Embedding variance
SquaredErrorTargetedVarianceLoss
Bases: Module
Applies a loss that will encourage variance of some parameter to be close to var_target.
Source code in bionemo/evo2/utils/loss/embedding_variance.py
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
|
__init__(loss_coeff=0.1, var_target=1.0)
Applies a loss that will encourage variance of some parameter to be close to var_target.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
loss_coeff
|
float
|
Loss coefficient. Defaults to 0.1. |
0.1
|
var_target
|
float
|
targetted variance for the embedding weights. Defaults to 1.0. |
1.0
|
Source code in bionemo/evo2/utils/loss/embedding_variance.py
172 173 174 175 176 177 178 179 180 181 |
|
forward(we_weight)
Applies the loss to the embedding weights with the user requested loss coefficient and targeted variance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
we_weight
|
Tensor
|
Embedding weights. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor: Loss value. |
Source code in bionemo/evo2/utils/loss/embedding_variance.py
183 184 185 186 187 188 189 190 191 192 |
|
SquaredErrorTargetedVarianceLossFunction
Bases: Function
This loss function is used to calculate the loss based on the squared difference between the global mean of per-word variances and target.
Source code in bionemo/evo2/utils/loss/embedding_variance.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
|
backward(ctx, grad_output)
staticmethod
Backward pass for the SquaredErrorTargetedVarianceLossFunction.
Source code in bionemo/evo2/utils/loss/embedding_variance.py
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
|
forward(ctx, we_weight, loss_coeff, var_target)
staticmethod
Calculates a loss based on the squared difference between the global mean of per-word variances and target.
Assumes vocab-parallel sharding for we_weight (dim 0 is sharded).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ctx
|
FunctionContext
|
Context object for backward pass. |
required |
we_weight
|
Tensor
|
Local shard of embedding weights (V_local, H). |
required |
loss_coeff
|
float
|
Loss coefficient. |
required |
var_target
|
float
|
Targeted variance for the embedding weights. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor: Scalar loss value. |
Tensor
|
weights |
Source code in bionemo/evo2/utils/loss/embedding_variance.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
|