)

Recipe for pretraining the 1B model. Uses tensor and pipeline parallelism across multiple nodes.

Source code in bionemo/geneformer/run/recipes.py
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
def geneformer_1b_pretrain_recipe(
    args,
) -> MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig]:
    """Recipe for pretraining the 1B model. Uses tensor and pipeline parallelism across multiple nodes."""
    data_config: GeneformerPretrainingDataConfig = geneformer_data_recipe(data_dir=args.data_path)
    parallel_config = geneformer_1b_parallel_config()
    training_config = geneformer_1b_training_config()
    bionemo_model_config = geneformer_1b_model_config(initial_ckpt_path=args.initial_ckpt_path)
    optim_config = geneformer_1b_optimizer_scheduler_config()
    experiment_config = geneformer_1b_experiment_config(result_dir=args.result_dir)
    wandb_config = geneformer_1b_wandb_config()
    main_config = MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig](
        data_config=data_config,
        parallel_config=parallel_config,
        training_config=training_config,
        bionemo_model_config=bionemo_model_config,
        optim_config=optim_config,
        experiment_config=experiment_config,
        wandb_config=wandb_config,
    )
    return main_config

geneformer_1b_training_config()

Training config for Geneformer 1B.

Source code in bionemo/geneformer/run/recipes.py
80
81
82
def geneformer_1b_training_config() -> TrainingConfig:
    """Training config for Geneformer 1B."""
    return TrainingConfig(max_steps=123125, limit_val_batches=8, val_check_interval=100, precision="bf16-mixed")

geneformer_1b_wandb_config()

Wandb config for Geneformer 1B.

Source code in bionemo/geneformer/run/recipes.py
272
273
274
275
276
277
278
279
280
281
282
283
284
def geneformer_1b_wandb_config() -> WandbConfig:
    """Wandb config for Geneformer 1B."""
    wandb_config = WandbConfig(
        entity="geneformer-1b_pretraining",
        project="geneformer-1b_pretraining",
        group="geneformer-1b",
        tags=["geneformer-1b"],
        offline=True,
        anonymous=True,
        id="1",
        log_model=False,
    )
    return wandb_config

geneformer_base_optimizer_scheduler_config()

Base optimizer scheduler config for Geneformer.

Source code in bionemo/geneformer/run/recipes.py
53
54
55
def geneformer_base_optimizer_scheduler_config() -> OptimizerSchedulerConfig:
    """Base optimizer scheduler config for Geneformer."""
    return OptimizerSchedulerConfig(lr=1e-3, lr_scheduler="cosine")  # Matches bionemo1

geneformer_base_parallel_config()

Base parallel config for Geneformer.

Source code in bionemo/geneformer/run/recipes.py
41
42
43
44
45
46
47
48
49
50
def geneformer_base_parallel_config() -> ParallelConfig:
    """Base parallel config for Geneformer."""
    return ParallelConfig(
        tensor_model_parallel_size=1,
        pipeline_model_parallel_size=1,
        accumulate_grad_batches=1,
        ddp="megatron",
        num_devices=1,
        num_nodes=1,
    )

geneformer_base_training_config()

Base training config for Geneformer.

Source code in bionemo/geneformer/run/recipes.py
73
74
75
76
77
def geneformer_base_training_config() -> TrainingConfig:
    """Base training config for Geneformer."""
    return TrainingConfig(
        max_steps=400000, limit_val_batches=8, val_check_interval=100, precision="bf16-mixed"
    )  # matches bionemo1

geneformer_data_recipe(data_dir)

Recipe that produces the base geneformer small data configuration.

Source code in bionemo/geneformer/run/recipes.py
92
93
94
def geneformer_data_recipe(data_dir) -> GeneformerPretrainingDataConfig:
    """Recipe that produces the base geneformer small data configuration."""
    return GeneformerPretrainingDataConfig(data_dir=data_dir)

geneformer_finetuning_regression_head_recipe(precision='bf16-mixed', nemo1_init_path=None, initial_ckpt_path=None, initial_ckpt_skip_keys_with_these_prefixes=None)

Recipe for finetuning a regression head on the masked tokens.

Source code in bionemo/geneformer/run/recipes.py
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
def geneformer_finetuning_regression_head_recipe(
    precision: PrecisionTypes = "bf16-mixed",
    nemo1_init_path: Optional[str] = None,
    initial_ckpt_path: Optional[str] = None,
    initial_ckpt_skip_keys_with_these_prefixes: Optional[List[str]] = None,
) -> ExposedFineTuneSeqLenBioBertConfig:
    """Recipe for finetuning a regression head on the masked tokens."""
    partial_finetuning_config = partial(
        ExposedFineTuneSeqLenBioBertConfig,
        params_dtype=precision,
        pipeline_dtype=precision,
        autocast_dtype=precision,
        nemo1_ckpt_path=nemo1_init_path,
        initial_ckpt_path=initial_ckpt_path,
        biobert_spec_option=BiobertSpecOption.bert_layer_with_transformer_engine_spec,
    )
    if initial_ckpt_skip_keys_with_these_prefixes:
        finetuning_config = partial_finetuning_config(
            initial_ckpt_skip_keys_with_these_prefixes=initial_ckpt_skip_keys_with_these_prefixes
        )
    else:
        # Use the sensible default when None is passed
        finetuning_config = partial_finetuning_config()
    return finetuning_config

geneformer_short_base_training_config()

Base training config for Geneformer.

Source code in bionemo/geneformer/run/recipes.py
85
86
87
88
89
def geneformer_short_base_training_config() -> TrainingConfig:
    """Base training config for Geneformer."""
    return TrainingConfig(
        max_steps=500, limit_val_batches=8, val_check_interval=100, precision="bf16-mixed"
    )  # matches bionemo1

geneformer_tiny_config(seq_length=2048, precision='bf16-mixed', nemo1_init_path=None, initial_ckpt_path=None, biobert_spec_option=BiobertSpecOption.bert_layer_with_transformer_engine_spec)

Geneformer tiny model config settings, used in testing.

Source code in bionemo/geneformer/run/recipes.py
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
def geneformer_tiny_config(
    seq_length: int = 2048,
    precision: PrecisionTypes = "bf16-mixed",
    nemo1_init_path: Optional[str] = None,
    initial_ckpt_path: Optional[str] = None,
    biobert_spec_option: BiobertSpecOption = BiobertSpecOption.bert_layer_with_transformer_engine_spec,
) -> ExposedGeneformerPretrainConfig:
    """Geneformer tiny model config settings, used in testing."""
    geneformer_config = ExposedGeneformerPretrainConfig(
        num_layers=2,
        hidden_size=32,
        ffn_hidden_size=4 * 32,
        num_attention_heads=2,
        seq_length=seq_length,
        fp32_residual_connection=False,
        hidden_dropout=0.02,
        init_method_std=0.02,
        kv_channels=None,
        apply_query_key_layer_scaling=False,
        make_vocab_size_divisible_by=128,
        masked_softmax_fusion=True,
        fp16_lm_cross_entropy=False,
        params_dtype=precision,
        pipeline_dtype=precision,
        autocast_dtype=precision,
        gradient_accumulation_fusion=False,
        layernorm_zero_centered_gamma=False,
        layernorm_epsilon=1.0e-12,
        activation_func="gelu",
        qk_layernorm=False,
        apply_residual_connection_post_layernorm=False,
        bias_activation_fusion=True,
        bias_dropout_fusion=True,
        get_attention_mask_from_fusion=True,
        attention_dropout=0.1,
        share_embeddings_and_output_weights=True,
        enable_autocast=False,
        biobert_spec_option=biobert_spec_option,
        nemo1_ckpt_path=nemo1_init_path,
        initial_ckpt_path=initial_ckpt_path,
    )
    return geneformer_config

pretrain_tiny_test_recipe(args)

Recipe for pretraining a tiny model. Used in testing.

Source code in bionemo/geneformer/run/recipes.py
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
def pretrain_tiny_test_recipe(args) -> MainConfig[ExposedGeneformerPretrainConfig, GeneformerPretrainingDataConfig]:
    """Recipe for pretraining a tiny model. Used in testing."""
    data_path = args.data_path
    result_dir = args.result_dir

    parallel_config = ParallelConfig(
        tensor_model_parallel_size=1, pipeline_model_parallel_size=1, num_devices=1, accumulate_grad_batches=2
    )
    training_config = TrainingConfig(
        max_steps=10, limit_val_batches=2, val_check_interval=2, precision="bf16-mixed", accelerator="gpu"
    )
    data_config = GeneformerPretrainingDataConfig(
        seq_length=128,
        micro_batch_size=2,
        num_dataset_workers=0,
        data_dir=data_path,
    )
    experiment_config = ExperimentConfig(
        save_every_n_steps=training_config.val_check_interval,
        result_dir=result_dir,
        experiment_name="test-experiment",
        restore_from_checkpoint_path=None,
        save_last_checkpoint=True,
        metric_to_monitor_for_checkpoints="reduced_train_loss",
        save_top_k=2,
        create_tensorboard_logger=False,
    )

    optim_config = OptimizerSchedulerConfig(lr_scheduler="cosine")
    geneformer_config = geneformer_tiny_config(
        seq_length=data_config.seq_length, initial_ckpt_path=args.initial_ckpt_path
    )

    return MainConfig(
        data_config=data_config,
        parallel_config=parallel_config,
        training_config=training_config,
        bionemo_model_config=geneformer_config,
        optim_config=optim_config,
        experiment_config=experiment_config,
    )

simple_parallel_recipe(tensor_model_parallel_size=1, pipeline_model_parallel_size=1, num_devices=1, accumulate_grad_batches=1)

Simple parallel config for Geneformer, only used in testing.

Source code in bionemo/geneformer/run/recipes.py
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
def simple_parallel_recipe(
    tensor_model_parallel_size: int = 1,
    pipeline_model_parallel_size: int = 1,
    num_devices: int = 1,
    accumulate_grad_batches: int = 1,
) -> ParallelConfig:
    """Simple parallel config for Geneformer, only used in testing."""
    assert num_devices >= tensor_model_parallel_size * pipeline_model_parallel_size, (
        "devices must be divisible by tensor_model_parallel_size * pipeline_model_parallel_size"
    )
    return ParallelConfig(
        tensor_model_parallel_size=tensor_model_parallel_size,
        pipeline_model_parallel_size=pipeline_model_parallel_size,
        accumulate_grad_batches=accumulate_grad_batches,
        num_devices=num_devices,
    )