thrust::stable_sort

Defined in thrust/sort.h

template<typename DerivedPolicy, typename RandomAccessIterator>
void thrust::stable_sort(const thrust::detail::execution_policy_base<DerivedPolicy> &exec, RandomAccessIterator first, RandomAccessIterator last)

stable_sort is much like sort: it sorts the elements in [first, last) into ascending order, meaning that if i and j are any two valid iterators in [first, last) such that i precedes j, then *j is not less than *i.

As the name suggests, stable_sort is stable: it preserves the relative ordering of equivalent elements. That is, if x and y are elements in [first, last) such that x precedes y, and if the two elements are equivalent (neither x < y nor y < x) then a postcondition of stable_sort is that x still precedes y.

This version of stable_sort compares objects using operator<.

The algorithm’s execution is parallelized as determined by exec.

The following code snippet demonstrates how to use sort to sort a sequence of integers using the thrust::host execution policy for parallelization:

#include <thrust/sort.h>
#include <thrust/execution_policy.h>
...
const int N = 6;
int A[N] = {1, 4, 2, 8, 5, 7};
thrust::stable_sort(thrust::host, A, A + N);
// A is now {1, 2, 4, 5, 7, 8}

See also

sort

See also

stable_sort_by_key

Parameters
  • exec – The execution policy to use for parallelization.

  • first – The beginning of the sequence.

  • last – The end of the sequence.

Template Parameters
  • DerivedPolicy – The name of the derived execution policy.

  • RandomAccessIterator – is a model of Random Access Iterator, RandomAccessIterator is mutable, and RandomAccessIterator's value_type is a model of LessThan Comparable, and the ordering relation on RandomAccessIterator's value_type is a strict weak ordering, as defined in the LessThan Comparable requirements.