Skip to content

bionemo-webdatamodule

To install, execute the following:

pip install -e .

To run unit tests, execute:

pytest -v .

WebDataModule

class WebDataModule(L.LightningDataModule)

A LightningDataModule for using webdataset tar files to setup dataset and dataloader. This data module takes as input a dictionary: Split -> tar file directory and vaiours webdataset config settings. In its setup() function, it creates the webdataset object chaining up the input pipeline_wds workflow. In its train/val/test_dataloader(), it creates the WebLoader object chaining up the pipeline_prebatch_wld workflow

Examples

  1. create the data module with input directory to webdataset tar files. Depending on which of the downstream Lightning.Trainer methods are called, e.g., Trainer.fit(), Trainer.validate(), Trainer.test() or Trainer.predict(), only a subset of the train, val and test splits need to be specified in the various input options to the data module:

  2. Trainer.fit() requires the train and val splits

  3. Trainer.validate() requires the val split
  4. Trainer.test() requires the test splits
  5. Trainer.predict() requires the test splits

Here is an example of constructing the data module for Trainer.fit():

>>> from bionemo.webdatamodule.datamodule import Split, WebDataModule
>>>
>>> tar_file_prefix = "shards"
>>>
>>> dirs_of_tar_files = {
>>>     Split.train: "/path/to/train/split/tars",
>>>     Split.val: "/path/to/val/split/tars",
>>> }
>>>
>>> n_samples {
>>>     Split.train: 1000,
>>>     Split.val: 100,
>>> }
>>>
>>> # this is the string to retrieve the corresponding data object from the
>>> # webdataset file (see
>>> # https://github.com/webdataset/webdataset?tab=readme-ov-file#the-webdataset-format
>>> # for details)
>>> suffix_keys_wds = "tensor.pyd"
>>>
>>> # see the API doc for the definition of global_batch_size
>>> global_batch_size = 16
>>>
>>> seed = 27193781
>>>
>>> # Specify the routines to process the samples in the WebDataset object.
>>> # The routine is a generator of an Iterable of generators that are chained
>>> # together by nested function calling. The following is equivalent of
>>> # defining a overall generator of `shuffle(untuple(...))` which
>>> # untuples the samples and shuffles them. See webdataset's Documentation
>>> # for details.
>>> # NOTE: the `untuple` is almost always necessary due to the webdataset's
>>> # file parsing rule.
>>>
>>> untuple = lambda source : (sample for (sample,) in source)
>>>
>>> from webdatast import shuffle
>>> pipeline_wds = {
>>>     Split.train : [untuple, shuffle(n_samples[Split.train],
>>>                                     rng=random.Random(seed_rng_shfl))],
>>>     Split.val: untuple
>>> }
>>>
>>> # Similarly the user can optionally define the processing routine on the
>>> # WebLoader (the dataloader of webdataset).
>>> # NOTE: these routines by default take unbatched sample as input so the
>>> # user can customize their batching routines here
>>>
>>> batch = batched(local_batch_size, collation_fn=lambda
                    list_samples : torch.vstack(list_samples))
>>> pipeline_prebatch_wld = {
        Split.train: [shuffle(n_samples[Split.train],
                              rng=random.Random(seed_rng_shfl)), batch],
        Split.val : batch,
        Split.test : batch
    }
>>>
>>> # the user can optionally specify the kwargs for WebDataset and
>>> # WebLoader
>>>
>>> kwargs_wds = {
>>>     split : {'shardshuffle' : split == Split.train,
>>>              'nodesplitter' : wds.split_by_node,
>>>              'seed' : seed_rng_shfl}
>>>     for split in Split
>>>     }
>>>
>>> kwargs_wld = {
>>>     split : {"num_workers": 2} for split in Split
>>>     }
>>>
>>> # construct the data module
>>> data_module = WebDataModule(dirs_of_tar_files, n_samples, suffix_keys_wds,
                                global_batch_size,
                                prefix_tars_wds=tar_file_prefix,
                                pipeline_wds=pipeline_wds,
                                pipeline_prebatch_wld=pipeline_prebatch_wld,
                                kwargs_wds=kwargs_wds,
                                kwargs_wld=kwargs_wld)

__init__

def __init__(
        dirs_tars_wds: Dict[Split, str],
        n_samples: Dict[Split, int],
        suffix_keys_wds: Union[str, Iterable[str]],
        global_batch_size: int,
        prefix_tars_wds: str = "wdshards",
        pipeline_wds: Optional[Dict[Split, Union[Iterable[Iterable[Any]],
                                                 Iterable[Any]]]] = None,
        pipeline_prebatch_wld: Optional[Dict[Split,
                                             Union[Iterable[Iterable[Any]],
                                                   Iterable[Any]]]] = None,
        kwargs_wds: Optional[Dict[Split, Dict[str, Any]]] = None,
        kwargs_wld: Optional[Dict[Split, Dict[str, Any]]] = None)

constructor

Arguments:

  • dirs_tars_wds Dict[Split, str] - input dictionary: Split -> tar file directory that contains the webdataset tar files for each split
  • n_samples Dict[Split, int] - input dictionary: Split -> number of data samples for each split
  • suffix_keys_wds Union[str, Iterable[str]] - a set of keys each corresponding to a data object in the webdataset tar file dictionary. The data objects of these keys will be extracted and tupled for each sample in the tar files
  • global_batch_size int - size of batch summing across nodes in Data Distributed Parallel, i.e., local_batch_size * n_nodes. NOTE: this data module doesn't rely on the input global_batch_size for batching the samples. The batching is supposed to be done as a part of the input pipeline_prebatch_wld. global_batch_size is only used to compute a (pseudo-) epoch length for the data loader so that the loader yield approximately n_samples // global_batch_size batches Kwargs:
  • prefix_tars_wds str - name prefix of the input webdataset tar files. The input tar files are globbed by "{dirs_tars_wds[split]}/{prefix_tars_wds}-*.tar" pipeline_wds (Optional[Dict[Split, Union[Iterable[Iterable[Any]],
  • Iterable[Any]]]]) - a dictionary of webdatast composable, i.e., functor that maps a iterator to another iterator that transforms the data sample yield from the dataset object, for different splits, or an iterable to such a sequence of such iterators. For example, this can be used to transform the sample in the worker before sending it to the main process of the dataloader pipeline_prebatch_wld (Optional[Dict[Split, Union[Iterable[Iterable[Any]], Iterable[Any]]]]): a dictionary of webloader composable, i.e., functor that maps a iterator to another iterator that transforms the data sample yield from the WebLoader object, for different splits, or an iterable to a seuqnence of such iterators. For example, this can be used for batching the samples. NOTE: this is applied before batching is yield from the WebLoader
  • kwargs_wds Optional[Dict[Split, Dict[str, Any]]] - kwargs for the WebDataset.init()
  • kwargs_wld Optional[Dict[Split, Dict[str, Any]]] - kwargs for the WebLoader.init(), e.g., num_workers, of each split

prepare_data

def prepare_data() -> None

This is called only by the main process by the Lightning workflow. Do not rely on this data module object's state update here as there is no way to communicate the state update to other subprocesses.

Returns: None

setup

def setup(stage: str) -> None

This is called on all Lightning-managed nodes in a multi-node training session

Arguments:

  • stage str - "fit", "test" or "predict"
  • Returns - None

PickledDataWDS

class PickledDataWDS(WebDataModule)

A LightningDataModule to process pickled data into webdataset tar files and setup dataset and dataloader. This inherits the webdataset setup from its parent module WebDataModule. This data module takes a directory of pickled data files, data filename prefixes for train/val/test splits, data filename suffixes and prepare webdataset tar files by globbing the specific pickle data files {dir_pickles}/{name_subset[split]}.{suffix_pickles} and outputing to webdataset tar file with the dict structure:

    {"__key__" : name.replace(".", "-"),
     suffix_pickles : pickled.dumps(data) }
NOTE: this assumes only one pickled file is processed for each sample. In its setup() function, it creates the webdataset object chaining up the input pipeline_wds workflow. In its train/val/test_dataloader(), it creates the WebLoader object chaining up the pipeline_prebatch_wld workflow.

Examples

  1. create the data module with a directory of pickle files and the file name prefix thereof for different splits to used by Lightning.Trainer.fit()
>>> from bionemo.webdatamodule.datamodule import Split, PickledDataWDS

>>> dir_pickles = "/path/to/my/pickles/dir"

>>> # the following will use `sample1.mydata.pt` and `sample2.mydata.pt` as the
>>> # training dataset and `sample4.mydata.pt` and `sample5.mydata.pt` as the
>>> # validation dataset

>>> suffix_pickles = "mydata.pt"

>>> names_subset = {
>>>     Split.train: [sample1, sample2],
>>>     Split.val: [sample4, sample5],
>>> }

>>> # the following setting will attempt to create at least 5 tar files in
>>> # `/path/to/output/tars/dir/myshards-00000{0-5}.tar`

>>> n_tars_wds = 5
>>> prefix_tars_wds = "myshards"
>>> output_dir_tar_files = "/path/to/output/tars/dir"

>>> # see the `WebDataModule` API doc for the definition of global_batch_size
>>> global_batch_size = 16

>>> # user can optionally customize the data processing routines and kwargs used
>>> # in the WebDataset and WebLoader (see the examples in `WebDataModule`)

>>> pipeline_wds = { Split.train: ... }

>>> pipeline_prebatch_wld = { Split.train: ... }

>>> kwargs_wds = { Split.train: ..., Split.val: ... }

>>> kwargs_wld = { Split.train: ..., Split.val: ... }

>>> # create the data module
>>> data_module = PickledDataWDS(
>>>     dir_pickles,
>>>     suffix_pickles,
>>>     names_subset,
>>>     output_dir_tar_files,
>>>     global_batch_size, # `WebDataModule` args
>>>     n_tars_wds=n_tars_wds,
>>>     prefix_tars_wds=prefix_tars_wds, # `WebDataModule` kwargs
>>>     pipeline_wds=pipeline_wds, # `WebDataModule` kwargs
>>>     pipeline_prebatch_wld=pipelines_wdl_batch, # `WebDataModule` kwargs
>>>     kwargs_wds=kwargs_wds, # `WebDataModule` kwargs
>>>     kwargs_wld=kwargs_wld, # `WebDataModule` kwargs
>>> )

__init__

def __init__(dir_pickles: str,
             suffix_pickles: str,
             names_subset: Dict[Split, List[str]],
             prefix_dir_tars_wds: str,
             *args,
             n_tars_wds: Optional[int] = None,
             **kwargs)

constructor

Arguments:

  • dir_pickles str - input directory of pickled data files
  • suffix_pickles str - filename suffix of the input data in dir_pickles. This is also used as the key mapped to the tarballed pickled object in the webdataset
  • names_subset Dict[Split, List[str]] - list of filename prefix of the data samples to be loaded in the dataset and dataloader for each of the split
  • prefix_dir_tars_wds str - directory name prefix to store the output webdataset tar files. The actual directories storing the train, val and test sets will be suffixed with "train", "val" and "test" respectively.
  • *args - arguments passed to the parent WebDataModule

Kwargs: - n_tars_wds int - attempt to create at least this number of webdataset shards - **kwargs - arguments passed to the parent WebDataModule

prepare_data

def prepare_data() -> None

This is called only by the main process by the Lightning workflow. Do not rely on this data module object's state update here as there is no way to communicate the state update to other subprocesses. The nesting pickles_to_tars function goes through the data name prefixes in the different splits, read the corresponding pickled file and output a webdataset tar archive with the dict structure: {"key" : name.replace(".", "-"), suffix_pickles : pickled.dumps(data) }.

Returns: None