Train
NsysConfig
Bases: BaseModel
Configuration for nsys profiling.
Source code in bionemo/llm/train.py
51 52 53 54 55 56 |
|
nemo_logger_factory(experiment_config, wandb_config)
Creates and returns a NeMoLogger instance configured based on the provided experiment and wandb configurations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
experiment_config
|
ExperimentConfig
|
Configuration object containing experiment settings such as result directory, experiment name, checkpoint settings, and logger preferences. |
required |
wandb_config
|
Optional[WandbConfig]
|
Optional configuration object for Weights and Biases logging. |
required |
Returns:
Type | Description |
---|---|
NeMoLogger
|
nl.NeMoLogger: An instance of NeMoLogger configured with the specified settings. |
Source code in bionemo/llm/train.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
setup_trainer(parallel_config, training_config, callbacks=None, nsys_config=None)
Set up the trainer for model training using the specified parallel and training configurations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
parallel_config
|
ParallelConfig
|
Configuration for parallelism, including tensor and pipeline model parallel sizes, number of devices, and number of nodes. |
required |
training_config
|
TrainingConfig
|
Configuration for training, including maximum steps, accelerator type, validation batch limit, validation check interval, and precision. |
required |
callbacks
|
list
|
List of callback functions to be used during training. Defaults to None, in which case default callbacks (RichModelSummary and LearningRateMonitor) are used. |
None
|
nsys_config
|
NsysConfig
|
Configuration for nsys profiling. If None, is disabled. |
None
|
Returns:
Type | Description |
---|---|
Trainer
|
nl.Trainer: Configured trainer object ready for model training. |
Source code in bionemo/llm/train.py
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
|
train(bionemo_exposed_model_config, data_config, parallel_config, training_config, optim_config, experiment_config, wandb_config, nsys_config=None, resume_if_exists=True)
Train a BioNemo model using the provided configurations. Uses the ExposedModelConfig and DataConfig as the primary variants for this method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bionemo_exposed_model_config
|
ExposedModelConfig
|
Configuration for the exposed BioNemo model. |
required |
data_config
|
DataConfig[DataModuleT]
|
Configuration for the data module. |
required |
parallel_config
|
ParallelConfig
|
Configuration for parallel training. |
required |
training_config
|
TrainingConfig
|
Configuration for training parameters. |
required |
optim_config
|
OptimizerSchedulerConfig
|
Configuration for the optimizer and scheduler. |
required |
experiment_config
|
ExperimentConfig
|
Configuration for the experiment. |
required |
wandb_config
|
Optional[WandbConfig]
|
Configuration for Weights and Biases logging.n |
required |
nsys_config
|
Optional[NsysConfig]
|
Configuration for nsys profiling. If None, is disabled. |
None
|
resume_if_exists
|
bool
|
Flag to resume training if a checkpoint exists. Defaults to True. |
True
|
Source code in bionemo/llm/train.py
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|