cub/device/device_for.cuh
File members: cub/device/device_for.cuh
/******************************************************************************
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
#pragma once
#include <cub/config.cuh>
#if defined(_CCCL_IMPLICIT_SYSTEM_HEADER_GCC)
# pragma GCC system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_CLANG)
# pragma clang system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_MSVC)
# pragma system_header
#endif // no system header
#include <cub/detail/nvtx.cuh>
#include <cub/device/dispatch/dispatch_for.cuh>
#include <cub/util_namespace.cuh>
#include <thrust/detail/raw_reference_cast.h>
#include <thrust/distance.h>
#include <thrust/iterator/iterator_traits.h>
#include <thrust/system/cuda/detail/core/util.h>
#include <thrust/type_traits/is_contiguous_iterator.h>
#include <cuda/std/type_traits>
CUB_NAMESPACE_BEGIN
namespace detail
{
namespace for_each
{
template <class OffsetT, class OpT, class RandomAccessIteratorT>
struct op_wrapper_t
{
RandomAccessIteratorT input;
OpT op;
_CCCL_DEVICE _CCCL_FORCEINLINE void operator()(OffsetT i)
{
// Dereferencing `thrust::device_vector<T>` iterators returns a `thrust::device_reference<T>`
// instead of `T`. Since user-provided operator expects `T` as an argument, we need to unwrap.
(void) op(THRUST_NS_QUALIFIER::raw_reference_cast(*(input + i)));
}
};
template <class OffsetT, class OpT, class T>
struct op_wrapper_vectorized_t
{
const T* input; // Raw pointer to the input data
OpT op; // User-provided operator
OffsetT partially_filled_vector_id; // Index of the vector that doesn't have all elements
OffsetT num_items; // Total number of non-vectorized items
// TODO Can be extracted into tuning
constexpr static int vec_size = 4;
// Type of the vector that is used to load the input data
using vector_t = typename CubVector<T, vec_size>::Type;
_CCCL_DEVICE _CCCL_FORCEINLINE void operator()(OffsetT i)
{
// Surrounding `Bulk` call doesn't invoke this operator on invalid indices, so we don't need to
// check for out-of-bounds access here.
if (i != partially_filled_vector_id)
{ // Case of fully filled vector
const vector_t vec = *reinterpret_cast<const vector_t*>(input + vec_size * i);
#pragma unroll
for (int j = 0; j < vec_size; j++)
{
(void) op(*(reinterpret_cast<const T*>(&vec) + j));
}
}
else
{ // Case of partially filled vector
for (OffsetT j = i * vec_size; j < num_items; j++)
{
(void) op(input[j]);
}
}
}
};
} // namespace for_each
} // namespace detail
struct DeviceFor
{
private:
template <class VectorT, class T>
CUB_RUNTIME_FUNCTION static bool is_aligned(const T* ptr)
{
return (reinterpret_cast<std::size_t>(ptr) & (sizeof(VectorT) - 1)) == 0;
}
template <class RandomAccessIteratorT, class OffsetT, class OpT>
CUB_RUNTIME_FUNCTION static cudaError_t for_each_n(
RandomAccessIteratorT first,
OffsetT num_items,
OpT op,
cudaStream_t stream,
::cuda::std::false_type /* do_not_vectorize */)
{
using wrapped_op_t = detail::for_each::op_wrapper_t<OffsetT, OpT, RandomAccessIteratorT>;
return detail::for_each::dispatch_t<OffsetT, wrapped_op_t>::dispatch(num_items, wrapped_op_t{first, op}, stream);
}
template <class ContiguousIteratorT, class OffsetT, class OpT>
CUB_RUNTIME_FUNCTION static cudaError_t for_each_n(
ContiguousIteratorT first, OffsetT num_items, OpT op, cudaStream_t stream, ::cuda::std::true_type /* vectorize */)
{
auto* unwrapped_first = THRUST_NS_QUALIFIER::unwrap_contiguous_iterator(first);
using wrapped_op_t = detail::for_each::op_wrapper_vectorized_t<OffsetT, OpT, detail::value_t<ContiguousIteratorT>>;
if (is_aligned<typename wrapped_op_t::vector_t>(unwrapped_first))
{ // Vectorize loads
const OffsetT num_vec_items = ::cuda::ceil_div(num_items, wrapped_op_t::vec_size);
return detail::for_each::dispatch_t<OffsetT, wrapped_op_t>::dispatch(
num_vec_items,
wrapped_op_t{
unwrapped_first, op, num_items % wrapped_op_t::vec_size ? num_vec_items - 1 : num_vec_items, num_items},
stream);
}
// Fallback to non-vectorized version
return for_each_n(first, num_items, op, stream, ::cuda::std::false_type{});
}
public:
template <class ShapeT, class OpT>
CUB_RUNTIME_FUNCTION static cudaError_t
Bulk(void* d_temp_storage, size_t& temp_storage_bytes, ShapeT shape, OpT op, cudaStream_t stream = {})
{
static_assert(::cuda::std::is_integral<ShapeT>::value, "ShapeT must be an integral type");
if (d_temp_storage == nullptr)
{
temp_storage_bytes = 1;
return cudaSuccess;
}
return Bulk(shape, op, stream);
}
template <class RandomAccessIteratorT, class NumItemsT, class OpT>
CUB_RUNTIME_FUNCTION static cudaError_t ForEachN(
void* d_temp_storage,
size_t& temp_storage_bytes,
RandomAccessIteratorT first,
NumItemsT num_items,
OpT op,
cudaStream_t stream = {})
{
if (d_temp_storage == nullptr)
{
temp_storage_bytes = 1;
return cudaSuccess;
}
return ForEachN(first, num_items, op, stream);
}
template <class RandomAccessIteratorT, class OpT>
CUB_RUNTIME_FUNCTION static cudaError_t ForEach(
void* d_temp_storage,
size_t& temp_storage_bytes,
RandomAccessIteratorT first,
RandomAccessIteratorT last,
OpT op,
cudaStream_t stream = {})
{
if (d_temp_storage == nullptr)
{
temp_storage_bytes = 1;
return cudaSuccess;
}
return ForEach(first, last, op, stream);
}
template <class RandomAccessIteratorT, class NumItemsT, class OpT>
CUB_RUNTIME_FUNCTION static cudaError_t ForEachCopyN(
void* d_temp_storage,
size_t& temp_storage_bytes,
RandomAccessIteratorT first,
NumItemsT num_items,
OpT op,
cudaStream_t stream = {})
{
if (d_temp_storage == nullptr)
{
temp_storage_bytes = 1;
return cudaSuccess;
}
return ForEachCopyN(first, num_items, op, stream);
}
template <class RandomAccessIteratorT, class OpT>
CUB_RUNTIME_FUNCTION static cudaError_t ForEachCopy(
void* d_temp_storage,
size_t& temp_storage_bytes,
RandomAccessIteratorT first,
RandomAccessIteratorT last,
OpT op,
cudaStream_t stream = {})
{
if (d_temp_storage == nullptr)
{
temp_storage_bytes = 1;
return cudaSuccess;
}
return ForEachCopy(first, last, op, stream);
}
template <class ShapeT, class OpT>
CUB_RUNTIME_FUNCTION static cudaError_t Bulk(ShapeT shape, OpT op, cudaStream_t stream = {})
{
CUB_DETAIL_NVTX_RANGE_SCOPE("cub::DeviceFor::Bulk");
static_assert(::cuda::std::is_integral<ShapeT>::value, "ShapeT must be an integral type");
using offset_t = ShapeT;
return detail::for_each::dispatch_t<offset_t, OpT>::dispatch(static_cast<offset_t>(shape), op, stream);
}
private:
// Internal version without NVTX raNGE
template <class RandomAccessIteratorT, class NumItemsT, class OpT>
CUB_RUNTIME_FUNCTION static cudaError_t
ForEachNNoNVTX(RandomAccessIteratorT first, NumItemsT num_items, OpT op, cudaStream_t stream = {})
{
using offset_t = NumItemsT;
// Disable auto-vectorization for now:
// constexpr bool use_vectorization =
// detail::for_each::can_regain_copy_freedom<detail::value_t<RandomAccessIteratorT>, OpT>::value
// && THRUST_NS_QUALIFIER::is_contiguous_iterator<RandomAccessIteratorT>::value;
using use_vectorization_t = ::cuda::std::bool_constant<false>;
return for_each_n<RandomAccessIteratorT, offset_t, OpT>(first, num_items, op, stream, use_vectorization_t{});
}
public:
template <class RandomAccessIteratorT, class NumItemsT, class OpT>
CUB_RUNTIME_FUNCTION static cudaError_t
ForEachN(RandomAccessIteratorT first, NumItemsT num_items, OpT op, cudaStream_t stream = {})
{
CUB_DETAIL_NVTX_RANGE_SCOPE("cub::DeviceFor::ForEachN");
return ForEachNNoNVTX(first, num_items, op, stream);
}
template <class RandomAccessIteratorT, class OpT>
CUB_RUNTIME_FUNCTION static cudaError_t
ForEach(RandomAccessIteratorT first, RandomAccessIteratorT last, OpT op, cudaStream_t stream = {})
{
CUB_DETAIL_NVTX_RANGE_SCOPE("cub::DeviceFor::ForEach");
using offset_t = typename THRUST_NS_QUALIFIER::iterator_traits<RandomAccessIteratorT>::difference_type;
const auto num_items = static_cast<offset_t>(THRUST_NS_QUALIFIER::distance(first, last));
return ForEachNNoNVTX(first, num_items, op, stream);
}
private:
// Internal version without NVTX range
template <class RandomAccessIteratorT, class NumItemsT, class OpT>
CUB_RUNTIME_FUNCTION static cudaError_t
ForEachCopyNNoNVTX(RandomAccessIteratorT first, NumItemsT num_items, OpT op, cudaStream_t stream = {})
{
using offset_t = NumItemsT;
using use_vectorization_t = THRUST_NS_QUALIFIER::is_contiguous_iterator<RandomAccessIteratorT>;
return for_each_n<RandomAccessIteratorT, offset_t, OpT>(first, num_items, op, stream, use_vectorization_t{});
}
public:
template <class RandomAccessIteratorT, class NumItemsT, class OpT>
CUB_RUNTIME_FUNCTION static cudaError_t
ForEachCopyN(RandomAccessIteratorT first, NumItemsT num_items, OpT op, cudaStream_t stream = {})
{
CUB_DETAIL_NVTX_RANGE_SCOPE("cub::DeviceFor::ForEachCopyN");
return ForEachCopyNNoNVTX(first, num_items, op, stream);
}
template <class RandomAccessIteratorT, class OpT>
CUB_RUNTIME_FUNCTION static cudaError_t
ForEachCopy(RandomAccessIteratorT first, RandomAccessIteratorT last, OpT op, cudaStream_t stream = {})
{
CUB_DETAIL_NVTX_RANGE_SCOPE("cub::DeviceFor::ForEachCopy");
using offset_t = typename THRUST_NS_QUALIFIER::iterator_traits<RandomAccessIteratorT>::difference_type;
const auto num_items = static_cast<offset_t>(THRUST_NS_QUALIFIER::distance(first, last));
return ForEachCopyNNoNVTX(first, num_items, op, stream);
}
};
CUB_NAMESPACE_END