Single cell memmap dataset
FileNames
Bases: str
, Enum
Names of files that are generated in SingleCellCollection.
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
35 36 37 38 39 40 41 42 43 44 |
|
METADATA
Bases: str
, Enum
Stored metadata.
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
59 60 61 62 |
|
Mode
Bases: str
, Enum
Valid modes for the single cell memory mapped dataset.
The write append mode is 'w+' while the read append mode is 'r+'.
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
47 48 49 50 51 52 53 54 55 56 |
|
SingleCellMemMapDataset
Bases: SingleCellRowDataset
Represents one or more AnnData matrices.
Data is stored in large, memory-mapped arrays that enables fast access of datasets larger than the available amount of RAM on a system. SCMMAP implements a consistent API defined in SingleCellRowDataset.
Attributes:
Name | Type | Description |
---|---|---|
data_path |
str
|
Location of np.memmap files to be loaded from or that will be |
mode |
Mode
|
Whether the dataset will be read in (r+) from np.memmap files or |
data |
Optional[ndarray]
|
A numpy array of the data |
row_index |
Optional[ndarray]
|
A numpy array of row pointers |
col_index |
Optional[ndarray]
|
A numpy array of column values |
metadata |
Dict[str, int]
|
Various metata about the dataset. |
_feature_index |
RowFeatureIndex
|
The corresponding RowFeatureIndex where features are |
dtypes |
Dict[FileNames, str]
|
A dictionary containing the datatypes of the data, row_index, |
_version |
str
|
The version of the dataset |
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 |
|
__getitem__(idx)
Get the row values located and index idx.
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
695 696 697 |
|
__init__(data_path, h5ad_path=None, num_elements=None, num_rows=None, mode=Mode.READ_APPEND, paginated_load_cutoff=10000, load_block_row_size=1000000)
Instantiate the class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_path
|
str
|
The location where the data np.memmap files are read from |
required |
h5ad_path
|
Optional[str]
|
Optional, the location of the h5_ad path. |
None
|
num_elements
|
Optional[int]
|
The total number of elements in the array. |
None
|
num_rows
|
Optional[int]
|
The number of rows in the data frame. |
None
|
mode
|
Mode
|
Whether to read or write from the data_path. |
READ_APPEND
|
paginated_load_cutoff
|
int
|
MB size on disk at which to load the h5ad structure with paginated load. |
10000
|
load_block_row_size
|
int
|
Number of rows to load into memory with paginated load |
1000000
|
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
|
__init__obj()
Initializes the datapath and writes the version.
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
308 309 310 311 312 313 314 315 |
|
__len__()
Return the number of rows.
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
691 692 693 |
|
concat(other_dataset)
Concatenates another SingleCellMemMapDataset to the existing one.
The data is stored in the same place as for the original data set. This necessitates using _swap_memmap_array.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other_dataset
|
Union[list[SingleCellMemMapDataset], SingleCellMemMapDataset]
|
A SingleCellMemMapDataset or a list of |
required |
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 |
|
features()
Return the corresponding RowFeatureIndex.
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
413 414 415 |
|
get_row(index, return_features=False, feature_vars=None)
Returns a given row in the dataset along with optional features.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int
|
The row to be returned. This is in the range of [0, num_rows) |
required |
return_features
|
bool
|
boolean that indicates whether to return features |
False
|
feature_vars
|
Optional[List[str]]
|
Optional, feature variables to extract |
None
|
Return: [Tuple[np.ndarray, np.ndarray]: data values and column pointes pd.DataFrame: optional, corresponding features.
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
get_row_column(index, column, impute_missing_zeros=True)
Returns the value at a given index and the corresponding column.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int
|
The index to be returned |
required |
column
|
int
|
The column to be returned |
required |
impute_missing_zeros
|
bool
|
boolean that indicates whether to set missing |
True
|
Return: A float that is the value in the array or None.
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
|
get_row_padded(index, return_features=False, feature_vars=None)
Returns a padded version of a row in the dataset.
A padded version is one where the a sparse array representation is converted to a conventional represenentation. Optionally, features are returned.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int
|
The row to be returned |
required |
return_features
|
bool
|
boolean that indicates whether to return features |
False
|
feature_vars
|
Optional[List[str]]
|
Optional, feature variables to extract |
None
|
Return: np.ndarray: conventional row representation pd.DataFrame: optional, corresponding features.
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
|
load(stored_path)
Loads the data at store_path that is an np.memmap format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stored_path
|
str
|
directory with np.memmap files |
required |
Raises: FileNotFoundError if the corresponding directory or files are not found, or if the metadata file is not present.
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
|
load_h5ad(anndata_path)
Loads an existing AnnData archive from disk.
This creates a new backing data structure which is saved. Note: the storage utilized will roughly double. Currently, the data must be in a scipy.sparse.spmatrix format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
anndata_path
|
str
|
location of data to load |
required |
Raises: FileNotFoundError if the data path does not exist. NotImplementedError if the data is not in scipy.sparse.spmatrix format ValueError it there is not count data
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
|
number_nonzero_values()
Number of non zero entries in the dataset.
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
687 688 689 |
|
number_of_rows()
The number of rows in the dataset.
Returns:
Type | Description |
---|---|
int
|
The number of rows in the dataset |
Raises: ValueError if the length of the number of rows in the feature index does not correspond to the number of stored rows.
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 |
|
number_of_values()
Get the total number of values in the array.
For each index, the length of the corresponding dataframe is counted.
Returns:
Type | Description |
---|---|
int
|
The sum of lengths of the features in every row |
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
661 662 663 664 665 666 667 668 669 |
|
number_of_variables()
Get the number of features in every entry in the dataset.
Returns:
Type | Description |
---|---|
List[int]
|
A list containing the lengths of the features in every row |
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
699 700 701 702 703 704 705 706 707 708 709 |
|
paginated_load_h5ad(anndata_path)
Method for block loading a larger h5ad file and converting it to the SCDL format.
This should be used in the case when the entire anndata file cannot be loaded into memory. The anndata is loaded into memory load_block_row_size number of rows at a time. Each chunk is converted into numpy memory maps which are then concatenated together.
Returns:
Name | Type | Description |
---|---|---|
DataFrame
|
pd.DataFrame: var variables for features |
|
int |
int
|
number of rows in the dataframe. |
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 |
|
regular_load_h5ad(anndata_path)
Method for loading an h5ad file into memorySu and converting it to the SCDL format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
anndata_path
|
str
|
location of data to load |
required |
Raises: NotImplementedError if the data is not in scipy.sparse.spmatrix format ValueError it there is not count data Returns: pd.DataFrame: var variables for features int: number of rows in the dataframe.
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
|
save(output_path=None)
Saves the class to a given output path.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output_path
|
Optional[str]
|
The location to save - not yet implemented and should |
None
|
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
|
shape()
Get the shape of the dataset.
This is the number of entries by the the length of the feature index corresponding to that variable.
Returns:
Type | Description |
---|---|
int
|
The number of elements in the dataset |
List[int]
|
A list containing the number of variables for each row. |
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
711 712 713 714 715 716 717 718 719 720 721 |
|
version()
Returns a version number.
(following
Source code in bionemo/scdl/io/single_cell_memmap_dataset.py
330 331 332 333 334 335 |
|