thrust/optional.h
File members: thrust/optional.h
// optional - An implementation of std::optional with extensions
// Written in 2017 by Sy Brand (@TartanLlama)
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to the
// public domain worldwide. This software is distributed without any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software. If not, see
// <http://creativecommons.org/publicdomain/zero/1.0/>.
#pragma once
#include <thrust/detail/config.h>
#if defined(_CCCL_IMPLICIT_SYSTEM_HEADER_GCC)
# pragma GCC system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_CLANG)
# pragma clang system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_MSVC)
# pragma system_header
#endif // no system header
#include <thrust/addressof.h>
#include <thrust/detail/type_traits.h>
#include <thrust/swap.h>
#include <cuda/std/__type_traits/void_t.h>
#define THRUST_OPTIONAL_VERSION_MAJOR 0
#define THRUST_OPTIONAL_VERSION_MINOR 2
#include <exception>
#include <functional>
#include <new>
#include <type_traits>
#include <utility>
#if _CCCL_COMPILER(MSVC, ==, 19, 00)
# define THRUST_OPTIONAL_MSVC2015
#endif
#if _CCCL_STD_VER > 2011
# define THRUST_OPTIONAL_CPP14
#endif
// constexpr implies const in C++11, not C++14
#if (_CCCL_STD_VER == 2011 || defined(THRUST_OPTIONAL_MSVC2015) || defined(THRUST_OPTIONAL_GCC49))
# define THRUST_OPTIONAL_CPP11_CONSTEXPR
#else
# define THRUST_OPTIONAL_CPP11_CONSTEXPR constexpr
#endif
THRUST_NAMESPACE_BEGIN
#ifndef THRUST_MONOSTATE_INPLACE_MUTEX
# define THRUST_MONOSTATE_INPLACE_MUTEX
class monostate
{};
struct in_place_t
{
explicit in_place_t() = default;
};
static constexpr in_place_t in_place{};
#endif
template <class T>
class optional;
namespace detail
{
#ifndef THRUST_TRAITS_MUTEX
# define THRUST_TRAITS_MUTEX
// C++14-style aliases for brevity
template <class T>
using remove_const_t = typename std::remove_const<T>::type;
template <class T>
using remove_reference_t = typename std::remove_reference<T>::type;
template <class T>
using decay_t = typename std::decay<T>::type;
template <bool E, class T = void>
using enable_if_t = typename std::enable_if<E, T>::type;
template <bool B, class T, class F>
using conditional_t = typename std::conditional<B, T, F>::type;
// std::conjunction from C++17
template <class...>
struct conjunction : std::true_type
{};
template <class B>
struct conjunction<B> : B
{};
template <class B, class... Bs>
struct conjunction<B, Bs...> : std::conditional<bool(B::value), conjunction<Bs...>, B>::type
{};
# if defined(_LIBCPP_VERSION) && _CCCL_STD_VER == 2011
# define THRUST_OPTIONAL_LIBCXX_MEM_FN_WORKAROUND
# endif
// In C++11 mode, there's an issue in libc++'s std::mem_fn
// which results in a hard-error when using it in a noexcept expression
// in some cases. This is a check to workaround the common failing case.
# ifdef THRUST_OPTIONAL_LIBCXX_MEM_FN_WORKAROUND
template <class T>
struct is_pointer_to_non_const_member_func : std::false_type
{};
template <class T, class Ret, class... Args>
struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...)> : std::true_type
{};
template <class T, class Ret, class... Args>
struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...)&> : std::true_type
{};
template <class T, class Ret, class... Args>
struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) &&> : std::true_type
{};
template <class T, class Ret, class... Args>
struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile> : std::true_type
{};
template <class T, class Ret, class... Args>
struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile&> : std::true_type
{};
template <class T, class Ret, class... Args>
struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile&&> : std::true_type
{};
template <class T>
struct is_const_or_const_ref : std::false_type
{};
template <class T>
struct is_const_or_const_ref<T const&> : std::true_type
{};
template <class T>
struct is_const_or_const_ref<T const> : std::true_type
{};
# endif
// std::invoke from C++17
// https://stackoverflow.com/questions/38288042/c11-14-invoke-workaround
_CCCL_EXEC_CHECK_DISABLE
template <
typename Fn,
typename... Args,
# ifdef THRUST_OPTIONAL_LIBCXX_MEM_FN_WORKAROUND
typename = enable_if_t<!(is_pointer_to_non_const_member_func<Fn>::value && is_const_or_const_ref<Args...>::value)>,
# endif
typename = enable_if_t<std::is_member_pointer<decay_t<Fn>>::value>,
int = 0>
_CCCL_HOST_DEVICE constexpr auto invoke(Fn&& f, Args&&... args) noexcept(
noexcept(std::mem_fn(f)(std::forward<Args>(args)...))) -> decltype(std::mem_fn(f)(std::forward<Args>(args)...))
{
return std::mem_fn(f)(std::forward<Args>(args)...);
}
_CCCL_EXEC_CHECK_DISABLE
template <typename Fn, typename... Args, typename = enable_if_t<!std::is_member_pointer<decay_t<Fn>>::value>>
_CCCL_HOST_DEVICE constexpr auto invoke(Fn&& f, Args&&... args) noexcept(noexcept(
std::forward<Fn>(f)(std::forward<Args>(args)...))) -> decltype(std::forward<Fn>(f)(std::forward<Args>(args)...))
{
return std::forward<Fn>(f)(std::forward<Args>(args)...);
}
#endif
// Trait for checking if a type is a thrust::optional
template <class T>
struct is_optional_impl : std::false_type
{};
template <class T>
struct is_optional_impl<optional<T>> : std::true_type
{};
template <class T>
using is_optional = is_optional_impl<decay_t<T>>;
// Change void to thrust::monostate
template <class U>
using fixup_void = conditional_t<std::is_void<U>::value, monostate, U>;
template <class F, class U, class = invoke_result_t<F, U>>
using get_map_return = optional<fixup_void<invoke_result_t<F, U>>>;
// Check if invoking F for some Us returns void
template <class F, class = void, class... U>
struct returns_void_impl;
template <class F, class... U>
struct returns_void_impl<F, ::cuda::std::void_t<invoke_result_t<F, U...>>, U...>
: std::is_void<invoke_result_t<F, U...>>
{};
template <class F, class... U>
using returns_void = returns_void_impl<F, void, U...>;
template <class T, class... U>
using enable_if_ret_void = enable_if_t<returns_void<T&&, U...>::value>;
template <class T, class... U>
using disable_if_ret_void = enable_if_t<!returns_void<T&&, U...>::value>;
template <class T, class U>
using enable_forward_value =
detail::enable_if_t<std::is_constructible<T, U&&>::value && !std::is_same<detail::decay_t<U>, in_place_t>::value
&& !std::is_same<optional<T>, detail::decay_t<U>>::value>;
template <class T, class U, class Other>
using enable_from_other = detail::enable_if_t<
std::is_constructible<T, Other>::value && !std::is_constructible<T, optional<U>&>::value
&& !std::is_constructible<T, optional<U>&&>::value && !std::is_constructible<T, const optional<U>&>::value
&& !std::is_constructible<T, const optional<U>&&>::value && !std::is_convertible<optional<U>&, T>::value
&& !std::is_convertible<optional<U>&&, T>::value && !std::is_convertible<const optional<U>&, T>::value
&& !std::is_convertible<const optional<U>&&, T>::value>;
template <class T, class U>
using enable_assign_forward =
detail::enable_if_t<!std::is_same<optional<T>, detail::decay_t<U>>::value
&& !detail::conjunction<std::is_scalar<T>, std::is_same<T, detail::decay_t<U>>>::value
&& std::is_constructible<T, U>::value && std::is_assignable<T&, U>::value>;
template <class T, class U, class Other>
using enable_assign_from_other = detail::enable_if_t<
std::is_constructible<T, Other>::value && std::is_assignable<T&, Other>::value
&& !std::is_constructible<T, optional<U>&>::value && !std::is_constructible<T, optional<U>&&>::value
&& !std::is_constructible<T, const optional<U>&>::value && !std::is_constructible<T, const optional<U>&&>::value
&& !std::is_convertible<optional<U>&, T>::value && !std::is_convertible<optional<U>&&, T>::value
&& !std::is_convertible<const optional<U>&, T>::value && !std::is_convertible<const optional<U>&&, T>::value
&& !std::is_assignable<T&, optional<U>&>::value && !std::is_assignable<T&, optional<U>&&>::value
&& !std::is_assignable<T&, const optional<U>&>::value && !std::is_assignable<T&, const optional<U>&&>::value>;
#if _CCCL_COMPILER(MSVC)
// TODO make a version which works with MSVC
template <class T, class U = T>
struct is_swappable : std::true_type
{};
template <class T, class U = T>
struct is_nothrow_swappable : std::true_type
{};
#else
// https://stackoverflow.com/questions/26744589/what-is-a-proper-way-to-implement-is-swappable-to-test-for-the-swappable-concept
namespace swap_adl_tests
{
// if swap ADL finds this then it would call std::swap otherwise (same
// signature)
struct tag
{};
template <class T>
tag swap(T&, T&);
template <class T, std::size_t N>
tag swap(T (&a)[N], T (&b)[N]);
// helper functions to test if an unqualified swap is possible, and if it
// becomes std::swap
template <class, class>
std::false_type can_swap(...) noexcept(false);
template <class T, class U, class = decltype(swap(std::declval<T&>(), std::declval<U&>()))>
std::true_type can_swap(int) noexcept(noexcept(swap(std::declval<T&>(), std::declval<U&>())));
template <class, class>
std::false_type uses_std(...);
template <class T, class U>
std::is_same<decltype(swap(std::declval<T&>(), std::declval<U&>())), tag> uses_std(int);
template <class T>
struct is_std_swap_noexcept
: std::integral_constant<bool,
std::is_nothrow_move_constructible<T>::value && std::is_nothrow_move_assignable<T>::value>
{};
template <class T, std::size_t N>
struct is_std_swap_noexcept<T[N]> : is_std_swap_noexcept<T>
{};
template <class T, class U>
struct is_adl_swap_noexcept : std::integral_constant<bool, noexcept(can_swap<T, U>(0))>
{};
} // namespace swap_adl_tests
template <class T, class U = T>
struct is_swappable
: std::integral_constant<bool,
decltype(detail::swap_adl_tests::can_swap<T, U>(0))::value
&& (!decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value
|| (std::is_move_assignable<T>::value && std::is_move_constructible<T>::value))>
{};
template <class T, std::size_t N>
struct is_swappable<T[N], T[N]>
: std::integral_constant<
bool,
decltype(detail::swap_adl_tests::can_swap<T[N], T[N]>(0))::value
&& (!decltype(detail::swap_adl_tests::uses_std<T[N], T[N]>(0))::value || is_swappable<T, T>::value)>
{};
template <class T, class U = T>
struct is_nothrow_swappable
: std::integral_constant<bool,
is_swappable<T, U>::value
&& ((decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value
&& detail::swap_adl_tests::is_std_swap_noexcept<T>::value)
|| (!decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value
&& detail::swap_adl_tests::is_adl_swap_noexcept<T, U>::value))>
{};
#endif
// The storage base manages the actual storage, and correctly propagates
// trivial destruction from T. This case is for when T is not trivially
// destructible.
template <class T, bool = ::std::is_trivially_destructible<T>::value>
struct optional_storage_base
{
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR optional_storage_base() noexcept
: m_dummy()
, m_has_value(false)
{}
_CCCL_EXEC_CHECK_DISABLE
template <class... U>
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR optional_storage_base(in_place_t, U&&... u)
: m_value(std::forward<U>(u)...)
, m_has_value(true)
{}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE ~optional_storage_base()
{
if (m_has_value)
{
m_value.~T();
m_has_value = false;
}
}
struct dummy
{};
union
{
dummy m_dummy;
T m_value;
};
bool m_has_value;
};
// This case is for when T is trivially destructible.
template <class T>
struct optional_storage_base<T, true>
{
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR optional_storage_base() noexcept
: m_dummy()
, m_has_value(false)
{}
_CCCL_EXEC_CHECK_DISABLE
template <class... U>
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR optional_storage_base(in_place_t, U&&... u)
: m_value(std::forward<U>(u)...)
, m_has_value(true)
{}
// No destructor, so this class is trivially destructible
struct dummy
{};
union
{
dummy m_dummy;
T m_value;
};
bool m_has_value = false;
};
// This base class provides some handy member functions which can be used in
// further derived classes
template <class T>
struct optional_operations_base : optional_storage_base<T>
{
using optional_storage_base<T>::optional_storage_base;
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE void hard_reset() noexcept
{
get().~T();
this->m_has_value = false;
}
_CCCL_EXEC_CHECK_DISABLE
template <class... Args>
_CCCL_HOST_DEVICE void construct(Args&&... args) noexcept
{
new (thrust::addressof(this->m_value)) T(std::forward<Args>(args)...);
this->m_has_value = true;
}
_CCCL_EXEC_CHECK_DISABLE
template <class Opt>
_CCCL_HOST_DEVICE void assign(Opt&& rhs)
{
if (this->has_value())
{
if (rhs.has_value())
{
this->m_value = std::forward<Opt>(rhs).get();
}
else
{
this->m_value.~T();
this->m_has_value = false;
}
}
if (rhs.has_value())
{
construct(std::forward<Opt>(rhs).get());
}
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE bool has_value() const
{
return this->m_has_value;
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR T& get() &
{
return this->m_value;
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR const T& get() const&
{
return this->m_value;
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR T&& get() &&
{
return std::move(this->m_value);
}
#ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr const T&& get() const&&
{
return std::move(this->m_value);
}
#endif
};
// This class manages conditionally having a trivial copy constructor
// This specialization is for when T is trivially copy constructible
template <class T, bool = ::cuda::std::is_trivially_copy_constructible<T>::value>
struct optional_copy_base : optional_operations_base<T>
{
using optional_operations_base<T>::optional_operations_base;
};
// This specialization is for when T is not trivially copy constructible
template <class T>
struct optional_copy_base<T, false> : optional_operations_base<T>
{
using optional_operations_base<T>::optional_operations_base;
_CCCL_EXEC_CHECK_DISABLE
optional_copy_base() = default;
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE optional_copy_base(const optional_copy_base& rhs)
{
if (rhs.has_value())
{
this->construct(rhs.get());
}
else
{
this->m_has_value = false;
}
}
_CCCL_EXEC_CHECK_DISABLE
optional_copy_base(optional_copy_base&& rhs) = default;
_CCCL_EXEC_CHECK_DISABLE
optional_copy_base& operator=(const optional_copy_base& rhs) = default;
_CCCL_EXEC_CHECK_DISABLE
optional_copy_base& operator=(optional_copy_base&& rhs) = default;
};
template <class T, bool = ::cuda::std::is_trivially_move_constructible<T>::value>
struct optional_move_base : optional_copy_base<T>
{
using optional_copy_base<T>::optional_copy_base;
};
template <class T>
struct optional_move_base<T, false> : optional_copy_base<T>
{
using optional_copy_base<T>::optional_copy_base;
_CCCL_EXEC_CHECK_DISABLE
optional_move_base() = default;
_CCCL_EXEC_CHECK_DISABLE
optional_move_base(const optional_move_base& rhs) = default;
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE optional_move_base(optional_move_base&& rhs) noexcept(std::is_nothrow_move_constructible<T>::value)
{
if (rhs.has_value())
{
this->construct(std::move(rhs.get()));
}
else
{
this->m_has_value = false;
}
}
_CCCL_EXEC_CHECK_DISABLE
optional_move_base& operator=(const optional_move_base& rhs) = default;
_CCCL_EXEC_CHECK_DISABLE
optional_move_base& operator=(optional_move_base&& rhs) = default;
};
// This class manages conditionally having a trivial copy assignment operator
template <class T,
bool = ::cuda::std::is_trivially_copy_assignable<T>::value
&& ::cuda::std::is_trivially_copy_constructible<T>::value
&& ::cuda::std::is_trivially_destructible<T>::value>
struct optional_copy_assign_base : optional_move_base<T>
{
using optional_move_base<T>::optional_move_base;
};
template <class T>
struct optional_copy_assign_base<T, false> : optional_move_base<T>
{
using optional_move_base<T>::optional_move_base;
_CCCL_EXEC_CHECK_DISABLE
optional_copy_assign_base() = default;
_CCCL_EXEC_CHECK_DISABLE
optional_copy_assign_base(const optional_copy_assign_base& rhs) = default;
_CCCL_EXEC_CHECK_DISABLE
optional_copy_assign_base(optional_copy_assign_base&& rhs) = default;
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE optional_copy_assign_base& operator=(const optional_copy_assign_base& rhs)
{
this->assign(rhs);
return *this;
}
_CCCL_EXEC_CHECK_DISABLE
optional_copy_assign_base& operator=(optional_copy_assign_base&& rhs) = default;
};
template <class T,
bool = ::cuda::std::is_trivially_destructible<T>::value
&& ::cuda::std::is_trivially_move_constructible<T>::value
&& ::cuda::std::is_trivially_move_assignable<T>::value>
struct optional_move_assign_base : optional_copy_assign_base<T>
{
using optional_copy_assign_base<T>::optional_copy_assign_base;
};
template <class T>
struct optional_move_assign_base<T, false> : optional_copy_assign_base<T>
{
using optional_copy_assign_base<T>::optional_copy_assign_base;
_CCCL_EXEC_CHECK_DISABLE
optional_move_assign_base() = default;
_CCCL_EXEC_CHECK_DISABLE
optional_move_assign_base(const optional_move_assign_base& rhs) = default;
_CCCL_EXEC_CHECK_DISABLE
optional_move_assign_base(optional_move_assign_base&& rhs) = default;
_CCCL_EXEC_CHECK_DISABLE
optional_move_assign_base& operator=(const optional_move_assign_base& rhs) = default;
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE optional_move_assign_base& operator=(optional_move_assign_base&& rhs) noexcept(
std::is_nothrow_move_constructible<T>::value && std::is_nothrow_move_assignable<T>::value)
{
this->assign(std::move(rhs));
return *this;
}
};
// optional_delete_ctor_base will conditionally delete copy and move
// constructors depending on whether T is copy/move constructible
template <class T,
bool EnableCopy = std::is_copy_constructible<T>::value,
bool EnableMove = std::is_move_constructible<T>::value>
struct optional_delete_ctor_base
{
_CCCL_EXEC_CHECK_DISABLE
optional_delete_ctor_base() = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_ctor_base(const optional_delete_ctor_base&) = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default;
};
template <class T>
struct optional_delete_ctor_base<T, true, false>
{
_CCCL_EXEC_CHECK_DISABLE
optional_delete_ctor_base() = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_ctor_base(const optional_delete_ctor_base&) = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = delete;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default;
};
template <class T>
struct optional_delete_ctor_base<T, false, true>
{
_CCCL_EXEC_CHECK_DISABLE
optional_delete_ctor_base() = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_ctor_base(const optional_delete_ctor_base&) = delete;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default;
};
template <class T>
struct optional_delete_ctor_base<T, false, false>
{
_CCCL_EXEC_CHECK_DISABLE
optional_delete_ctor_base() = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_ctor_base(const optional_delete_ctor_base&) = delete;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = delete;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default;
};
// optional_delete_assign_base will conditionally delete copy and move
// constructors depending on whether T is copy/move constructible + assignable
template <class T,
bool EnableCopy = (std::is_copy_constructible<T>::value && std::is_copy_assignable<T>::value),
bool EnableMove = (std::is_move_constructible<T>::value && std::is_move_assignable<T>::value)>
struct optional_delete_assign_base
{
_CCCL_EXEC_CHECK_DISABLE
optional_delete_assign_base() = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_assign_base(const optional_delete_assign_base&) = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_assign_base& operator=(const optional_delete_assign_base&) = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = default;
};
template <class T>
struct optional_delete_assign_base<T, true, false>
{
_CCCL_EXEC_CHECK_DISABLE
optional_delete_assign_base() = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_assign_base(const optional_delete_assign_base&) = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_assign_base& operator=(const optional_delete_assign_base&) = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = delete;
};
template <class T>
struct optional_delete_assign_base<T, false, true>
{
_CCCL_EXEC_CHECK_DISABLE
optional_delete_assign_base() = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_assign_base(const optional_delete_assign_base&) = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_assign_base& operator=(const optional_delete_assign_base&) = delete;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = default;
};
template <class T>
struct optional_delete_assign_base<T, false, false>
{
_CCCL_EXEC_CHECK_DISABLE
optional_delete_assign_base() = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_assign_base(const optional_delete_assign_base&) = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_assign_base& operator=(const optional_delete_assign_base&) = delete;
_CCCL_EXEC_CHECK_DISABLE
optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = delete;
};
} // namespace detail
struct nullopt_t
{
struct do_not_use
{};
_CCCL_HOST_DEVICE constexpr explicit nullopt_t(do_not_use, do_not_use) noexcept {}
};
#ifdef __CUDA_ARCH__
__device__ static _CCCL_CONSTEXPR_GLOBAL
#else
static constexpr
#endif // __CUDA_ARCH__
nullopt_t nullopt{nullopt_t::do_not_use{}, nullopt_t::do_not_use{}};
class bad_optional_access : public std::exception
{
public:
bad_optional_access() = default;
_CCCL_HOST const char* what() const noexcept
{
return "Optional has no value";
}
};
template <class T>
class optional
: private detail::optional_move_assign_base<T>
, private detail::optional_delete_ctor_base<T>
, private detail::optional_delete_assign_base<T>
{
using base = detail::optional_move_assign_base<T>;
static_assert(!std::is_same<T, in_place_t>::value, "instantiation of optional with in_place_t is ill-formed");
static_assert(!std::is_same<detail::decay_t<T>, nullopt_t>::value,
"instantiation of optional with nullopt_t is ill-formed");
public:
// The different versions for C++14 and 11 are needed because deduced return
// types are not SFINAE-safe. This provides better support for things like
// generic lambdas. C.f.
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0826r0
#if defined(THRUST_OPTIONAL_CPP14) && !defined(THRUST_OPTIONAL_GCC49) && !defined(THRUST_OPTIONAL_GCC54) \
&& !defined(THRUST_OPTIONAL_GCC55)
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR auto and_then(F&& f) &
{
using result = detail::invoke_result_t<F, T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR auto and_then(F&& f) &&
{
using result = detail::invoke_result_t<F, T&&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt);
}
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE constexpr auto and_then(F&& f) const&
{
using result = detail::invoke_result_t<F, const T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
# ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE constexpr auto and_then(F&& f) const&&
{
using result = detail::invoke_result_t<F, const T&&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt);
}
# endif
#else
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR detail::invoke_result_t<F, T&> and_then(F&& f) &
{
using result = detail::invoke_result_t<F, T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR detail::invoke_result_t<F, T&&> and_then(F&& f) &&
{
using result = detail::invoke_result_t<F, T&&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt);
}
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE constexpr detail::invoke_result_t<F, const T&> and_then(F&& f) const&
{
using result = detail::invoke_result_t<F, const T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
# ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE constexpr detail::invoke_result_t<F, const T&&> and_then(F&& f) const&&
{
using result = detail::invoke_result_t<F, const T&&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt);
}
# endif
#endif
#if defined(THRUST_OPTIONAL_CPP14) && !defined(THRUST_OPTIONAL_GCC49) && !defined(THRUST_OPTIONAL_GCC54) \
&& !defined(THRUST_OPTIONAL_GCC55)
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR auto map(F&& f) &
{
return optional_map_impl(*this, std::forward<F>(f));
}
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR auto map(F&& f) &&
{
return optional_map_impl(std::move(*this), std::forward<F>(f));
}
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE constexpr auto map(F&& f) const&
{
return optional_map_impl(*this, std::forward<F>(f));
}
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE constexpr auto map(F&& f) const&&
{
return optional_map_impl(std::move(*this), std::forward<F>(f));
}
#else
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE
THRUST_OPTIONAL_CPP11_CONSTEXPR decltype(optional_map_impl(std::declval<optional&>(), std::declval<F&&>()))
map(F&& f) &
{
return optional_map_impl(*this, std::forward<F>(f));
}
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE
THRUST_OPTIONAL_CPP11_CONSTEXPR decltype(optional_map_impl(std::declval<optional&&>(), std::declval<F&&>()))
map(F&& f) &&
{
return optional_map_impl(std::move(*this), std::forward<F>(f));
}
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE constexpr decltype(optional_map_impl(std::declval<const optional&>(), std::declval<F&&>()))
map(F&& f) const&
{
return optional_map_impl(*this, std::forward<F>(f));
}
# ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE constexpr decltype(optional_map_impl(std::declval<const optional&&>(), std::declval<F&&>()))
map(F&& f) const&&
{
return optional_map_impl(std::move(*this), std::forward<F>(f));
}
# endif
#endif
_CCCL_EXEC_CHECK_DISABLE
template <class F, detail::enable_if_ret_void<F>* = nullptr>
_CCCL_HOST_DEVICE optional<T> THRUST_OPTIONAL_CPP11_CONSTEXPR or_else(F&& f) &
{
if (has_value())
{
return *this;
}
std::forward<F>(f)();
return nullopt;
}
_CCCL_EXEC_CHECK_DISABLE
template <class F, detail::disable_if_ret_void<F>* = nullptr>
_CCCL_HOST_DEVICE optional<T> THRUST_OPTIONAL_CPP11_CONSTEXPR or_else(F&& f) &
{
return has_value() ? *this : std::forward<F>(f)();
}
_CCCL_EXEC_CHECK_DISABLE
template <class F, detail::enable_if_ret_void<F>* = nullptr>
_CCCL_HOST_DEVICE optional<T> or_else(F&& f) &&
{
if (has_value())
{
return std::move(*this);
}
std::forward<F>(f)();
return nullopt;
}
_CCCL_EXEC_CHECK_DISABLE
template <class F, detail::disable_if_ret_void<F>* = nullptr>
_CCCL_HOST_DEVICE optional<T> THRUST_OPTIONAL_CPP11_CONSTEXPR or_else(F&& f) &&
{
return has_value() ? std::move(*this) : std::forward<F>(f)();
}
_CCCL_EXEC_CHECK_DISABLE
template <class F, detail::enable_if_ret_void<F>* = nullptr>
_CCCL_HOST_DEVICE optional<T> or_else(F&& f) const&
{
if (has_value())
{
return *this;
}
std::forward<F>(f)();
return nullopt;
}
_CCCL_EXEC_CHECK_DISABLE
template <class F, detail::disable_if_ret_void<F>* = nullptr>
_CCCL_HOST_DEVICE optional<T> THRUST_OPTIONAL_CPP11_CONSTEXPR or_else(F&& f) const&
{
return has_value() ? *this : std::forward<F>(f)();
}
#ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_EXEC_CHECK_DISABLE
template <class F, detail::enable_if_ret_void<F>* = nullptr>
_CCCL_HOST_DEVICE optional<T> or_else(F&& f) const&&
{
if (has_value())
{
return std::move(*this);
}
std::forward<F>(f)();
return nullopt;
}
_CCCL_EXEC_CHECK_DISABLE
template <class F, detail::disable_if_ret_void<F>* = nullptr>
_CCCL_HOST_DEVICE optional<T> or_else(F&& f) const&&
{
return has_value() ? std::move(*this) : std::forward<F>(f)();
}
#endif
_CCCL_EXEC_CHECK_DISABLE
template <class F, class U>
_CCCL_HOST_DEVICE U map_or(F&& f, U&& u) &
{
return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u);
}
_CCCL_EXEC_CHECK_DISABLE
template <class F, class U>
_CCCL_HOST_DEVICE U map_or(F&& f, U&& u) &&
{
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u);
}
_CCCL_EXEC_CHECK_DISABLE
template <class F, class U>
_CCCL_HOST_DEVICE U map_or(F&& f, U&& u) const&
{
return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u);
}
#ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_EXEC_CHECK_DISABLE
template <class F, class U>
_CCCL_HOST_DEVICE U map_or(F&& f, U&& u) const&&
{
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u);
}
#endif
_CCCL_EXEC_CHECK_DISABLE
template <class F, class U>
_CCCL_HOST_DEVICE detail::invoke_result_t<U> map_or_else(F&& f, U&& u) &
{
return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)();
}
_CCCL_EXEC_CHECK_DISABLE
template <class F, class U>
_CCCL_HOST_DEVICE detail::invoke_result_t<U> map_or_else(F&& f, U&& u) &&
{
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)();
}
_CCCL_EXEC_CHECK_DISABLE
template <class F, class U>
_CCCL_HOST_DEVICE detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const&
{
return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)();
}
#ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_EXEC_CHECK_DISABLE
template <class F, class U>
_CCCL_HOST_DEVICE detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const&&
{
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)();
}
#endif
_CCCL_EXEC_CHECK_DISABLE
template <class U>
_CCCL_HOST_DEVICE constexpr optional<typename std::decay<U>::type> conjunction(U&& u) const
{
using result = optional<detail::decay_t<U>>;
return has_value() ? result{u} : result{nullopt};
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR optional disjunction(const optional& rhs) &
{
return has_value() ? *this : rhs;
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr optional disjunction(const optional& rhs) const&
{
return has_value() ? *this : rhs;
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR optional disjunction(const optional& rhs) &&
{
return has_value() ? std::move(*this) : rhs;
}
#ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr optional disjunction(const optional& rhs) const&&
{
return has_value() ? std::move(*this) : rhs;
}
#endif
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR optional disjunction(optional&& rhs) &
{
return has_value() ? *this : std::move(rhs);
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr optional disjunction(optional&& rhs) const&
{
return has_value() ? *this : std::move(rhs);
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR optional disjunction(optional&& rhs) &&
{
return has_value() ? std::move(*this) : std::move(rhs);
}
#ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr optional disjunction(optional&& rhs) const&&
{
return has_value() ? std::move(*this) : std::move(rhs);
}
#endif
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE optional take() &
{
optional ret = *this;
reset();
return ret;
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE optional take() const&
{
optional ret = *this;
reset();
return ret;
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE optional take() &&
{
optional ret = std::move(*this);
reset();
return ret;
}
#ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE optional take() const&&
{
optional ret = std::move(*this);
reset();
return ret;
}
#endif
using value_type = T;
_CCCL_EXEC_CHECK_DISABLE
constexpr optional() noexcept = default;
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr optional(nullopt_t) noexcept {}
_CCCL_EXEC_CHECK_DISABLE
THRUST_OPTIONAL_CPP11_CONSTEXPR optional(const optional& rhs) = default;
_CCCL_EXEC_CHECK_DISABLE
THRUST_OPTIONAL_CPP11_CONSTEXPR optional(optional&& rhs) = default;
_CCCL_EXEC_CHECK_DISABLE
template <class... Args>
_CCCL_HOST_DEVICE constexpr explicit optional(
detail::enable_if_t<std::is_constructible<T, Args...>::value, in_place_t>, Args&&... args)
: base(in_place, std::forward<Args>(args)...)
{}
_CCCL_EXEC_CHECK_DISABLE
template <class U, class... Args>
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR explicit optional(
detail::enable_if_t<std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value, in_place_t>,
std::initializer_list<U> il,
Args&&... args)
{
this->construct(il, std::forward<Args>(args)...);
}
_CCCL_EXEC_CHECK_DISABLE
template <class U = T,
detail::enable_if_t<std::is_convertible<U&&, T>::value>* = nullptr,
detail::enable_forward_value<T, U>* = nullptr>
_CCCL_HOST_DEVICE constexpr optional(U&& u)
: base(in_place, std::forward<U>(u))
{}
_CCCL_EXEC_CHECK_DISABLE
template <class U = T,
detail::enable_if_t<!std::is_convertible<U&&, T>::value>* = nullptr,
detail::enable_forward_value<T, U>* = nullptr>
_CCCL_HOST_DEVICE constexpr explicit optional(U&& u)
: base(in_place, std::forward<U>(u))
{}
_CCCL_EXEC_CHECK_DISABLE
template <class U,
detail::enable_from_other<T, U, const U&>* = nullptr,
detail::enable_if_t<std::is_convertible<const U&, T>::value>* = nullptr>
_CCCL_HOST_DEVICE optional(const optional<U>& rhs)
{
this->construct(*rhs);
}
_CCCL_EXEC_CHECK_DISABLE
template <class U,
detail::enable_from_other<T, U, const U&>* = nullptr,
detail::enable_if_t<!std::is_convertible<const U&, T>::value>* = nullptr>
_CCCL_HOST_DEVICE explicit optional(const optional<U>& rhs)
{
this->construct(*rhs);
}
_CCCL_EXEC_CHECK_DISABLE
template <class U,
detail::enable_from_other<T, U, U&&>* = nullptr,
detail::enable_if_t<std::is_convertible<U&&, T>::value>* = nullptr>
_CCCL_HOST_DEVICE optional(optional<U>&& rhs)
{
this->construct(std::move(*rhs));
}
_CCCL_EXEC_CHECK_DISABLE
template <class U,
detail::enable_from_other<T, U, U&&>* = nullptr,
detail::enable_if_t<!std::is_convertible<U&&, T>::value>* = nullptr>
_CCCL_HOST_DEVICE explicit optional(optional<U>&& rhs)
{
this->construct(std::move(*rhs));
}
_CCCL_EXEC_CHECK_DISABLE
~optional() = default;
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE optional& operator=(nullopt_t) noexcept
{
if (has_value())
{
this->m_value.~T();
this->m_has_value = false;
}
return *this;
}
_CCCL_EXEC_CHECK_DISABLE
optional& operator=(const optional& rhs) = default;
_CCCL_EXEC_CHECK_DISABLE
optional& operator=(optional&& rhs) = default;
_CCCL_EXEC_CHECK_DISABLE
template <class U = T, detail::enable_assign_forward<T, U>* = nullptr>
_CCCL_HOST_DEVICE optional& operator=(U&& u)
{
if (has_value())
{
this->m_value = std::forward<U>(u);
}
else
{
this->construct(std::forward<U>(u));
}
return *this;
}
_CCCL_EXEC_CHECK_DISABLE
template <class U, detail::enable_assign_from_other<T, U, const U&>* = nullptr>
_CCCL_HOST_DEVICE optional& operator=(const optional<U>& rhs)
{
if (has_value())
{
if (rhs.has_value())
{
this->m_value = *rhs;
}
else
{
this->hard_reset();
}
}
if (rhs.has_value())
{
this->construct(*rhs);
}
return *this;
}
// TODO check exception guarantee
_CCCL_EXEC_CHECK_DISABLE
template <class U, detail::enable_assign_from_other<T, U, U>* = nullptr>
_CCCL_HOST_DEVICE optional& operator=(optional<U>&& rhs)
{
if (has_value())
{
if (rhs.has_value())
{
this->m_value = std::move(*rhs);
}
else
{
this->hard_reset();
}
}
if (rhs.has_value())
{
this->construct(std::move(*rhs));
}
return *this;
}
_CCCL_EXEC_CHECK_DISABLE
template <class... Args>
_CCCL_HOST_DEVICE T& emplace(Args&&... args)
{
static_assert(std::is_constructible<T, Args&&...>::value, "T must be constructible with Args");
*this = nullopt;
this->construct(std::forward<Args>(args)...);
return this->m_value;
}
_CCCL_EXEC_CHECK_DISABLE
template <class U, class... Args>
_CCCL_HOST_DEVICE detail::enable_if_t<std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value, T&>
emplace(std::initializer_list<U> il, Args&&... args)
{
*this = nullopt;
this->construct(il, std::forward<Args>(args)...);
return this->m_value;
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE void
swap(optional& rhs) noexcept(std::is_nothrow_move_constructible<T>::value && detail::is_nothrow_swappable<T>::value)
{
if (has_value())
{
if (rhs.has_value())
{
using ::cuda::std::swap;
swap(**this, *rhs);
}
else
{
new (thrust::addressof(rhs.m_value)) T(std::move(this->m_value));
this->m_value.T::~T();
}
}
else if (rhs.has_value())
{
new (thrust::addressof(this->m_value)) T(std::move(rhs.m_value));
rhs.m_value.T::~T();
}
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr const T* operator->() const
{
return thrust::addressof(this->m_value);
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR T* operator->()
{
return thrust::addressof(this->m_value);
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR T& operator*() &
{
return this->m_value;
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr const T& operator*() const&
{
return this->m_value;
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR T&& operator*() &&
{
return std::move(this->m_value);
}
#ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr const T&& operator*() const&&
{
return std::move(this->m_value);
}
#endif
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr bool has_value() const noexcept
{
return this->m_has_value;
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr explicit operator bool() const noexcept
{
return this->m_has_value;
}
_CCCL_HOST THRUST_OPTIONAL_CPP11_CONSTEXPR T& value() &
{
if (has_value())
{
return this->m_value;
}
throw bad_optional_access();
}
_CCCL_HOST THRUST_OPTIONAL_CPP11_CONSTEXPR const T& value() const&
{
if (has_value())
{
return this->m_value;
}
throw bad_optional_access();
}
_CCCL_HOST THRUST_OPTIONAL_CPP11_CONSTEXPR T&& value() &&
{
if (has_value())
{
return std::move(this->m_value);
}
throw bad_optional_access();
}
#ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_HOST THRUST_OPTIONAL_CPP11_CONSTEXPR const T&& value() const&&
{
if (has_value())
{
return std::move(this->m_value);
}
throw bad_optional_access();
}
#endif
_CCCL_EXEC_CHECK_DISABLE
template <class U>
_CCCL_HOST_DEVICE constexpr T value_or(U&& u) const&
{
static_assert(std::is_copy_constructible<T>::value && std::is_convertible<U&&, T>::value,
"T must be copy constructible and convertible from U");
return has_value() ? **this : static_cast<T>(std::forward<U>(u));
}
_CCCL_EXEC_CHECK_DISABLE
template <class U>
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR T value_or(U&& u) &&
{
static_assert(std::is_move_constructible<T>::value && std::is_convertible<U&&, T>::value,
"T must be move constructible and convertible from U");
return has_value() ? **this : static_cast<T>(std::forward<U>(u));
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE void reset() noexcept
{
if (has_value())
{
this->m_value.~T();
this->m_has_value = false;
}
}
};
_CCCL_EXEC_CHECK_DISABLE
template <class T, class U>
_CCCL_HOST_DEVICE inline constexpr bool operator==(const optional<T>& lhs, const optional<U>& rhs)
{
return lhs.has_value() == rhs.has_value() && (!lhs.has_value() || *lhs == *rhs);
}
_CCCL_EXEC_CHECK_DISABLE
template <class T, class U>
_CCCL_HOST_DEVICE inline constexpr bool operator!=(const optional<T>& lhs, const optional<U>& rhs)
{
return lhs.has_value() != rhs.has_value() || (lhs.has_value() && *lhs != *rhs);
}
_CCCL_EXEC_CHECK_DISABLE
template <class T, class U>
_CCCL_HOST_DEVICE inline constexpr bool operator<(const optional<T>& lhs, const optional<U>& rhs)
{
return rhs.has_value() && (!lhs.has_value() || *lhs < *rhs);
}
_CCCL_EXEC_CHECK_DISABLE
template <class T, class U>
_CCCL_HOST_DEVICE inline constexpr bool operator>(const optional<T>& lhs, const optional<U>& rhs)
{
return lhs.has_value() && (!rhs.has_value() || *lhs > *rhs);
}
_CCCL_EXEC_CHECK_DISABLE
template <class T, class U>
_CCCL_HOST_DEVICE inline constexpr bool operator<=(const optional<T>& lhs, const optional<U>& rhs)
{
return !lhs.has_value() || (rhs.has_value() && *lhs <= *rhs);
}
_CCCL_EXEC_CHECK_DISABLE
template <class T, class U>
_CCCL_HOST_DEVICE inline constexpr bool operator>=(const optional<T>& lhs, const optional<U>& rhs)
{
return !rhs.has_value() || (lhs.has_value() && *lhs >= *rhs);
}
_CCCL_EXEC_CHECK_DISABLE
template <class T>
_CCCL_HOST_DEVICE inline constexpr bool operator==(const optional<T>& lhs, nullopt_t) noexcept
{
return !lhs.has_value();
}
_CCCL_EXEC_CHECK_DISABLE
template <class T>
_CCCL_HOST_DEVICE inline constexpr bool operator==(nullopt_t, const optional<T>& rhs) noexcept
{
return !rhs.has_value();
}
_CCCL_EXEC_CHECK_DISABLE
template <class T>
_CCCL_HOST_DEVICE inline constexpr bool operator!=(const optional<T>& lhs, nullopt_t) noexcept
{
return lhs.has_value();
}
_CCCL_EXEC_CHECK_DISABLE
template <class T>
_CCCL_HOST_DEVICE inline constexpr bool operator!=(nullopt_t, const optional<T>& rhs) noexcept
{
return rhs.has_value();
}
_CCCL_EXEC_CHECK_DISABLE
template <class T>
_CCCL_HOST_DEVICE inline constexpr bool operator<(const optional<T>&, nullopt_t) noexcept
{
return false;
}
_CCCL_EXEC_CHECK_DISABLE
template <class T>
_CCCL_HOST_DEVICE inline constexpr bool operator<(nullopt_t, const optional<T>& rhs) noexcept
{
return rhs.has_value();
}
_CCCL_EXEC_CHECK_DISABLE
template <class T>
_CCCL_HOST_DEVICE inline constexpr bool operator<=(const optional<T>& lhs, nullopt_t) noexcept
{
return !lhs.has_value();
}
_CCCL_EXEC_CHECK_DISABLE
template <class T>
_CCCL_HOST_DEVICE inline constexpr bool operator<=(nullopt_t, const optional<T>&) noexcept
{
return true;
}
_CCCL_EXEC_CHECK_DISABLE
template <class T>
_CCCL_HOST_DEVICE inline constexpr bool operator>(const optional<T>& lhs, nullopt_t) noexcept
{
return lhs.has_value();
}
_CCCL_EXEC_CHECK_DISABLE
template <class T>
_CCCL_HOST_DEVICE inline constexpr bool operator>(nullopt_t, const optional<T>&) noexcept
{
return false;
}
_CCCL_EXEC_CHECK_DISABLE
template <class T>
_CCCL_HOST_DEVICE inline constexpr bool operator>=(const optional<T>&, nullopt_t) noexcept
{
return true;
}
_CCCL_EXEC_CHECK_DISABLE
template <class T>
_CCCL_HOST_DEVICE inline constexpr bool operator>=(nullopt_t, const optional<T>& rhs) noexcept
{
return !rhs.has_value();
}
_CCCL_EXEC_CHECK_DISABLE
template <class T, class U>
_CCCL_HOST_DEVICE inline constexpr bool operator==(const optional<T>& lhs, const U& rhs)
{
return lhs.has_value() ? *lhs == rhs : false;
}
_CCCL_EXEC_CHECK_DISABLE
template <class T, class U>
_CCCL_HOST_DEVICE inline constexpr bool operator==(const U& lhs, const optional<T>& rhs)
{
return rhs.has_value() ? lhs == *rhs : false;
}
_CCCL_EXEC_CHECK_DISABLE
template <class T, class U>
_CCCL_HOST_DEVICE inline constexpr bool operator!=(const optional<T>& lhs, const U& rhs)
{
return lhs.has_value() ? *lhs != rhs : true;
}
_CCCL_EXEC_CHECK_DISABLE
template <class T, class U>
_CCCL_HOST_DEVICE inline constexpr bool operator!=(const U& lhs, const optional<T>& rhs)
{
return rhs.has_value() ? lhs != *rhs : true;
}
_CCCL_EXEC_CHECK_DISABLE
template <class T, class U>
_CCCL_HOST_DEVICE inline constexpr bool operator<(const optional<T>& lhs, const U& rhs)
{
return lhs.has_value() ? *lhs < rhs : true;
}
_CCCL_EXEC_CHECK_DISABLE
template <class T, class U>
_CCCL_HOST_DEVICE inline constexpr bool operator<(const U& lhs, const optional<T>& rhs)
{
return rhs.has_value() ? lhs < *rhs : false;
}
_CCCL_EXEC_CHECK_DISABLE
template <class T, class U>
_CCCL_HOST_DEVICE inline constexpr bool operator<=(const optional<T>& lhs, const U& rhs)
{
return lhs.has_value() ? *lhs <= rhs : true;
}
_CCCL_EXEC_CHECK_DISABLE
template <class T, class U>
_CCCL_HOST_DEVICE inline constexpr bool operator<=(const U& lhs, const optional<T>& rhs)
{
return rhs.has_value() ? lhs <= *rhs : false;
}
_CCCL_EXEC_CHECK_DISABLE
template <class T, class U>
_CCCL_HOST_DEVICE inline constexpr bool operator>(const optional<T>& lhs, const U& rhs)
{
return lhs.has_value() ? *lhs > rhs : false;
}
_CCCL_EXEC_CHECK_DISABLE
template <class T, class U>
_CCCL_HOST_DEVICE inline constexpr bool operator>(const U& lhs, const optional<T>& rhs)
{
return rhs.has_value() ? lhs > *rhs : true;
}
_CCCL_EXEC_CHECK_DISABLE
template <class T, class U>
_CCCL_HOST_DEVICE inline constexpr bool operator>=(const optional<T>& lhs, const U& rhs)
{
return lhs.has_value() ? *lhs >= rhs : false;
}
_CCCL_EXEC_CHECK_DISABLE
template <class T, class U>
_CCCL_HOST_DEVICE inline constexpr bool operator>=(const U& lhs, const optional<T>& rhs)
{
return rhs.has_value() ? lhs >= *rhs : true;
}
_CCCL_EXEC_CHECK_DISABLE
template <class T,
detail::enable_if_t<std::is_move_constructible<T>::value>* = nullptr,
detail::enable_if_t<detail::is_swappable<T>::value>* = nullptr>
_CCCL_HOST_DEVICE void swap(optional<T>& lhs, optional<T>& rhs) noexcept(noexcept(lhs.swap(rhs)))
{
return lhs.swap(rhs);
}
namespace detail
{
struct i_am_secret
{};
} // namespace detail
_CCCL_EXEC_CHECK_DISABLE
template <class T = detail::i_am_secret,
class U,
class Ret = detail::conditional_t<std::is_same<T, detail::i_am_secret>::value, detail::decay_t<U>, T>>
_CCCL_HOST_DEVICE inline constexpr optional<Ret> make_optional(U&& v)
{
return optional<Ret>(std::forward<U>(v));
}
_CCCL_EXEC_CHECK_DISABLE
template <class T, class... Args>
_CCCL_HOST_DEVICE inline constexpr optional<T> make_optional(Args&&... args)
{
return optional<T>(in_place, std::forward<Args>(args)...);
}
_CCCL_EXEC_CHECK_DISABLE
template <class T, class U, class... Args>
_CCCL_HOST_DEVICE inline constexpr optional<T> make_optional(std::initializer_list<U> il, Args&&... args)
{
return optional<T>(in_place, il, std::forward<Args>(args)...);
}
#if _CCCL_STD_VER >= 2017
template <class T>
optional(T) -> optional<T>;
#endif
// Doxygen chokes on the trailing return types used below.
#if !defined(_CCCL_DOXYGEN_INVOKED)
namespace detail
{
# ifdef THRUST_OPTIONAL_CPP14
_CCCL_EXEC_CHECK_DISABLE
template <class Opt,
class F,
class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())),
detail::enable_if_t<!std::is_void<Ret>::value>* = nullptr>
_CCCL_HOST_DEVICE constexpr auto optional_map_impl(Opt&& opt, F&& f)
{
return opt.has_value() ? detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt)) : optional<Ret>(nullopt);
}
_CCCL_EXEC_CHECK_DISABLE
template <class Opt,
class F,
class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())),
detail::enable_if_t<std::is_void<Ret>::value>* = nullptr>
_CCCL_HOST_DEVICE auto optional_map_impl(Opt&& opt, F&& f)
{
if (opt.has_value())
{
detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt));
return make_optional(monostate{});
}
return optional<monostate>(nullopt);
}
# else
_CCCL_EXEC_CHECK_DISABLE
template <class Opt,
class F,
class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())),
detail::enable_if_t<!std::is_void<Ret>::value>* = nullptr>
_CCCL_HOST_DEVICE constexpr optional<Ret> optional_map_impl(Opt&& opt, F&& f)
{
return opt.has_value() ? detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt)) : optional<Ret>(nullopt);
}
_CCCL_EXEC_CHECK_DISABLE
template <class Opt,
class F,
class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())),
detail::enable_if_t<std::is_void<Ret>::value>* = nullptr>
_CCCL_HOST_DEVICE auto optional_map_impl(Opt&& opt, F&& f) -> optional<monostate>
{
if (opt.has_value())
{
detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt));
return monostate{};
}
return nullopt;
}
# endif
} // namespace detail
#endif // !defined(_CCCL_DOXYGEN_INVOKED)
template <class T>
class optional<T&>
{
public:
// The different versions for C++14 and 11 are needed because deduced return
// types are not SFINAE-safe. This provides better support for things like
// generic lambdas. C.f.
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0826r0
#if defined(THRUST_OPTIONAL_CPP14) && !defined(THRUST_OPTIONAL_GCC49) && !defined(THRUST_OPTIONAL_GCC54) \
&& !defined(THRUST_OPTIONAL_GCC55)
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR auto and_then(F&& f) &
{
using result = detail::invoke_result_t<F, T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR auto and_then(F&& f) &&
{
using result = detail::invoke_result_t<F, T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE constexpr auto and_then(F&& f) const&
{
using result = detail::invoke_result_t<F, const T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
# ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE constexpr auto and_then(F&& f) const&&
{
using result = detail::invoke_result_t<F, const T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
# endif
#else
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR detail::invoke_result_t<F, T&> and_then(F&& f) &
{
using result = detail::invoke_result_t<F, T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR detail::invoke_result_t<F, T&> and_then(F&& f) &&
{
using result = detail::invoke_result_t<F, T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE constexpr detail::invoke_result_t<F, const T&> and_then(F&& f) const&
{
using result = detail::invoke_result_t<F, const T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
# ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE constexpr detail::invoke_result_t<F, const T&> and_then(F&& f) const&&
{
using result = detail::invoke_result_t<F, const T&>;
static_assert(detail::is_optional<result>::value, "F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
}
# endif
#endif
#if defined(THRUST_OPTIONAL_CPP14) && !defined(THRUST_OPTIONAL_GCC49) && !defined(THRUST_OPTIONAL_GCC54) \
&& !defined(THRUST_OPTIONAL_GCC55)
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR auto map(F&& f) &
{
return detail::optional_map_impl(*this, std::forward<F>(f));
}
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR auto map(F&& f) &&
{
return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
}
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE constexpr auto map(F&& f) const&
{
return detail::optional_map_impl(*this, std::forward<F>(f));
}
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE constexpr auto map(F&& f) const&&
{
return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
}
#else
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE
THRUST_OPTIONAL_CPP11_CONSTEXPR decltype(detail::optional_map_impl(std::declval<optional&>(), std::declval<F&&>()))
map(F&& f) &
{
return detail::optional_map_impl(*this, std::forward<F>(f));
}
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE
THRUST_OPTIONAL_CPP11_CONSTEXPR decltype(detail::optional_map_impl(std::declval<optional&&>(), std::declval<F&&>()))
map(F&& f) &&
{
return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
}
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE constexpr decltype(detail::optional_map_impl(std::declval<const optional&>(), std::declval<F&&>()))
map(F&& f) const&
{
return detail::optional_map_impl(*this, std::forward<F>(f));
}
# ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_EXEC_CHECK_DISABLE
template <class F>
_CCCL_HOST_DEVICE constexpr decltype(detail::optional_map_impl(std::declval<const optional&&>(), std::declval<F&&>()))
map(F&& f) const&&
{
return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
}
# endif
#endif
_CCCL_EXEC_CHECK_DISABLE
template <class F, detail::enable_if_ret_void<F>* = nullptr>
_CCCL_HOST_DEVICE optional<T> THRUST_OPTIONAL_CPP11_CONSTEXPR or_else(F&& f) &
{
if (has_value())
{
return *this;
}
std::forward<F>(f)();
return nullopt;
}
_CCCL_EXEC_CHECK_DISABLE
template <class F, detail::disable_if_ret_void<F>* = nullptr>
_CCCL_HOST_DEVICE optional<T> THRUST_OPTIONAL_CPP11_CONSTEXPR or_else(F&& f) &
{
return has_value() ? *this : std::forward<F>(f)();
}
_CCCL_EXEC_CHECK_DISABLE
template <class F, detail::enable_if_ret_void<F>* = nullptr>
_CCCL_HOST_DEVICE optional<T> or_else(F&& f) &&
{
if (has_value())
{
return std::move(*this);
}
std::forward<F>(f)();
return nullopt;
}
_CCCL_EXEC_CHECK_DISABLE
template <class F, detail::disable_if_ret_void<F>* = nullptr>
_CCCL_HOST_DEVICE optional<T> THRUST_OPTIONAL_CPP11_CONSTEXPR or_else(F&& f) &&
{
return has_value() ? std::move(*this) : std::forward<F>(f)();
}
_CCCL_EXEC_CHECK_DISABLE
template <class F, detail::enable_if_ret_void<F>* = nullptr>
_CCCL_HOST_DEVICE optional<T> or_else(F&& f) const&
{
if (has_value())
{
return *this;
}
std::forward<F>(f)();
return nullopt;
}
_CCCL_EXEC_CHECK_DISABLE
template <class F, detail::disable_if_ret_void<F>* = nullptr>
_CCCL_HOST_DEVICE optional<T> THRUST_OPTIONAL_CPP11_CONSTEXPR or_else(F&& f) const&
{
return has_value() ? *this : std::forward<F>(f)();
}
#ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_EXEC_CHECK_DISABLE
template <class F, detail::enable_if_ret_void<F>* = nullptr>
_CCCL_HOST_DEVICE optional<T> or_else(F&& f) const&&
{
if (has_value())
{
return std::move(*this);
}
std::forward<F>(f)();
return nullopt;
}
_CCCL_EXEC_CHECK_DISABLE
template <class F, detail::disable_if_ret_void<F>* = nullptr>
_CCCL_HOST_DEVICE optional<T> or_else(F&& f) const&&
{
return has_value() ? std::move(*this) : std::forward<F>(f)();
}
#endif
_CCCL_EXEC_CHECK_DISABLE
template <class F, class U>
_CCCL_HOST_DEVICE U map_or(F&& f, U&& u) &
{
return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u);
}
_CCCL_EXEC_CHECK_DISABLE
template <class F, class U>
_CCCL_HOST_DEVICE U map_or(F&& f, U&& u) &&
{
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u);
}
_CCCL_EXEC_CHECK_DISABLE
template <class F, class U>
_CCCL_HOST_DEVICE U map_or(F&& f, U&& u) const&
{
return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u);
}
#ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_EXEC_CHECK_DISABLE
template <class F, class U>
_CCCL_HOST_DEVICE U map_or(F&& f, U&& u) const&&
{
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u);
}
#endif
_CCCL_EXEC_CHECK_DISABLE
template <class F, class U>
_CCCL_HOST_DEVICE detail::invoke_result_t<U> map_or_else(F&& f, U&& u) &
{
return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)();
}
_CCCL_EXEC_CHECK_DISABLE
template <class F, class U>
_CCCL_HOST_DEVICE detail::invoke_result_t<U> map_or_else(F&& f, U&& u) &&
{
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)();
}
_CCCL_EXEC_CHECK_DISABLE
template <class F, class U>
_CCCL_HOST_DEVICE detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const&
{
return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)();
}
#ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_EXEC_CHECK_DISABLE
template <class F, class U>
_CCCL_HOST_DEVICE detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const&&
{
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)();
}
#endif
_CCCL_EXEC_CHECK_DISABLE
template <class U>
_CCCL_HOST_DEVICE constexpr optional<typename std::decay<U>::type> conjunction(U&& u) const
{
using result = optional<detail::decay_t<U>>;
return has_value() ? result{u} : result{nullopt};
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR optional disjunction(const optional& rhs) &
{
return has_value() ? *this : rhs;
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr optional disjunction(const optional& rhs) const&
{
return has_value() ? *this : rhs;
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR optional disjunction(const optional& rhs) &&
{
return has_value() ? std::move(*this) : rhs;
}
#ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr optional disjunction(const optional& rhs) const&&
{
return has_value() ? std::move(*this) : rhs;
}
#endif
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR optional disjunction(optional&& rhs) &
{
return has_value() ? *this : std::move(rhs);
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr optional disjunction(optional&& rhs) const&
{
return has_value() ? *this : std::move(rhs);
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR optional disjunction(optional&& rhs) &&
{
return has_value() ? std::move(*this) : std::move(rhs);
}
#ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr optional disjunction(optional&& rhs) const&&
{
return has_value() ? std::move(*this) : std::move(rhs);
}
#endif
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE optional take() &
{
optional ret = *this;
reset();
return ret;
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE optional take() const&
{
optional ret = *this;
reset();
return ret;
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE optional take() &&
{
optional ret = std::move(*this);
reset();
return ret;
}
#ifndef THRUST_OPTIONAL_NO_CONSTRR
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE optional take() const&&
{
optional ret = std::move(*this);
reset();
return ret;
}
#endif
using value_type = T&;
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr optional() noexcept
: m_value(nullptr)
{}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr optional(nullopt_t) noexcept
: m_value(nullptr)
{}
_CCCL_EXEC_CHECK_DISABLE
THRUST_OPTIONAL_CPP11_CONSTEXPR optional(const optional& rhs) noexcept = default;
_CCCL_EXEC_CHECK_DISABLE
THRUST_OPTIONAL_CPP11_CONSTEXPR optional(optional&& rhs) = default;
_CCCL_EXEC_CHECK_DISABLE
template <class U = T, detail::enable_if_t<!detail::is_optional<detail::decay_t<U>>::value>* = nullptr>
_CCCL_HOST_DEVICE constexpr optional(U&& u)
: m_value(thrust::addressof(u))
{
static_assert(std::is_lvalue_reference<U>::value, "U must be an lvalue");
}
_CCCL_EXEC_CHECK_DISABLE
template <class U>
_CCCL_HOST_DEVICE constexpr explicit optional(const optional<U>& rhs)
: optional(*rhs)
{}
_CCCL_EXEC_CHECK_DISABLE
~optional() = default;
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE optional& operator=(nullopt_t) noexcept
{
m_value = nullptr;
return *this;
}
_CCCL_EXEC_CHECK_DISABLE
optional& operator=(const optional& rhs) = default;
_CCCL_EXEC_CHECK_DISABLE
template <class U = T, detail::enable_if_t<!detail::is_optional<detail::decay_t<U>>::value>* = nullptr>
_CCCL_HOST_DEVICE optional& operator=(U&& u)
{
static_assert(std::is_lvalue_reference<U>::value, "U must be an lvalue");
m_value = thrust::addressof(u);
return *this;
}
_CCCL_EXEC_CHECK_DISABLE
template <class U>
_CCCL_HOST_DEVICE optional& operator=(const optional<U>& rhs)
{
m_value = thrust::addressof(rhs.value());
return *this;
}
_CCCL_EXEC_CHECK_DISABLE
template <class U>
_CCCL_HOST_DEVICE T& emplace(U& u) noexcept
{
m_value = thrust::addressof(u);
return *m_value;
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE void swap(optional& rhs) noexcept
{
std::swap(m_value, rhs.m_value);
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr const T* operator->() const
{
return m_value;
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR T* operator->()
{
return m_value;
}
_CCCL_EXEC_CHECK_DISABLE
THRUST_OPTIONAL_CPP11_CONSTEXPR T& operator*()
{
return *m_value;
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr const T& operator*() const
{
return *m_value;
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr bool has_value() const noexcept
{
return m_value != nullptr;
}
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE constexpr explicit operator bool() const noexcept
{
return m_value != nullptr;
}
_CCCL_HOST THRUST_OPTIONAL_CPP11_CONSTEXPR T& value()
{
if (has_value())
{
return *m_value;
}
throw bad_optional_access();
}
_CCCL_HOST THRUST_OPTIONAL_CPP11_CONSTEXPR const T& value() const
{
if (has_value())
{
return *m_value;
}
throw bad_optional_access();
}
_CCCL_EXEC_CHECK_DISABLE
template <class U>
_CCCL_HOST_DEVICE constexpr T value_or(U&& u) const&
{
static_assert(std::is_copy_constructible<T>::value && std::is_convertible<U&&, T>::value,
"T must be copy constructible and convertible from U");
return has_value() ? **this : static_cast<T>(std::forward<U>(u));
}
_CCCL_EXEC_CHECK_DISABLE
template <class U>
_CCCL_HOST_DEVICE THRUST_OPTIONAL_CPP11_CONSTEXPR T value_or(U&& u) &&
{
static_assert(std::is_move_constructible<T>::value && std::is_convertible<U&&, T>::value,
"T must be move constructible and convertible from U");
return has_value() ? **this : static_cast<T>(std::forward<U>(u));
}
_CCCL_EXEC_CHECK_DISABLE
void reset() noexcept
{
m_value = nullptr;
}
private:
T* m_value;
};
THRUST_NAMESPACE_END
namespace std
{
// TODO SFINAE
template <class T>
struct hash<THRUST_NS_QUALIFIER::optional<T>>
{
_CCCL_EXEC_CHECK_DISABLE
_CCCL_HOST_DEVICE ::std::size_t operator()(const THRUST_NS_QUALIFIER::optional<T>& o) const
{
if (!o.has_value())
{
return 0;
}
return std::hash<::cuda::std::remove_const_t<T>>()(*o);
}
};
} // namespace std