Skip to content

Infer

infer(prompt, ckpt_dir, temperature, top_k, top_p, max_new_tokens, tensor_parallel_size, pipeline_model_parallel_size, context_parallel_size, output_file=None, ckpt_format='torch_dist', seed=None, vortex_style_fp8=False, flash_decode=False, return_log_probs=False)

Inference workflow for Evo2.

Parameters:

Name Type Description Default
prompt str

Prompt to generate text from Evo2.

required
ckpt_dir str

Path to checkpoint directory containing pre-trained Evo2 model.

required
temperature float

Temperature during sampling for generation.

required
top_k int

Top K during sampling for generation.

required
top_p float

Top P during sampling for generation.

required
max_new_tokens int

Maximum number of tokens to generate.

required
tensor_parallel_size int

Order of tensor parallelism.

required
pipeline_model_parallel_size int

Order of pipeline parallelism.

required
context_parallel_size int

Order of context parallelism.

required
output_file str

Output file containing the generated text produced by the Evo2 model.

None
ckpt_format CheckpointFormats

Checkpoint format to use.

'torch_dist'
seed int

Random seed for generation.

None
vortex_style_fp8 bool

Whether to use vortex style FP8.

False
flash_decode bool

Whether to use flash decode.

False
return_log_probs bool

Whether to return log probabilities.

False

Returns:

Type Description
list[InferenceRequest]

None

Source code in bionemo/evo2/run/infer.py
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
def infer(
    prompt: str,
    ckpt_dir: str,
    temperature: float,
    top_k: int,
    top_p: float,
    max_new_tokens: int,
    tensor_parallel_size: int,
    pipeline_model_parallel_size: int,
    context_parallel_size: int,
    output_file: Optional[str] = None,
    ckpt_format: CheckpointFormats = "torch_dist",
    seed: Optional[int] = None,
    vortex_style_fp8: bool = False,
    flash_decode: bool = False,
    return_log_probs: bool = False,
) -> list[InferenceRequest]:
    """Inference workflow for Evo2.

    Args:
        prompt (str): Prompt to generate text from Evo2.
        ckpt_dir (str): Path to checkpoint directory containing pre-trained Evo2 model.
        temperature (float): Temperature during sampling for generation.
        top_k (int): Top K during sampling for generation.
        top_p (float): Top P during sampling for generation.
        max_new_tokens (int): Maximum number of tokens to generate.
        tensor_parallel_size (int): Order of tensor parallelism.
        pipeline_model_parallel_size (int): Order of pipeline parallelism.
        context_parallel_size (int): Order of context parallelism.
        output_file (str): Output file containing the generated text produced by the Evo2 model.
        ckpt_format (CheckpointFormats): Checkpoint format to use.
        seed (int): Random seed for generation.
        vortex_style_fp8 (bool): Whether to use vortex style FP8.
        flash_decode (bool): Whether to use flash decode.
        return_log_probs (bool): Whether to return log probabilities.

    Returns:
        None
    """
    model_parallel_size = tensor_parallel_size * pipeline_model_parallel_size * context_parallel_size
    if model_parallel_size > torch.cuda.device_count():
        raise ValueError(
            f"Requested model parallel size {model_parallel_size} is greater than the "
            f"number of available CUDA devices {torch.cuda.device_count()}"
        )
    # Create PTL trainer.
    trainer = nl.Trainer(
        accelerator="gpu",
        devices=model_parallel_size,
        strategy=nl.MegatronStrategy(
            tensor_model_parallel_size=tensor_parallel_size,
            pipeline_model_parallel_size=pipeline_model_parallel_size,
            context_parallel_size=context_parallel_size,
            pipeline_dtype=torch.bfloat16,
            ckpt_load_optimizer=False,  # Needs to be false for a normal model checkpoint.
            ckpt_save_optimizer=False,
            ckpt_async_save=False,
            save_ckpt_format=ckpt_format,
            ckpt_load_strictness="log_all",
        ),
        log_every_n_steps=1,
        limit_val_batches=10,
        num_sanity_val_steps=0,
        plugins=nl.MegatronMixedPrecision(
            precision="bf16-mixed",
            params_dtype=torch.bfloat16,
        ),
    )
    inference_wrapped_model, mcore_tokenizer = inference.setup_model_and_tokenizer(
        path=ckpt_dir,
        trainer=trainer,
        params_dtype=torch.bfloat16,
        inference_batch_times_seqlen_threshold=8192,  # TODO
        inference_max_seq_length=8192,  # TODO
        recompute_granularity=None,
        recompute_num_layers=None,
        recompute_method=None,
        vortex_style_fp8=vortex_style_fp8,
        flash_decode=flash_decode,
        enable_flash_decode=flash_decode,
    )
    t0 = time.perf_counter_ns()
    # TODO: fix return type in NeMo inference.generate (it is a list[InferenceRequest] not a dict)
    results: list[InferenceRequest] = inference.generate(
        model=inference_wrapped_model,
        max_batch_size=1,  # vortex only supports batch size 1
        tokenizer=mcore_tokenizer,
        prompts=[prompt],
        random_seed=seed,
        inference_params=CommonInferenceParams(
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
            return_log_probs=return_log_probs,
            num_tokens_to_generate=max_new_tokens,
        ),
    )
    dt = (time.perf_counter_ns() - t0) / 1e9  # seconds
    tokens_per_sec = (len(results[0].generated_text) + 1) / dt  # +1 for the prompt

    print(f"Inference time: {dt} seconds, {tokens_per_sec} tokens/sec", file=sys.stderr)
    if torch.distributed.get_rank() == 0:
        if output_file is None:
            logging.info(results)
        else:
            with open(output_file, "w") as f:
                f.write(f"{results[0]}\n")

    return results

main()

Main function for Evo2 inference.

Source code in bionemo/evo2/run/infer.py
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
def main():
    """Main function for Evo2 inference."""
    # Parse args.
    args = parse_args()
    infer(
        prompt=args.prompt,
        ckpt_dir=args.ckpt_dir,
        temperature=args.temperature,
        top_k=args.top_k,
        top_p=args.top_p,
        max_new_tokens=args.max_new_tokens,
        tensor_parallel_size=args.tensor_parallel_size,
        pipeline_model_parallel_size=args.pipeline_model_parallel_size,
        context_parallel_size=args.context_parallel_size,
        output_file=args.output_file,
        ckpt_format=args.ckpt_format,
        seed=args.seed,
        vortex_style_fp8=args.fp8,  # Vortex only applied FP8 to some layers.
        flash_decode=args.flash_decode,
    )

parse_args()

Parse arguments for Evo2 inference.

Source code in bionemo/evo2/run/infer.py
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
def parse_args():
    """Parse arguments for Evo2 inference."""
    ap = argparse.ArgumentParser()

    # generation args:
    default_prompt = (
        "|d__Bacteria;"
        + "p__Pseudomonadota;"
        + "c__Gammaproteobacteria;"
        + "o__Enterobacterales;"
        + "f__Enterobacteriaceae;"
        + "g__Escherichia;"
        + "s__Escherichia|"
    )
    ap.add_argument(
        "--prompt",
        type=str,
        default=default_prompt,
        help="Prompt to generate text from Evo2. Defaults to a phylogenetic lineage tag for E coli.",
    )
    ap.add_argument(
        "--ckpt-dir", type=str, required=True, help="Path to checkpoint directory containing pre-trained Evo2 model."
    )
    ap.add_argument("--temperature", type=float, default=1.0, help="Temperature during sampling for generation.")
    ap.add_argument("--top-k", type=int, default=0, help="Top K during sampling for generation.")
    ap.add_argument("--top-p", type=float, default=0.0, help="Top P during sampling for generation.")
    ap.add_argument("--max-new-tokens", type=int, default=1024, help="Maximum number of tokens to generate.")
    ap.add_argument("--seed", type=int, default=None, help="Random seed for generation.")
    # compute args:
    ap.add_argument("--tensor-parallel-size", type=int, default=1, help="Order of tensor parallelism. Defaults to 1.")
    ap.add_argument(
        "--pipeline-model-parallel-size", type=int, default=1, help="Order of pipeline parallelism. Defaults to 1."
    )
    ap.add_argument(
        "--context-parallel-size", type=int, default=1, help="Order of context parallelism. Defaults to 1."
    )
    # output args:
    ap.add_argument(
        "--output-file",
        type=str,
        default=None,
        help="Output file containing the generated text produced by the Evo2 model. If not provided, the output will be logged.",
    )
    # extra:
    ap.add_argument(
        "--ckpt-format",
        type=str,
        choices=["torch_dist", "zarr"],
        default="torch_dist",
        help="Specify checkpoint format to use. Defaults to 'torch_dist', as 'zarr' is deprecated.",
    )
    ap.add_argument(
        "--fp8",
        type=bool,
        action="store_true",
        default=False,
        help="Whether to use vortex style FP8. Defaults to False.",
    )
    ap.add_argument(
        "--flash-decode",
        type=bool,
        action="store_true",
        default=False,
        help="Whether to use flash decode. Defaults to True.",
    )
    return ap.parse_args()