Skip to content

Convert

HFESM2Exporter

Bases: ModelConnector[BionemoLightningModule, EsmForMaskedLM]

Exporter Connector for converting NeMo ESM-2 Model to HF.

Source code in bionemo/esm2/model/convert.py
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
@io.model_exporter(BionemoLightningModule, "hf")
class HFESM2Exporter(io.ModelConnector[BionemoLightningModule, EsmForMaskedLM]):
    """Exporter Connector for converting NeMo ESM-2 Model to HF."""

    def init(self, dtype: torch.dtype = torch.bfloat16) -> EsmForMaskedLM:
        """Initialize the target model."""
        with no_init_weights():
            return EsmForMaskedLM._from_config(self.config, torch_dtype=dtype)

    def apply(self, output_path: Path) -> Path:
        """Applies the transformation."""
        cpu = not torch.distributed.is_initialized()
        trainer = Trainer(
            devices=1,
            accelerator="cpu" if cpu else "gpu",
            strategy=MegatronStrategy(
                ddp="pytorch", setup_optimizers=False, ckpt_load_strictness=StrictHandling.LOG_UNEXPECTED
            ),
        )
        source, _ = self.nemo_load(self, trainer=trainer, cpu=cpu)

        dtype = torch.bfloat16 if source.config.bf16 else torch.float32

        # Not sure why we need to do this, for some reason lm_head stays as fp32
        source.module.lm_head.to(dtype)

        target = self.init(dtype)
        target = self.convert_state(source, target)

        target = target.cpu()
        target.save_pretrained(output_path)
        self.tokenizer.save_pretrained(output_path)

        return output_path

    @property
    def tokenizer(self):
        """Retrieve Tokenizer from HF."""
        return get_tokenizer()

    def convert_state(self, nemo_module, target):
        """Convert NeMo state dict to HF style."""
        mapping = {
            "encoder.final_layernorm.weight": "esm.encoder.emb_layer_norm_after.weight",
            "encoder.final_layernorm.bias": "esm.encoder.emb_layer_norm_after.bias",
            "encoder.layers.*.self_attention.linear_proj.weight": "esm.encoder.layer.*.attention.output.dense.weight",
            "encoder.layers.*.self_attention.linear_proj.bias": "esm.encoder.layer.*.attention.output.dense.bias",
            "encoder.layers.*.self_attention.linear_qkv.layer_norm_weight": "esm.encoder.layer.*.attention.LayerNorm.weight",
            "encoder.layers.*.self_attention.linear_qkv.layer_norm_bias": "esm.encoder.layer.*.attention.LayerNorm.bias",
            "encoder.layers.*.mlp.linear_fc1.weight": "esm.encoder.layer.*.intermediate.dense.weight",
            "encoder.layers.*.mlp.linear_fc1.bias": "esm.encoder.layer.*.intermediate.dense.bias",
            "encoder.layers.*.mlp.linear_fc2.weight": "esm.encoder.layer.*.output.dense.weight",
            "encoder.layers.*.mlp.linear_fc2.bias": "esm.encoder.layer.*.output.dense.bias",
            "encoder.layers.*.mlp.linear_fc1.layer_norm_weight": "esm.encoder.layer.*.LayerNorm.weight",
            "encoder.layers.*.mlp.linear_fc1.layer_norm_bias": "esm.encoder.layer.*.LayerNorm.bias",
            "lm_head.dense.weight": "lm_head.dense.weight",
            "lm_head.dense.bias": "lm_head.dense.bias",
            "lm_head.layer_norm.weight": "lm_head.layer_norm.weight",
            "lm_head.layer_norm.bias": "lm_head.layer_norm.bias",
        }

        return io.apply_transforms(
            nemo_module,
            target,
            mapping=mapping,
            transforms=[_export_qkv_weight, _export_qkv_bias, _export_embedding, _export_bias],
        )

    @property
    def config(self) -> HFEsmConfig:
        """Generate HF Config based on NeMo config."""
        source: ESM2Config = io.load_context(Path(str(self)), subpath="model.config")

        return HFEsmConfig(
            attention_probs_dropout_prob=float(source.attention_dropout),
            emb_layer_norm_before=False,
            hidden_act="gelu",
            hidden_dropout_prob=float(source.hidden_dropout),
            hidden_size=int(source.hidden_size),
            initializer_range=float(source.init_method_std),
            intermediate_size=int(source.ffn_hidden_size),
            is_folding_model=False,
            layer_norm_eps=float(source.layernorm_epsilon),
            mask_token_id=32,
            max_position_embeddings=int(source.seq_length),
            model_type="esm",
            num_attention_heads=int(source.num_attention_heads),
            num_hidden_layers=int(source.num_layers),
            pad_token_id=1,
            position_embedding_type="rotary",
            token_dropout=True,
            torch_dtype=torch.bfloat16,
            use_cache=True,
            vocab_size=self.tokenizer.vocab_size,
        )

config property

Generate HF Config based on NeMo config.

tokenizer property

Retrieve Tokenizer from HF.

apply(output_path)

Applies the transformation.

Source code in bionemo/esm2/model/convert.py
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
def apply(self, output_path: Path) -> Path:
    """Applies the transformation."""
    cpu = not torch.distributed.is_initialized()
    trainer = Trainer(
        devices=1,
        accelerator="cpu" if cpu else "gpu",
        strategy=MegatronStrategy(
            ddp="pytorch", setup_optimizers=False, ckpt_load_strictness=StrictHandling.LOG_UNEXPECTED
        ),
    )
    source, _ = self.nemo_load(self, trainer=trainer, cpu=cpu)

    dtype = torch.bfloat16 if source.config.bf16 else torch.float32

    # Not sure why we need to do this, for some reason lm_head stays as fp32
    source.module.lm_head.to(dtype)

    target = self.init(dtype)
    target = self.convert_state(source, target)

    target = target.cpu()
    target.save_pretrained(output_path)
    self.tokenizer.save_pretrained(output_path)

    return output_path

convert_state(nemo_module, target)

Convert NeMo state dict to HF style.

Source code in bionemo/esm2/model/convert.py
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
def convert_state(self, nemo_module, target):
    """Convert NeMo state dict to HF style."""
    mapping = {
        "encoder.final_layernorm.weight": "esm.encoder.emb_layer_norm_after.weight",
        "encoder.final_layernorm.bias": "esm.encoder.emb_layer_norm_after.bias",
        "encoder.layers.*.self_attention.linear_proj.weight": "esm.encoder.layer.*.attention.output.dense.weight",
        "encoder.layers.*.self_attention.linear_proj.bias": "esm.encoder.layer.*.attention.output.dense.bias",
        "encoder.layers.*.self_attention.linear_qkv.layer_norm_weight": "esm.encoder.layer.*.attention.LayerNorm.weight",
        "encoder.layers.*.self_attention.linear_qkv.layer_norm_bias": "esm.encoder.layer.*.attention.LayerNorm.bias",
        "encoder.layers.*.mlp.linear_fc1.weight": "esm.encoder.layer.*.intermediate.dense.weight",
        "encoder.layers.*.mlp.linear_fc1.bias": "esm.encoder.layer.*.intermediate.dense.bias",
        "encoder.layers.*.mlp.linear_fc2.weight": "esm.encoder.layer.*.output.dense.weight",
        "encoder.layers.*.mlp.linear_fc2.bias": "esm.encoder.layer.*.output.dense.bias",
        "encoder.layers.*.mlp.linear_fc1.layer_norm_weight": "esm.encoder.layer.*.LayerNorm.weight",
        "encoder.layers.*.mlp.linear_fc1.layer_norm_bias": "esm.encoder.layer.*.LayerNorm.bias",
        "lm_head.dense.weight": "lm_head.dense.weight",
        "lm_head.dense.bias": "lm_head.dense.bias",
        "lm_head.layer_norm.weight": "lm_head.layer_norm.weight",
        "lm_head.layer_norm.bias": "lm_head.layer_norm.bias",
    }

    return io.apply_transforms(
        nemo_module,
        target,
        mapping=mapping,
        transforms=[_export_qkv_weight, _export_qkv_bias, _export_embedding, _export_bias],
    )

init(dtype=torch.bfloat16)

Initialize the target model.

Source code in bionemo/esm2/model/convert.py
120
121
122
123
def init(self, dtype: torch.dtype = torch.bfloat16) -> EsmForMaskedLM:
    """Initialize the target model."""
    with no_init_weights():
        return EsmForMaskedLM._from_config(self.config, torch_dtype=dtype)

HFESM2Importer

Bases: ModelConnector[AutoModelForMaskedLM, BionemoLightningModule]

Converts a Hugging Face ESM-2 model to a NeMo ESM-2 model.

Source code in bionemo/esm2/model/convert.py
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
@io.model_importer(BionemoLightningModule, "hf")
class HFESM2Importer(io.ModelConnector[AutoModelForMaskedLM, BionemoLightningModule]):
    """Converts a Hugging Face ESM-2 model to a NeMo ESM-2 model."""

    def init(self) -> BionemoLightningModule:
        """Initialize the converted model."""
        return biobert_lightning_module(self.config, tokenizer=self.tokenizer)

    def apply(self, output_path: Path) -> Path:
        """Applies the transformation.

        Largely inspired by
        https://docs.nvidia.com/nemo-framework/user-guide/latest/nemo-2.0/features/hf-integration.html
        """
        source = AutoModelForMaskedLM.from_pretrained(str(self), trust_remote_code=True, torch_dtype="auto")
        target = self.init()
        trainer = self.nemo_setup(target)
        self.convert_state(source, target)
        self.nemo_save(output_path, trainer)

        print(f"Converted ESM-2 model to Nemo, model saved to {output_path}")

        teardown(trainer, target)
        del trainer, target

        return output_path

    def convert_state(self, source, target):
        """Converting HF state dict to NeMo state dict."""
        mapping = {
            # "esm.encoder.layer.0.attention.self.rotary_embeddings.inv_freq": "rotary_pos_emb.inv_freq",
            "esm.encoder.layer.*.attention.output.dense.weight": "encoder.layers.*.self_attention.linear_proj.weight",
            "esm.encoder.layer.*.attention.output.dense.bias": "encoder.layers.*.self_attention.linear_proj.bias",
            "esm.encoder.layer.*.attention.LayerNorm.weight": "encoder.layers.*.self_attention.linear_qkv.layer_norm_weight",
            "esm.encoder.layer.*.attention.LayerNorm.bias": "encoder.layers.*.self_attention.linear_qkv.layer_norm_bias",
            "esm.encoder.layer.*.intermediate.dense.weight": "encoder.layers.*.mlp.linear_fc1.weight",
            "esm.encoder.layer.*.intermediate.dense.bias": "encoder.layers.*.mlp.linear_fc1.bias",
            "esm.encoder.layer.*.output.dense.weight": "encoder.layers.*.mlp.linear_fc2.weight",
            "esm.encoder.layer.*.output.dense.bias": "encoder.layers.*.mlp.linear_fc2.bias",
            "esm.encoder.layer.*.LayerNorm.weight": "encoder.layers.*.mlp.linear_fc1.layer_norm_weight",
            "esm.encoder.layer.*.LayerNorm.bias": "encoder.layers.*.mlp.linear_fc1.layer_norm_bias",
            "esm.encoder.emb_layer_norm_after.weight": "encoder.final_layernorm.weight",
            "esm.encoder.emb_layer_norm_after.bias": "encoder.final_layernorm.bias",
            "lm_head.dense.weight": "lm_head.dense.weight",
            "lm_head.dense.bias": "lm_head.dense.bias",
            "lm_head.layer_norm.weight": "lm_head.layer_norm.weight",
            "lm_head.layer_norm.bias": "lm_head.layer_norm.bias",
        }

        return io.apply_transforms(
            source,
            target,
            mapping=mapping,
            transforms=[_pad_embeddings, _pad_bias, _import_qkv_weight, _import_qkv_bias],
        )

    @property
    def tokenizer(self) -> BioNeMoESMTokenizer:
        """We just have the one tokenizer for ESM-2."""
        return get_tokenizer()

    @property
    def config(self) -> ESM2Config:
        """Returns the transformed ESM-2 config given the model tag."""
        source = HFAutoConfig.from_pretrained(str(self), trust_remote_code=True)
        output = ESM2Config(
            num_layers=source.num_hidden_layers,
            hidden_size=source.hidden_size,
            ffn_hidden_size=source.intermediate_size,
            position_embedding_type="rope",
            num_attention_heads=source.num_attention_heads,
            seq_length=source.max_position_embeddings,
            fp16=(dtype_from_hf(source) == torch.float16),
            bf16=(dtype_from_hf(source) == torch.bfloat16),
            params_dtype=dtype_from_hf(source),
        )

        return output

config property

Returns the transformed ESM-2 config given the model tag.

tokenizer property

We just have the one tokenizer for ESM-2.

apply(output_path)

Applies the transformation.

Largely inspired by https://docs.nvidia.com/nemo-framework/user-guide/latest/nemo-2.0/features/hf-integration.html

Source code in bionemo/esm2/model/convert.py
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def apply(self, output_path: Path) -> Path:
    """Applies the transformation.

    Largely inspired by
    https://docs.nvidia.com/nemo-framework/user-guide/latest/nemo-2.0/features/hf-integration.html
    """
    source = AutoModelForMaskedLM.from_pretrained(str(self), trust_remote_code=True, torch_dtype="auto")
    target = self.init()
    trainer = self.nemo_setup(target)
    self.convert_state(source, target)
    self.nemo_save(output_path, trainer)

    print(f"Converted ESM-2 model to Nemo, model saved to {output_path}")

    teardown(trainer, target)
    del trainer, target

    return output_path

convert_state(source, target)

Converting HF state dict to NeMo state dict.

Source code in bionemo/esm2/model/convert.py
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
def convert_state(self, source, target):
    """Converting HF state dict to NeMo state dict."""
    mapping = {
        # "esm.encoder.layer.0.attention.self.rotary_embeddings.inv_freq": "rotary_pos_emb.inv_freq",
        "esm.encoder.layer.*.attention.output.dense.weight": "encoder.layers.*.self_attention.linear_proj.weight",
        "esm.encoder.layer.*.attention.output.dense.bias": "encoder.layers.*.self_attention.linear_proj.bias",
        "esm.encoder.layer.*.attention.LayerNorm.weight": "encoder.layers.*.self_attention.linear_qkv.layer_norm_weight",
        "esm.encoder.layer.*.attention.LayerNorm.bias": "encoder.layers.*.self_attention.linear_qkv.layer_norm_bias",
        "esm.encoder.layer.*.intermediate.dense.weight": "encoder.layers.*.mlp.linear_fc1.weight",
        "esm.encoder.layer.*.intermediate.dense.bias": "encoder.layers.*.mlp.linear_fc1.bias",
        "esm.encoder.layer.*.output.dense.weight": "encoder.layers.*.mlp.linear_fc2.weight",
        "esm.encoder.layer.*.output.dense.bias": "encoder.layers.*.mlp.linear_fc2.bias",
        "esm.encoder.layer.*.LayerNorm.weight": "encoder.layers.*.mlp.linear_fc1.layer_norm_weight",
        "esm.encoder.layer.*.LayerNorm.bias": "encoder.layers.*.mlp.linear_fc1.layer_norm_bias",
        "esm.encoder.emb_layer_norm_after.weight": "encoder.final_layernorm.weight",
        "esm.encoder.emb_layer_norm_after.bias": "encoder.final_layernorm.bias",
        "lm_head.dense.weight": "lm_head.dense.weight",
        "lm_head.dense.bias": "lm_head.dense.bias",
        "lm_head.layer_norm.weight": "lm_head.layer_norm.weight",
        "lm_head.layer_norm.bias": "lm_head.layer_norm.bias",
    }

    return io.apply_transforms(
        source,
        target,
        mapping=mapping,
        transforms=[_pad_embeddings, _pad_bias, _import_qkv_weight, _import_qkv_bias],
    )

init()

Initialize the converted model.

Source code in bionemo/esm2/model/convert.py
40
41
42
def init(self) -> BionemoLightningModule:
    """Initialize the converted model."""
    return biobert_lightning_module(self.config, tokenizer=self.tokenizer)

convert_hf_to_nemo(hf_tag_or_path, output_path, overwrite=True)

Convert a HuggingFace ESM-2 checkpoint to a NeMo ESM-2 checkpoint.

Parameters:

Name Type Description Default
hf_tag_or_path str

Tag or path to the HuggingFace checkpoint.

required
output_path str

Path to the output NeMo checkpoint.

required
overwrite bool

Whether to overwrite the output path if it already exists.

True
Source code in bionemo/esm2/model/convert.py
369
370
371
372
373
374
375
376
377
378
379
@app.command()
def convert_hf_to_nemo(hf_tag_or_path: str, output_path: str, overwrite: bool = True):
    """Convert a HuggingFace ESM-2 checkpoint to a NeMo ESM-2 checkpoint.

    Args:
        hf_tag_or_path: Tag or path to the HuggingFace checkpoint.
        output_path: Path to the output NeMo checkpoint.
        overwrite: Whether to overwrite the output path if it already exists.
    """
    module = biobert_lightning_module(config=ESM2Config(), post_process=True)
    io.import_ckpt(module, f"hf://{hf_tag_or_path}", Path(output_path), overwrite=overwrite)

convert_nemo_to_hf(nemo_path, output_path, overwrite=True)

Convert a NeMo ESM-2 checkpoint to a HuggingFace checkpoint.

Parameters:

Name Type Description Default
nemo_path str

Path to the NeMo checkpoint.

required
output_path str

Path to the output HuggingFace checkpoint.

required
overwrite bool

Whether to overwrite the output path if it already exists.

True
Source code in bionemo/esm2/model/convert.py
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
@app.command()
def convert_nemo_to_hf(nemo_path: str, output_path: str, overwrite: bool = True):
    """Convert a NeMo ESM-2 checkpoint to a HuggingFace checkpoint.

    Args:
        nemo_path: Path to the NeMo checkpoint.
        output_path: Path to the output HuggingFace checkpoint.
        overwrite: Whether to overwrite the output path if it already exists.
    """
    io.export_ckpt(
        Path(nemo_path),
        "hf",
        Path(output_path),
        overwrite=overwrite,
        load_connector=lambda path, ext: BionemoLightningModule.exporter(ext, path),
    )