{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Cost Minimization\n", "\n", "Below we start with a basic example of a hybrid variational algorithm which involves flipping the Bloch vector of a qubit from the $\\ket{0}$ to the $\\ket{1}$ state. First we import the relevant packages and set our backend to simulate our workflow on NVIDIA GPUs. \n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import cudaq\n", "from typing import List\n", "\n", "cudaq.set_target(\"nvidia\")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " ╭───────╮╭───────╮\n", "q0 : ┤ rx(0) ├┤ ry(0) ├\n", " ╰───────╯╰───────╯\n", "\n" ] } ], "source": [ "# Initialize a kernel/ ansatz and variational parameters.\n", "@cudaq.kernel\n", "def kernel(angles: List[float]):\n", " # Allocate a qubit that is initialized to the |0> state.\n", " qubit = cudaq.qubit()\n", " # Define gates and the qubits they act upon.\n", " rx(angles[0], qubit)\n", " ry(angles[1], qubit)\n", "\n", "\n", "# Our Hamiltonian will be the Z expectation value of our qubit.\n", "hamiltonian = cudaq.spin.z(0)\n", "\n", "# Initial gate parameters which intialize the qubit in the zero state\n", "initial_parameters = [0, 0]\n", "\n", "print(cudaq.draw(kernel, initial_parameters))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "We build our cost function such that its minimal value corresponds to the qubit being in the $\\ket{1}$ state. The observe call below allows us to simulate our statevector $\\ket{\\psi}$, and calculate $\\bra{\\psi}Z\\ket{\\psi}$.\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "cost_values = []\n", "\n", "\n", "def cost(parameters):\n", " \"\"\"Returns the expectation value as our cost.\"\"\"\n", " expectation_value = cudaq.observe(kernel, hamiltonian,\n", " parameters).expectation()\n", " cost_values.append(expectation_value)\n", " return expectation_value" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.0\n" ] } ], "source": [ "# We see that the initial value of our cost function is one, demonstrating that our qubit is in the zero state\n", "initial_cost_value = cost(initial_parameters)\n", "print(initial_cost_value)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Below we use our built-in optimization suite to minimize the cost function. We will be using the gradient-free COBYLA alogrithm. " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# Define a CUDA-Q optimizer.\n", "optimizer = cudaq.optimizers.COBYLA()\n", "optimizer.initial_parameters = initial_parameters\n", "\n", "result = optimizer.optimize(dimensions=2, function=cost)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "tags": [ "nbsphinx-thumbnail" ] }, "outputs": [ { "data": { "text/plain": [ "Text(0, 0.5, 'Cost Value')" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGwCAYAAAC5ACFFAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAS7hJREFUeJzt3XtcVGX+B/DPmQGGi1yFmQFFwUsq5S1NQs0uEKDWRrm7UpaXNV1N3QxLpVVJrey25lb+Mk3TNs2y1e6xKV4qQy3MW6GpaagwICIMF7nNnN8fMEcnYLg4cM4wn/frNa/gnDNnvjPNLp++5znPI4iiKIKIiIiI6qWSuwAiIiIiJWNYIiIiIrKBYYmIiIjIBoYlIiIiIhsYloiIiIhsYFgiIiIisoFhiYiIiMgGF7kLaA/MZjOys7Ph7e0NQRDkLoeIiIiaQBRFFBcXIyQkBCpVw/0jhiU7yM7ORmhoqNxlEBERUQucO3cOnTt3bnA/w5IdeHt7A6j5sH18fGSuhoiIiJrCaDQiNDRU+jveEIYlO7BcevPx8WFYIiIicjCNDaHhAG8iIiIiGxiWiIiIiGxgWCIiIiKygWGJiIiIyAaGJSIiIiIbGJaIiIiIbGBYIiIiIrKBYYmIiIjIBoYlIiIiIhsYloiIiIhscKiw9M033+Dee+9FSEgIBEHAxx9/3Ohzdu/ejZtvvhkajQY9evTA+vXr6xyzcuVKhIWFwd3dHZGRkThw4ID9iyciIiKH5FBhqbS0FP3798fKlSubdPyZM2cwevRo3HnnnTh06BBmz56NRx99FP/73/+kYz744AMkJSUhJSUFBw8eRP/+/REXF4e8vLzWehtERETkQARRFEW5i2gJQRCwbds2JCQkNHjMvHnz8MUXX+DYsWPStsTERBQWFiI1NRUAEBkZiVtuuQVvvPEGAMBsNiM0NBSzZs3C/Pnzm1SL0WiEr68vioqK7LqQrqGoHNVm83WfJ9jXA2qV7UUCiYiInE1T/367tGFNbS49PR0xMTFW2+Li4jB79mwAQGVlJTIyMpCcnCztV6lUiImJQXp6eoPnraioQEVFhfS70Wi0b+G1Hnp7H367WHrd57m1WwA2T42yQ0VERETOx6EuwzWXwWCATqez2qbT6WA0GnHlyhXk5+fDZDLVe4zBYGjwvMuWLYOvr6/0CA0NbZX63dQqaFxa/nBzqfnXe+BMAapN19+hIiIickbturPUWpKTk5GUlCT9bjQaWyUwpc4ecV3PN5lF3LDgK5jMIi6VVkLn426nyoiIiJxHuw5Ler0eubm5Vttyc3Ph4+MDDw8PqNVqqNXqeo/R6/UNnlej0UCj0bRKzfakVgkI7OCGXGMF8owVDEtEREQt0K4vw0VFRSEtLc1q2/bt2xEVVTN+x83NDYMGDbI6xmw2Iy0tTTrG0VkCUl5xucyVEBEROSaHCkslJSU4dOgQDh06BKBmaoBDhw4hKysLQM3lsfHjx0vHT5s2Db/99hvmzp2L48eP4//+7//w4Ycf4oknnpCOSUpKwpo1a7BhwwZkZmZi+vTpKC0txaRJk9r0vbUWrXdNByzXWNHIkURERFQfh7oM9+OPP+LOO++UfreMG5owYQLWr1+PnJwcKTgBQHh4OL744gs88cQT+Pe//43OnTvj7bffRlxcnHTM2LFjcfHiRSxatAgGgwEDBgxAampqnUHfjkrLzhIREdF1cdh5lpSkteZZsocVO37Fih0n8eCQLlj2QF+5yyEiIlKMpv79dqjLcNR8ljFLF9lZIiIiahGGpXaOY5aIiIiuD8NSO6f15pglIiKi68Gw1M7pfGo6SxeLK2Ayc3gaERFRczEstXMdO2igEgCzCFwq5aU4IiKi5mJYaudqZvGu6S7lcdwSERFRszEsOQFt7aU4jlsiIiJqPoYlJ6CzDPJmZ4mIiKjZGJacgKWzxOkDiIiImo9hyQlw+gAiIqKWY1hyAuwsERERtRzDkhOwdJa45AkREVHzMSw5AR07S0RERC3GsOQEpM5SSQXMnMWbiIioWRiWnEBgBzcIAmAyi7hUWil3OURERA6FYckJuKhV6OjFiSmJiIhagmHJSeikWbw5bomIiKg5GJachNbbsj4cO0tERETNwbDkJHQ+XPKEiIioJRiWnISls5TLMUtERETNwrDkJILYWSIiImoRhiUnoZM6SwxLREREzcGw5CS0tZ2lixzgTURE1CwMS07i2qkDOIs3ERFR0zEsOYnADhoIAlBtFnG5jLN4ExERNRXDkpNwVavQ0csNABfUJSIiag6GJScSVLugLpc8ISIiajqGJSfCJU+IiIiaj2HJiXDJEyIiouZjWHIiWukyHDtLRERETcWw5EQsl+Fy2VkiIiJqMocLSytXrkRYWBjc3d0RGRmJAwcONHjsHXfcAUEQ6jxGjx4tHTNx4sQ6++Pj49virbS5IHaWiIiIms1F7gKa44MPPkBSUhJWrVqFyMhIrFixAnFxcThx4gS0Wm2d47du3YrKyqtzCl26dAn9+/fHX/7yF6vj4uPj8c4770i/azSa1nsTMpIGeHPqACIioiZzqM7S8uXLMWXKFEyaNAkRERFYtWoVPD09sW7dunqPDwgIgF6vlx7bt2+Hp6dnnbCk0WisjvP392+Lt9PmLEue5BWXQxQ5izcREVFTOExYqqysREZGBmJiYqRtKpUKMTExSE9Pb9I51q5di8TERHh5eVlt3717N7RaLXr16oXp06fj0qVLNs9TUVEBo9Fo9XAEQR1qOktVJhGXy6pkroaIiMgxOExYys/Ph8lkgk6ns9qu0+lgMBgaff6BAwdw7NgxPProo1bb4+Pj8e677yItLQ0vvvgi9uzZg5EjR8JkMjV4rmXLlsHX11d6hIaGtuxNtTE3FxUCamfx5sSURERETeNQY5aux9q1a9G3b18MGTLEantiYqL0c9++fdGvXz90794du3fvRnR0dL3nSk5ORlJSkvS70Wh0mMCk9dagoLQSucYK9NbLXQ0REZHyOUxnKTAwEGq1Grm5uVbbc3Nzodfb/qtfWlqKzZs3Y/LkyY2+Trdu3RAYGIhTp041eIxGo4GPj4/Vw1FI45Y4fQAREVGTOExYcnNzw6BBg5CWliZtM5vNSEtLQ1RUlM3nbtmyBRUVFXj44YcbfZ3z58/j0qVLCA4Ovu6alUiaxZvTBxARETWJw4QlAEhKSsKaNWuwYcMGZGZmYvr06SgtLcWkSZMAAOPHj0dycnKd561duxYJCQno2LGj1faSkhI89dRT2LdvH86ePYu0tDTcd9996NGjB+Li4trkPbW1q9MHsLNERETUFA41Zmns2LG4ePEiFi1aBIPBgAEDBiA1NVUa9J2VlQWVyjr/nThxAt999x2+/vrrOudTq9U4cuQINmzYgMLCQoSEhCA2NhZLly5tt3MtcckTIiKi5hFETrhz3YxGI3x9fVFUVKT48Uupx3Iw7b2DuLmLH7Y+NkzucoiIiGTT1L/fDnUZjq4flzwhIiJqHoYlJ3PtkidsKhIRETWOYcnJBNXeDVdpMqPoCmfxJiIiagzDkpPRuKjh7+kKAMjlgrpERESNYlhyQlfviOP0AURERI1hWHJC2mvGLREREZFtDEtOyNJZymVniYiIqFEMS06InSUiIqKmY1hyQjppfTh2loiIiBrDsOSEtD61A7zZWSIiImoUw5ITskxMyTFLREREjWNYckLS1AGcxZuIiKhRDEtOyDKLd0W1GcYr1TJXQ0REpGwMS07I3VUNX4+aWbw5yJuIiMg2hiUnJY1b4iBvIiIimxiWnBSXPCEiImoahiUnpZXmWmJniYiIyBaGJSdlmWsp18jOEhERkS0MS06KnSUiIqKmYVhyUjppFm92loiIiGxhWHJS0mK67CwRERHZxLDkpHTeV8cscRZvIiKihjEsOSlLZ6m8yoziCs7iTURE1BCGJSfl7qqGj7sLAI5bIiIisoVhyYlpfa4uqEtERET1Y1hyYpbpA3I5izcREVGDGJacmI6dJSIiokYxLDkxTkxJRETUOIYlJ8YlT4iIiBrHsOTE2FkiIiJqHMOSE+OSJ0RERI1zuLC0cuVKhIWFwd3dHZGRkThw4ECDx65fvx6CIFg93N3drY4RRRGLFi1CcHAwPDw8EBMTg5MnT7b221CEaztLnMWbiIiofg4Vlj744AMkJSUhJSUFBw8eRP/+/REXF4e8vLwGn+Pj44OcnBzp8fvvv1vtf+mll/Daa69h1apV2L9/P7y8vBAXF4fy8vbfbbHM4l1WaUIJZ/EmIiKql0OFpeXLl2PKlCmYNGkSIiIisGrVKnh6emLdunUNPkcQBOj1eumh0+mkfaIoYsWKFViwYAHuu+8+9OvXD++++y6ys7Px8ccft8E7kpenmwu8NbWzeHPcEhERUb0cJixVVlYiIyMDMTEx0jaVSoWYmBikp6c3+LySkhJ07doVoaGhuO+++/Dzzz9L+86cOQODwWB1Tl9fX0RGRto8Z0VFBYxGo9XDUQXVdpd4RxwREVH9HCYs5efnw2QyWXWGAECn08FgMNT7nF69emHdunX45JNP8N5778FsNmPo0KE4f/48AEjPa845AWDZsmXw9fWVHqGhodfz1mSl864Zw3WRnSUiIqJ6OUxYaomoqCiMHz8eAwYMwO23346tW7ciKCgIb7311nWdNzk5GUVFRdLj3Llzdqq47WnZWSIiIrLJYcJSYGAg1Go1cnNzrbbn5uZCr9c36Ryurq4YOHAgTp06BQDS85p7To1GAx8fH6uHo+KSJ0RERLY5TFhyc3PDoEGDkJaWJm0zm81IS0tDVFRUk85hMplw9OhRBAcHAwDCw8Oh1+utzmk0GrF///4mn9PRcWJKIiIi21zkLqA5kpKSMGHCBAwePBhDhgzBihUrUFpaikmTJgEAxo8fj06dOmHZsmUAgCVLluDWW29Fjx49UFhYiJdffhm///47Hn30UQA1d8rNnj0bzz77LHr27Inw8HAsXLgQISEhSEhIkOtttikueUJERGSbQ4WlsWPH4uLFi1i0aBEMBgMGDBiA1NRUaYB2VlYWVKqrzbLLly9jypQpMBgM8Pf3x6BBg/D9998jIiJCOmbu3LkoLS3F1KlTUVhYiOHDhyM1NbXO5JXtlaWzxAHeRERE9RNETt183YxGI3x9fVFUVORw45fO5Jfizld2w8tNjZ+XxMtdDhERUZtp6t9vhxmzRK3D0lkq5SzeRERE9WJYcnJeGhd4uakBcEFdIiKi+jAs0dXpAzhuiYiIqA6GJUKQNyemJCIiagjDEkmdJd4RR0REVBfDEnFiSiIiIhsYlkjqLPEyHBERUV0MSyQtpsv14YiIiOpiWCJovWs7S8XsLBEREf0RwxJJnaWL7CwRERHVwbBE0gDv4opqlFVyFm8iIqJrMSwROmhc4CnN4s3uEhER0bUYlgiCIEjdJd4RR0REZI1hiQAAWi55QkREVC+GJQIAdpaIiIgawLBEALjkCRERUUMYlggAlzwhIiJqCMMSAeCSJ0RERA1hWCIA7CwRERE1hGGJAFydxZudJSIiImsMSwTg6tQBxeXVuFJpkrkaIiIi5WBYIgCAt8YF7q41X4c8LqhLREQkYVgiADWzeOs4MSUREVEdDEsk4cSUREREdTEskURa8oSL6RIREUkYlkgidZY4ZomIiEjCsEQSackTdpaIiIgkDEsk4cSUREREdTEskUTrzSVPiIiI/ohhiSQ6H3aWiIiI/ohhiSSWzlLRlSqUV3EWbyIiIsABw9LKlSsRFhYGd3d3REZG4sCBAw0eu2bNGtx2223w9/eHv78/YmJi6hw/ceJECIJg9YiPj2/tt6FIPh4u0LjUfCUusrtEREQEwMHC0gcffICkpCSkpKTg4MGD6N+/P+Li4pCXl1fv8bt378aDDz6IXbt2IT09HaGhoYiNjcWFCxesjouPj0dOTo70eP/999vi7SiOIAhcUJeIiOgPHCosLV++HFOmTMGkSZMQERGBVatWwdPTE+vWrav3+I0bN+Kxxx7DgAED0Lt3b7z99tswm81IS0uzOk6j0UCv10sPf3//tng7iqTz5pInRERE13KYsFRZWYmMjAzExMRI21QqFWJiYpCent6kc5SVlaGqqgoBAQFW23fv3g2tVotevXph+vTpuHTpks3zVFRUwGg0Wj3aC3aWiIiIrDlMWMrPz4fJZIJOp7PartPpYDAYmnSOefPmISQkxCpwxcfH491330VaWhpefPFF7NmzByNHjoTJ1PAA52XLlsHX11d6hIaGtuxNKZCWnSUiIiIrLnIX0FZeeOEFbN68Gbt374a7u7u0PTExUfq5b9++6NevH7p3747du3cjOjq63nMlJycjKSlJ+t1oNLabwGTpLHF9OCIiohoO01kKDAyEWq1Gbm6u1fbc3Fzo9Xqbz33llVfwwgsv4Ouvv0a/fv1sHtutWzcEBgbi1KlTDR6j0Wjg4+Nj9Wgvro5Z4mU4IiIiwIHCkpubGwYNGmQ1ONsyWDsqKqrB57300ktYunQpUlNTMXjw4EZf5/z587h06RKCg4PtUrejYWeJiIjImsOEJQBISkrCmjVrsGHDBmRmZmL69OkoLS3FpEmTAADjx49HcnKydPyLL76IhQsXYt26dQgLC4PBYIDBYEBJSQkAoKSkBE899RT27duHs2fPIi0tDffddx969OiBuLg4Wd6j3KQlT9hZIiIiAuBgY5bGjh2LixcvYtGiRTAYDBgwYABSU1OlQd9ZWVlQqa7mvzfffBOVlZX485//bHWelJQUPPPMM1Cr1Thy5Ag2bNiAwsJChISEIDY2FkuXLoVGo2nT96YUliVPCsuqUFFtgsZFLXNFRERE8hJEURTlLsLRGY1G+Pr6oqioyOHHL4miiF4LU1FZbca3c+9EaICn3CURERG1iqb+/W7RZbjTp09jwYIFePDBB6XZs7/66iv8/PPPLauWFEMQBGi9uaAuERGRRbPD0p49e9C3b1/s378fW7dulcb/HD58GCkpKXYvkNqeFJY4MSUREVHzw9L8+fPx7LPPYvv27XBzc5O233XXXdi3b59diyN56Hw4MSUREZFFs8PS0aNHcf/999fZrtVqkZ+fb5eiSF6WzhKXPCEiImpBWPLz80NOTk6d7T/99BM6depkl6JIXlp2loiIiCTNDkuJiYmYN28eDAYDBEGA2WzG3r178eSTT2L8+PGtUSO1MQ7wJiIiuqrZYen5559H7969ERoaipKSEkRERGDEiBEYOnQoFixY0Bo1UhuTOku8DEdERNT8SSnd3NywZs0aLFy4EMeOHUNJSQkGDhyInj17tkZ9JAPLxJTsLBEREV3HDN5dunRBly5d7FkLKYRlyZOC0kpUVpvh5uJQq+IQERHZVbPD0t/+9jeb+9etW9fiYkgZ/D1d4aoWUGUScbGkAp38POQuiYiISDbNDkuXL1+2+r2qqgrHjh1DYWEh7rrrLrsVRvKpmcXbHRcKryDXWM6wRERETq3ZYWnbtm11tpnNZkyfPh3du3e3S1EkP62PBhcKryDPyHFLRETk3OwyGEWlUiEpKQmvvvqqPU5HCnB1+gDeEUdERM7NbiN3T58+jerqanudjmQmLXnCzhIRETm5Zl+GS0pKsvpdFEXk5OTgiy++wIQJE+xWGMmLS54QERHVaHZY+umnn6x+V6lUCAoKwr/+9a9G75Qjx2GZPoBzLRERkbNrdljatWtXa9RBCqPlxJREREQA7DhmidoXqbPEy3BEROTkmtRZGjhwIARBaNIJDx48eF0FkTJYljy5VFqJKpMZrmrmaiIick5NCksJCQmtXAYpjb+nG1xUAqrNIi4WVyCEE1MSEZGTalJYSklJae06SGFUKgFabw2yi8qRx7BEREROjNdWqEFBtXMtcfoAIiJyZs2+G85kMuHVV1/Fhx9+iKysLFRWVlrtLygosFtxJC+dN++IIyIianZnafHixVi+fDnGjh2LoqIiJCUl4YEHHoBKpcIzzzzTCiWSXKTpA9hZIiIiJ9bssLRx40asWbMGc+bMgYuLCx588EG8/fbbWLRoEfbt29caNZJMrk4fwM4SERE5r2aHJYPBgL59+wIAOnTogKKiIgDAPffcgy+++MK+1ZGsLNMH5HIxXSIicmLNDkudO3dGTk4OAKB79+74+uuvAQA//PADNBqNfasjWbGzRERE1IKwdP/99yMtLQ0AMGvWLCxcuBA9e/bE+PHjuTZcO8MlT4iIiJpxN9wbb7yBhx9+GC+88IK0bezYsejSpQvS09PRs2dP3Hvvva1SJMnD0lm6VFqBapMZLpzFm4iInJAgiqLYlAN9fX1RVVWF+++/H5MnT8Zdd93V2rU5DKPRCF9fXxQVFcHHx0fucuzGbBbRc8FXMJlF7EuOht7XXe6SiIiI7Kapf7+b3CowGAxYtWoVsrOzcffddyM8PBxLly7FuXPn7FIwKY9KJSCoQ+0gb04fQERETqrJYcnDwwPjx4/Hrl27cPLkSTzyyCNYu3YtwsPDER8fjy1btqCqqqo1awUArFy5EmFhYXB3d0dkZCQOHDhg8/gtW7agd+/ecHd3R9++ffHll19a7RdFEYsWLUJwcDA8PDwQExODkydPtuZbcCg6jlsiIiIn16JBKN26dcOSJUtw5swZfPXVV+jYsSMmTpyITp062bs+Kx988AGSkpKQkpKCgwcPon///oiLi0NeXl69x3///fd48MEHMXnyZPz0009ISEhAQkICjh07Jh3z0ksv4bXXXsOqVauwf/9+eHl5IS4uDuXl7KQAQJA3lzwhIiLn1uQxSw3ZtWsX1q5di61bt0Kj0eDy5cv2qq2OyMhI3HLLLXjjjTcAAGazGaGhoZg1axbmz59f5/ixY8eitLQUn3/+ubTt1ltvxYABA7Bq1SqIooiQkBDMmTMHTz75JACgqKgIOp0O69evR2JiYpPqaq9jlgDg6W1HsWl/FiYNC8Pk4eEtPo+Phyt83F3tWBkREdH1aerf72avDQcA586dwzvvvIP169cjKysLI0aMwJo1azBmzJgWF9yYyspKZGRkIDk5WdqmUqkQExOD9PT0ep+Tnp6OpKQkq21xcXH4+OOPAQBnzpyBwWBATEyMtN/X1xeRkZFIT09vMCxVVFSgouLqZSmj0djSt6V4utrO0jt7z+KdvWdbfB43tQqfzhqG3vr2FSaJiKj9a/JluMrKSmzevBmxsbEIDw/HmjVr8NBDD+HXX3/Fzp07MW7cOLi7t97dUvn5+TCZTNDpdFbbdTodDAZDvc8xGAw2j7f8sznnBIBly5bB19dXeoSGhjb7/TiK6D5aaL010LioWvxQCUClyYyM31uv60hERNRamtxZ0uv1KCsrwz333IPPPvsMcXFxUKmcc96d5ORkq46V0Whst4Hppk6+OPDPmMYPtMFyKS+XM4ETEZEDanJYWrBgAR555BEEBQW1Zj0NCgwMhFqtRm5urtX23Nxc6PX6ep+j1+ttHm/5Z25uLoKDg62OGTBgQIO1aDQaLu3SDFrvms/qIteYIyIiB9Tk1lBSUpJsQQkA3NzcMGjQIGmpFaBmgHdaWhqioqLqfU5UVJTV8QCwfft26fjw8HDo9XqrY4xGI/bv39/gOan5dD5cY46IiBxXiwZ4yyUpKQkTJkzA4MGDMWTIEKxYsQKlpaWYNGkSAGD8+PHo1KkTli1bBgB4/PHHcfvtt+Nf//oXRo8ejc2bN+PHH3/E6tWrAQCCIGD27Nl49tln0bNnT4SHh2PhwoUICQlBQkKCXG+z3bF0lnLZWSIiIgfkUGFp7NixuHjxIhYtWgSDwYABAwYgNTVVGqCdlZVlNY5q6NCh2LRpExYsWICnn34aPXv2xMcff4ybbrpJOmbu3LkoLS3F1KlTUVhYiOHDhyM1NbVVB6s7G3aWiIjIkV33PEvUvudZsoc8YzmGPJ8GlQCcfG4U1CpB7pKIiIjsvzacxZIlS1BWVlZn+5UrV7BkyZLmno6cQMcOGqgEwCwCl0rYXSIiIsfS7LC0ePFilJSU1NleVlaGxYsX26Uoal/UKgGB0oK8DEtERORYmh2WRFGEINS9jHL48GEEBATYpShqf7TSgrwc5E1ERI6lyQO8/f39IQgCBEHADTfcYBWYTCYTSkpKMG3atFYpkhyfztsdx2BkZ4mIiBxOk8PSihUrIIoi/va3v2Hx4sXw9fWV9rm5uSEsLIxzE1GD2FkiIiJH1eSwNGHCBAA1EzkOGzYMLi4ONesAyUxbuyBvXjE7S0RE5FiaPWbJ29sbmZmZ0u+ffPIJEhIS8PTTT6OystKuxVH7IXWWjOwsERGRY2l2WPr73/+OX3/9FQDw22+/YezYsfD09MSWLVswd+5cuxdI7YOOnSUiInJQzQ5Lv/76q7TI7JYtW3D77bdj06ZNWL9+Pf773//auz5qJyydpVx2loiIyMG0aOoAs9kMANixYwdGjRoFAAgNDUV+fr59q6N2w7LkSX5JJUxmThpPRESOo9lhafDgwXj22Wfxn//8B3v27MHo0aMBAGfOnJHWaCP6o45ebhAEwGQWcamUl+KIiMhxNDssrVixAgcPHsTMmTPxz3/+Ez169AAAfPTRRxg6dKjdC6T2wUWtkmbx5oK6RETkSJp9/3+/fv1w9OjROttffvllqNVquxRF7ZPWW4OLxRW1cy35Nno8ERGRErR4sqSMjAxpCoGIiAjcfPPNdiuK2iettwY/g50lIiJyLM0OS3l5eRg7diz27NkDPz8/AEBhYSHuvPNObN68GUFBQfaukdoJyyBvTh9ARESOpNljlmbNmoWSkhL8/PPPKCgoQEFBAY4dOwaj0Yh//OMfrVEjtRNab04fQEREjqfZnaXU1FTs2LEDffr0kbZFRERg5cqViI2NtWtx1L5o2VkiIiIH1OzOktlshqura53trq6u0vxLRPWxdJa45AkRETmSZoelu+66C48//jiys7OlbRcuXMATTzyB6OhouxZH7QvHLBERkSNqdlh64403YDQaERYWhu7du6N79+4IDw+H0WjE66+/3ho1UjthWfLkYnEFzJzFm4iIHESzxyyFhobi4MGD2LFjB44fPw4A6NOnD2JiYuxeHLUvgR00EASg2iyioKxSmqSSiIhIyVo0z5IgCLj77rtx991327seasdc1Sp09HJDfkklco3lDEtEROQQmnwZbufOnYiIiIDRaKyzr6ioCDfeeCO+/fZbuxZH7Y/Wm+OWiIjIsTQ5LK1YsQJTpkyBj49PnX2+vr74+9//juXLl9u1OGp/pHFLnMWbiIgcRJPD0uHDhxEfH9/g/tjYWGRkZNilKGq/ODElERE5miaHpdzc3HrnV7JwcXHBxYsX7VIUtV+cPoCIiBxNk8NSp06dcOzYsQb3HzlyBMHBwXYpitovdpaIiMjRNDksjRo1CgsXLkR5ed0/cleuXEFKSgruueceuxZH7Q+XPCEiIkfT5KkDFixYgK1bt+KGG27AzJkz0atXLwDA8ePHsXLlSphMJvzzn/9stUKpfeCSJ0RE5GiaHJZ0Oh2+//57TJ8+HcnJyRDFmhmYBUFAXFwcVq5cCZ1O12qFUvtgGbN0saRmFm+VSpC5IiIiItuaNSll165d8eWXX+Ly5cs4deoURFFEz5494e/v31r1UTtjmYiyyiTiclklOnJiSiIiUrhmrw0HAP7+/rjlllswZMiQNgtKBQUFGDduHHx8fODn54fJkyejpKTE5vGzZs1Cr1694OHhgS5duuAf//gHioqKrI4TBKHOY/Pmza39dpyWm0vNLN4Axy0REZFjaNFyJ3IYN24ccnJysH37dlRVVWHSpEmYOnUqNm3aVO/x2dnZyM7OxiuvvIKIiAj8/vvvmDZtGrKzs/HRRx9ZHfvOO+9YzSHl5+fXmm/F6QV5a3CptBJ5xRXowxsoiYhI4RwiLGVmZiI1NRU//PADBg8eDAB4/fXXMWrUKLzyyisICQmp85ybbroJ//3vf6Xfu3fvjueeew4PP/wwqqur4eJy9a37+flBr9e3/hshADV3xB03FHP6ACIicggtugzX1tLT0+Hn5ycFJQCIiYmBSqXC/v37m3yeoqIi+Pj4WAUlAJgxYwYCAwMxZMgQrFu3Thq83pCKigoYjUarBzWdrvaOuIu8DEdERA7AITpLBoMBWq3WapuLiwsCAgJgMBiadI78/HwsXboUU6dOtdq+ZMkS3HXXXfD09MTXX3+Nxx57DCUlJfjHP/7R4LmWLVuGxYsXN/+NEICr68Oxs0RERI5A1s7S/Pnz6x1gfe3j+PHj1/06RqMRo0ePRkREBJ555hmrfQsXLsSwYcMwcOBAzJs3D3PnzsXLL79s83zJyckoKiqSHufOnbvuGp2JtOQJF9MlIiIHIGtnac6cOZg4caLNY7p16wa9Xo+8vDyr7dXV1SgoKGh0rFFxcTHi4+Ph7e2Nbdu22VzfDgAiIyOxdOlSVFRUQKOp/7Z2jUbT4D5qnLTkSTE7S0REpHyyhqWgoCAEBQU1elxUVBQKCwuRkZGBQYMGAQB27twJs9mMyMjIBp9nNBoRFxcHjUaDTz/9FO7u7o2+1qFDh+Dv788w1Iq07CwREZEDcYgxS3369EF8fDymTJmCVatWoaqqCjNnzkRiYqJ0J9yFCxcQHR2Nd999F0OGDIHRaERsbCzKysrw3nvvWQ3EDgoKglqtxmeffYbc3FzceuutcHd3x/bt2/H888/jySeflPPttnvaawZ4i6IIQeAs3kREpFwOEZYAYOPGjZg5cyaio6OhUqkwZswYvPbaa9L+qqoqnDhxAmVlZQCAgwcPSnfK9ejRw+pcZ86cQVhYGFxdXbFy5Uo88cQTEEURPXr0wPLlyzFlypS2e2NOKKg2LFWazCgsq4J/7SSVRERESiSIjd0nT40yGo3w9fWVpiagxg1c8jUul1Xhf7NHoJfeW+5yiIjICTX177dDzLNE7Y/ljjhOH0BERErHsESysFyK4/pwRESkdAxLJAutNztLRETkGBiWSBY6Hy55QkREjoFhiWQhTUzJzhIRESkcwxLJQlryhJ0lIiJSOIYlkgUX0yUiIkfBsESysAzwzqudxZuIiEipGJZIFtIs3tVmGK9Uy1wNERFRwxiWSBburmr4eboCAHKLeSmOiIiUi2GJZGO5Iy7PyEHeRESkXAxLJBsueUJERI6AYYlkwyVPiIjIETAskWy45AkRETkChiWSDZc8ISIiR8CwRLJhZ4mIiBwBwxLJxtJZ4pglIiJSMoYlks21nSXO4k1ERErFsESysawPV1FthrGcs3gTEZEyMSyRbNxd1fBxdwEAXOQs3kREpFAMSySrqxNTctwSEREpE8MSyUorDfJmZ4mIiJSJYYlkdXWQNztLRESkTAxLJCups8SwRERECsWwRLKSOku8DEdERArFsESykpY8YWeJiIgUimGJZMXOEhERKR3DEslKd82YJc7iTURESsSwRLKydJauVJlQUsFZvImISHkYlkhWHm5qeNfO4s3pA4iISIkYlkh2Wm9OTElERMrlMGGpoKAA48aNg4+PD/z8/DB58mSUlJTYfM4dd9wBQRCsHtOmTbM6JisrC6NHj4anpye0Wi2eeuopVFfzclBbsix5wrmWiIhIiVzkLqCpxo0bh5ycHGzfvh1VVVWYNGkSpk6dik2bNtl83pQpU7BkyRLpd09PT+lnk8mE0aNHQ6/X4/vvv0dOTg7Gjx8PV1dXPP/88632XsgaO0tERKRkDhGWMjMzkZqaih9++AGDBw8GALz++usYNWoUXnnlFYSEhDT4XE9PT+j1+nr3ff311/jll1+wY8cO6HQ6DBgwAEuXLsW8efPwzDPPwM3NrVXeD1nTcjFdIiJSMIe4DJeeng4/Pz8pKAFATEwMVCoV9u/fb/O5GzduRGBgIG666SYkJyejrKzM6rx9+/aFTqeTtsXFxcFoNOLnn39u8JwVFRUwGo1WD2q5q50lhiUiIlIeh+gsGQwGaLVaq20uLi4ICAiAwWBo8HkPPfQQunbtipCQEBw5cgTz5s3DiRMnsHXrVum81wYlANLvts67bNkyLF68uKVvh/7gameJl+GIiEh5ZA1L8+fPx4svvmjzmMzMzBaff+rUqdLPffv2RXBwMKKjo3H69Gl07969xedNTk5GUlKS9LvRaERoaGiLz+fsdLWdpYvsLBERkQLJGpbmzJmDiRMn2jymW7du0Ov1yMvLs9peXV2NgoKCBscj1ScyMhIAcOrUKXTv3h16vR4HDhywOiY3NxcAbJ5Xo9FAo9E0+XXJNq10Nxw7S0REpDyyhqWgoCAEBQU1elxUVBQKCwuRkZGBQYMGAQB27twJs9ksBaCmOHToEAAgODhYOu9zzz2HvLw86TLf9u3b4ePjg4iIiGa+G2opy5il0sqaWbw7aBzi6jARETkJhxjg3adPH8THx2PKlCk4cOAA9u7di5kzZyIxMVG6E+7ChQvo3bu31Ck6ffo0li5dioyMDJw9exaffvopxo8fjxEjRqBfv34AgNjYWEREROCRRx7B4cOH8b///Q8LFizAjBkz2DlqQ14aFykgsbtERERK4xBhCai5q613796Ijo7GqFGjMHz4cKxevVraX1VVhRMnTkh3u7m5uWHHjh2IjY1F7969MWfOHIwZMwafffaZ9By1Wo3PP/8carUaUVFRePjhhzF+/HireZmobWhrF9Tl9AFERKQ0gsil3q+b0WiEr68vioqK4OPjI3c5DilxdTr2/VaAfycOwH0DOsldDhEROYGm/v12mM4StW9c8oSIiJSKYYkUgUueEBGRUjEskSJovbnkCRERKRPDEimCZYA3O0tERKQ0DEukCJbOEteHIyIipWFYIkXQWTpLvAxHREQKw7BEimBZ8qSkohqlFdUyV0NERHQVwxIpQgeNC7zc1AB4KY6IiJSFYYkUgwvqEhGREjEskWJY5lrKZWeJiIgUhGGJFIOdJSIiUiKGJVIMnTSLNztLRESkHAxLpBjSxJTsLBERkYIwLJFicGJKIiJSIoYlUgxLZymXnSUiIlIQhiVSDHaWiIhIiRiWSDEsS54Ul1fjSqVJ5mqIiIhqMCyRYnTQuMDD1TKLNy/FERGRMjAskWIIgiB1l3K5oC4RESkEwxIpytVxS+wsERGRMjAskaJo2VkiIiKFYVgiRWFniYiIlIZhiRTF0lm6yM4SEREpBMMSKYo0wJudJSIiUgiGJVIU6TIcO0tERKQQDEukKDoueUJERArjIncBRNcKqu0sGcurUV5lgnvtJJVKUFZZje9PXUKVyXxd5+na0QsRIT52qoqIiFobwxIpio+7C9xdVSivMiPPWIEuHT3lLkmy5LNfsPmHc9d9HheVgNTZI9BD28EOVRERUWtjWCJFEQQBWm93ZBWUIa+4XDFh6UqlCZ8dzgYADAj1g5u6ZVewz18uQ3ZROd7+9je8MKafPUskIqJWwrBEiqPz0SCroExRE1PuyMxFaaUJnf09sO2xoRAEoUXn+fFsAf68Kh1bD15AUuwN0oB2IiJSLg7wJsVR4sSUnxy6AAC4b0BIi4MSAAwOC8Cgrv6oNJmxfu9ZO1VHREStyWHCUkFBAcaNGwcfHx/4+flh8uTJKCkpafD4s2fPQhCEeh9btmyRjqtv/+bNm9viLVEDLBNT5hUro7N0ubQSu09cBAAkDOh03eebOqIbAOC9fb+jpKL6us9HRESty2HC0rhx4/Dzzz9j+/bt+Pzzz/HNN99g6tSpDR4fGhqKnJwcq8fixYvRoUMHjBw50urYd955x+q4hISEVn43ZIuls6SU6QO+PJaDarOIPsE+6Knzvu7z3d1Hh26BXjCWV+MDOwwYJyKi1uUQYSkzMxOpqal4++23ERkZieHDh+P111/H5s2bkZ2dXe9z1Go19Hq91WPbtm3461//ig4drO9C8vPzszrO3Z3jSOSk9a5d8kQhnaVPDtV8xxIGhNjlfCqVgCm13aW13/523VMREBFR63KIsJSeng4/Pz8MHjxY2hYTEwOVSoX9+/c36RwZGRk4dOgQJk+eXGffjBkzEBgYiCFDhmDdunUQRdHmuSoqKmA0Gq0eZD86H+V0li4UXsGBMwUQBODe/vYJSwBw/8BOCOygQXZROb44kmO38xIRkf05RFgyGAzQarVW21xcXBAQEACDwdCkc6xduxZ9+vTB0KFDrbYvWbIEH374IbZv344xY8bgsccew+uvv27zXMuWLYOvr6/0CA0Nbd4bIpuUNGbp09qu0pCwAIT4edjtvO6uakwaFgYAWLXndKMBnYiI5CNrWJo/f36Dg7Atj+PHj1/361y5cgWbNm2qt6u0cOFCDBs2DAMHDsS8efMwd+5cvPzyyzbPl5ycjKKiIulx7hzHndiTrnbMUmFZFcqrTLLWYrkLLmHg9Q/s/qOHI7vC002N44ZifHsy3+7nJyIi+5B1nqU5c+Zg4sSJNo/p1q0b9Ho98vLyrLZXV1ejoKAAer2+0df56KOPUFZWhvHjxzd6bGRkJJYuXYqKigpoNJp6j9FoNA3uo+vn4+ECNxcVKqvNuFhcgdAAeSamPGEoxnFDMVzVAkbe1Pj3rLl8PV2ReEsXrNt7Bqu/+Q0jbgiy+2sQEdH1kzUsBQUFISio8T8QUVFRKCwsREZGBgYNGgQA2LlzJ8xmMyIjIxt9/tq1a/GnP/2pSa916NAh+Pv7MwzJSBAE6Hw0OFdwBXnF5bKFJUtX6Y5eWvh5urXKa/xteBg2pJ/Fd6fycexCEW7q5Nsqr0NERC3nEGOW+vTpg/j4eEyZMgUHDhzA3r17MXPmTCQmJiIkpGbQ7YULF9C7d28cOHDA6rmnTp3CN998g0cffbTOeT/77DO8/fbbOHbsGE6dOoU333wTzz//PGbNmtUm74saJk1MKdMs3mazKN0Fd5+d7oKrT2d/T9zTLxgAsPqb31rtdYiIqOUcIiwBwMaNG9G7d29ER0dj1KhRGD58OFavXi3tr6qqwokTJ1BWVmb1vHXr1qFz586IjY2tc05XV1esXLkSUVFRGDBgAN566y0sX74cKSkprf5+yDZd7SBvue6Iy8i6jAuFV9BB44KYPrpWfS3LJJVfHM3BuYKyRo4mIqK25jBrwwUEBGDTpk0N7g8LC6v3jqLnn38ezz//fL3PiY+PR3x8vN1qJPu5uuSJPJ0lyyW4uBv1cHdVt+pr3Rjii9t6BuLbk/lY+90ZPPOnG1v19YiIqHkcprNEzkXO6QOqTGZp7qPWvAR3rb+P6A4A+OCHc7hcWtkmr0lERE3DsESKJOeSJ9+evIjLZVUI7KDB0O4d2+Q1h/XoiIhgH1ypMuG9fb+3yWsSEVHTMCyRIsm55MnHP9UM7L6nXzBc1G3zPxFBEPD322vGLm1IPyv7/FJERHQVwxIpklxLnpRWVGP7L7kAWmciSltG9Q1GJz8P5JdUYuvBC2362kRE1DCGJVIkS2fpclkVKqrbrsuy/ZdcXKkyIayjJ/p3bts5j1zVKkweHg4AWPPtbzCZuQQKEZESMCyRIvl5usKt9hJYW16K+7j2Lrg/DegEQRDa7HUtxt4SCl8PV5zJL5U6XEREJC+GJVIkQRAQ5N22d8RdKqmQ1mhrq7vg/shL44JHbu0KAHjrGy6wS0SkBAxLpFiWiSnz2mjc0hdHc2Ayi+jbyRfdgzq0yWvWZ8LQMLi5qPBTViF+/P2ybHUQEVENhiVSrLaemPLjn2ouwcnVVbII8tZgzM2dAQBv7eESKEREcmNYIsW62llq/bCUdakMB7MKIQjAn/rLG5YAYMpt4RAEYEdmLk7lFctdDhGRU2NYIsXStuH0AZ8erukqDe3eUXpdOXUL6oDYiJo16dZ8c0bmaoiInBvDEimWto0GeIuiiI8P1UxEed+Atp1byZaptUugbPvpQpuN2yIioroYlkix2qqz9EuOEafySuDmokL8TfpWfa3mGNTVH4O7+qPSZMY735+VuxwiIqfFsESK1VZLnnxS21WK7q2Fj7trq75Wc/399pru0nv7fkdJRbXM1RAROSeGJVIsy5Inl0orUVltbpXXMJtFfKrAS3AW0b216B7kheLyamw+kCV3OURETolhiRTL39MVruqaWbTzS1qnu7T/TAEMxnJ4u7vgjl5BrfIa10OlEjB1RM0Cu+u+O4MqU+uERiIiahjDEimWIAjSXEutNW7JchfcqJuC4e6qbpXXuF4JAzshyFuD7KJyfH4kW+5yiIicDsMSKVprLnlSUW3CF0dyAMg/EaUtGhc1Jg4NA1AzSSWXQCEialsMS6Ro0sSUrRCWdp+4CGN5NXQ+GkR262j389vTw5Fd4eWmxnFDMb6pXb+OiIjaBsMSKZq05EkrXIazDOz+U/8QqFWC3c9vT76erkgc0gUAsPqb0zJXQ0TkXBiWSNFaa8mT4vIq7MjMBaDMu+Dq87fh4XBRCdh76hKOXSiSuxwiIqfBsESKJg3wLrZvZ+l/P+eiotqM7kFeuDHEx67nbi2d/Dxwb+26dc9+8QsKyyplqaOwrBJzPjyM0a99i6+O5nAMFRG1ewxLpGhBrdRZ+uRQzV1w9w3oBEFQ9iW4a027vTvc1Crs+60Asa9+g53Hc9v09Xcez8Xdr36D/x48j5+zjZi+8SASV+9jp4uI2jWGJVI0nWXMkh07S3nF5dh7qmaQtJLvgqtPL703tkyLQvcgL+QVV+Bv63/EvI+OoLi8qlVft7i8CnM/Ooy/rf8RF4sr0EPbAVNHdIPGRYX9Zwpw7xvfYf5/j7T6bOtERHJgWCJF09Z2li6VVtptQsbPD+fALAIDQv3QtaOXXc7ZlvqH+uGLf9yGR4eHQxCAD348h/gV3+L7U61zl9zeU/mIX/EtPvzxPAQBmDqiGz6fNRxPj+qDnU/egT/1D4EoApt/OIc7X9mNVXtOo6La1Cq1EBHJgWGJFC3A0w0uKgGiaL9ZvC2X4BIcrKt0LXdXNRbcE4EPpkahS4AnLhRewUNv70fKJ8dQVmmfNeTKKquR8skxjHt7Py4UXkGXAE98MDUKT4/qI03g2cnPA689OBD/nR6F/p19UVJRjRe+Oo67l3+D1GMGjmcionaBYYkUTaUSrk5MaYdxS2fyS3H4fBHUKgGj+zluWLIYEh6Arx6/DQ/fWjOtwIb03zHq398i4/eC6zpvxu8FGPXvb7Eh/XcAwMO3dsFXj9+GIeEB9R4/qGsAtj02DP/6S39ovTXIKijDtPcy8NCa/fgl23hdtRARyY1hiRRP62MZt3T9YcnSVRrWI1AKYY7OS+OCZxP64t2/DUGwrzvOXirDX1alY9lXmSivat7lsPIqE5Z9lYm/rErH2UtlCPZ1x38mD8GzCX3hpXGx+VyVSsCYQZ2x68k7MOuuHtC4qJD+2yWMfv1bJG890mrr+xERtTaGJVI8bW2oud714URRxCe1E1E68iW4hoy4IQips0dgzM2dYRZrlkb50xvfNflOtaPni/CnN77DW3t+g1kExtzcGamzR+C2ns1bYNhL44I5sb2QNud23NMvGKIIvH/gHO58eTdWf8PxTETkeBiWSPHsteTJ0QtFOJNfCndXFWJv1NujNMXx9XDFv/7aH6sfGYTADm74NbcECSv3YsWOXxscIF9lMuPV7b/i/v/bi19zSxDYwQ2rHxmEf/21P3w9XFtcS2d/T7zx0M3YMi0KfTv5oriiGs9/eRyxr36Dr3/meCYichwMS6R49lry5OOfarpKMX106NDIJSVHF3ujHl8/cTtG9dWj2ixixY6TtWGo2Oq4E4Zi3P9/e/HvtJOoNosY3TcYXz9xu13D5C1hAfhkxjC8/Od+CPLW4PdLZZj6nww8vHY/dh3Pw7mCMpjMDE5EpFwOE5aee+45DB06FJ6envDz82vSc0RRxKJFixAcHAwPDw/ExMTg5MmTVscUFBRg3Lhx8PHxgZ+fHyZPnoySkpJWeAfUUvboLFVWm/HZEcslOMdY3uR6BXi5YeVDN+O1BwfC18MVxy4Ycc9r3+GtPadRWW3Gqj2nce/r3+HYBSP8PF3x+oMDsXLczQjwcrN7LSqVgL8MDsWuJ+/AjDu7w81Fhb2nLmHS+h9w20u70GdhKqL/tRuPbvgBz37+C97b9zv2nsrHhcIrMDNIEZHMBNFBeuEpKSnw8/PD+fPnsXbtWhQWFjb6nBdffBHLli3Dhg0bEB4ejoULF+Lo0aP45Zdf4O5e060YOXIkcnJy8NZbb6GqqgqTJk3CLbfcgk2bNjW5NqPRCF9fXxQVFcHHxzGWznAku47nYdL6H3BjiA+++Mdt9R5zpdKEC4VlOH/5Ci4UXsGFP/wz11gOswj4ebriwNMxcHNxmP9OsIs8Yznmbz2KncfzANRcriu6UjOR5V29tXjhgb7SQPq2cK6gDK+lncRP5wqRdakMlTbm0NK4qNC1oyfCOnohPMgL4R29EBbohfBAL2i9NQ41AzsRKUtT/347TFiyWL9+PWbPnt1oWBJFESEhIZgzZw6efPJJAEBRURF0Oh3Wr1+PxMREZGZmIiIiAj/88AMGDx4MAEhNTcWoUaNw/vx5hIQ0bRAww1LrOnahCPe8/h0CvNyw7IG+dYLQhcIrKChtfJ00jYsKT8b2wpQR3dqgauURRRFbfjyPJZ//gpKKanTQuGDRvRH4y6DOsgYOk1lEduEVnL1UirP5pTiTXyb9nFVQhmobnSV3VxV83F3h7qqGu6sKHq5qaFzVcHdVw8NVVbPdRQ0PNzU0riq4u/xhn6saGhcVVCoBakGAWiVIP6uEmo6YWiVAVbtPLQgQBNT8fM12y/swiyJM5pqHKAKm2t/N1/zTbK7Zbq49ziSKteO3al7Tcl7hDz9bXkslAIJQ+9rX7FOpAAE1tQgCYPk3evVfrSD9fHWfUOe4q1uuas7Xg9mVWovOxx2uavv+h25T/36324EbZ86cgcFgQExMjLTN19cXkZGRSE9PR2JiItLT0+Hn5ycFJQCIiYmBSqXC/v37cf/999d77oqKClRUXL0kZDRyHpnWpKvteBSUVuLv/8lo8DhvjQs6+Xugk59Hvf8M9NJApXLe/ycXBAF/vSUUQ3t0ROoxA0b2DUYnPw+5y4JaJSA0wBOhAZ517ryrNplxofAKzuRbglQpzlwqw9n8Upy/XIbyKjPKqzglAZEz2DnndnQL6iDLa7fbsGQwGAAAOp3OartOp5P2GQwGaLVaq/0uLi4ICAiQjqnPsmXLsHjxYjtXTA0J7OCG2AgdDmZdtg5Afh7o5O8pbbueO7ecSWd/Tzx6m2N011zUKnTt6FWzLE0v632V1WbkFF1BSUU1yqvMqKgy4UqVqTZAWX42oaLajCuVNT+XV5twpdKM8mqTdHxFlbmm8yNC6vaYxWu7QbimWyTWdotg1S2C+McuFGq7PsI1XairnSKVVRerpjMkArWvW1NH3Z9rfxevdqiu1gnp7kIR1j8DgCjW3Qbx2v1/2NeAxq5DiI2eoXGiKH93yrGutzgPOTvgsoal+fPn48UXX7R5TGZmJnr37t1GFTVNcnIykpKSpN+NRiNCQ0NlrKh9EwQBq8cPbvxAcipuLiqHXNuPiByPrGFpzpw5mDhxos1junVr2X8B6/U1tz7n5uYiODhY2p6bm4sBAwZIx+Tl5Vk9r7q6GgUFBdLz66PRaKDRtI/Zn4mIiMg2WcNSUFAQgoKaNztwU4WHh0Ov1yMtLU0KR0ajEfv378f06dMBAFFRUSgsLERGRgYGDRoEANi5cyfMZjMiIyNbpS4iIiJyLA5z/3RWVhYOHTqErKwsmEwmHDp0CIcOHbKaE6l3797Ytm0bgJpLN7Nnz8azzz6LTz/9FEePHsX48eMREhKChIQEAECfPn0QHx+PKVOm4MCBA9i7dy9mzpyJxMTEJt8JR0RERO2bwwzwXrRoETZs2CD9PnDgQADArl27cMcddwAATpw4gaKiq+tgzZ07F6WlpZg6dSoKCwsxfPhwpKamSnMsAcDGjRsxc+ZMREdHQ6VSYcyYMXjttdfa5k0RERGR4jncPEtKxHmWiIiIHE9T/347zGU4IiIiIjkwLBERERHZwLBEREREZAPDEhEREZENDEtERERENjAsEREREdnAsERERERkA8MSERERkQ0MS0REREQ2OMxyJ0pmmQTdaDTKXAkRERE1leXvdmOLmTAs2UFxcTEAIDQ0VOZKiIiIqLmKi4vh6+vb4H6uDWcHZrMZ2dnZ8Pb2hiAIdjuv0WhEaGgozp07xzXn7ICfp/3ws7Qvfp72w8/Svtr75ymKIoqLixESEgKVquGRSews2YFKpULnzp1b7fw+Pj7t8ksqF36e9sPP0r74edoPP0v7as+fp62OkgUHeBMRERHZwLBEREREZAPDkoJpNBqkpKRAo9HIXUq7wM/TfvhZ2hc/T/vhZ2lf/DxrcIA3ERERkQ3sLBERERHZwLBEREREZAPDEhEREZENDEtERERENjAsKdjKlSsRFhYGd3d3REZG4sCBA3KX5HCeeeYZCIJg9ejdu7fcZTmMb775Bvfeey9CQkIgCAI+/vhjq/2iKGLRokUIDg6Gh4cHYmJicPLkSXmKVbjGPsuJEyfW+a7Gx8fLU6zCLVu2DLfccgu8vb2h1WqRkJCAEydOWB1TXl6OGTNmoGPHjujQoQPGjBmD3NxcmSpWtqZ8nnfccUed7+e0adNkqrjtMSwp1AcffICkpCSkpKTg4MGD6N+/P+Li4pCXlyd3aQ7nxhtvRE5OjvT47rvv5C7JYZSWlqJ///5YuXJlvftfeuklvPbaa1i1ahX2798PLy8vxMXFoby8vI0rVb7GPksAiI+Pt/quvv/++21YoePYs2cPZsyYgX379mH79u2oqqpCbGwsSktLpWOeeOIJfPbZZ9iyZQv27NmD7OxsPPDAAzJWrVxN+TwBYMqUKVbfz5deekmmimUgkiINGTJEnDFjhvS7yWQSQ0JCxGXLlslYleNJSUkR+/fvL3cZ7QIAcdu2bdLvZrNZ1Ov14ssvvyxtKywsFDUajfj+++/LUKHj+ONnKYqiOGHCBPG+++6TpR5Hl5eXJwIQ9+zZI4pizffQ1dVV3LJli3RMZmamCEBMT0+Xq0yH8cfPUxRF8fbbbxcff/xx+YqSGTtLClRZWYmMjAzExMRI21QqFWJiYpCeni5jZY7p5MmTCAkJQbdu3TBu3DhkZWXJXVK7cObMGRgMBqvvqa+vLyIjI/k9baHdu3dDq9WiV69emD59Oi5duiR3SQ6hqKgIABAQEAAAyMjIQFVVldV3s3fv3ujSpQu/m03wx8/TYuPGjQgMDMRNN92E5ORklJWVyVGeLLiQrgLl5+fDZDJBp9NZbdfpdDh+/LhMVTmmyMhIrF+/Hr169UJOTg4WL16M2267DceOHYO3t7fc5Tk0g8EAAPV+Ty37qOni4+PxwAMPIDw8HKdPn8bTTz+NkSNHIj09HWq1Wu7yFMtsNmP27NkYNmwYbrrpJgA13003Nzf4+flZHcvvZuPq+zwB4KGHHkLXrl0REhKCI0eOYN68eThx4gS2bt0qY7Vth2GJ2rWRI0dKP/fr1w+RkZHo2rUrPvzwQ0yePFnGyoisJSYmSj/37dsX/fr1Q/fu3bF7925ER0fLWJmyzZgxA8eOHeNYRDtp6POcOnWq9HPfvn0RHByM6OhonD59Gt27d2/rMtscL8MpUGBgINRqdZ07N3Jzc6HX62Wqqn3w8/PDDTfcgFOnTsldisOzfBf5PW0d3bp1Q2BgIL+rNsycOROff/45du3ahc6dO0vb9Xo9KisrUVhYaHU8v5u2NfR51icyMhIAnOb7ybCkQG5ubhg0aBDS0tKkbWazGWlpaYiKipKxMsdXUlKC06dPIzg4WO5SHF54eDj0er3V99RoNGL//v38ntrB+fPncenSJX5X6yGKImbOnIlt27Zh586dCA8Pt9o/aNAguLq6Wn03T5w4gaysLH4369HY51mfQ4cOAYDTfD95GU6hkpKSMGHCBAwePBhDhgzBihUrUFpaikmTJsldmkN58sknce+996Jr167Izs5GSkoK1Go1HnzwQblLcwglJSVW/+V45swZHDp0CAEBAejSpQtmz56NZ599Fj179kR4eDgWLlyIkJAQJCQkyFe0Qtn6LAMCArB48WKMGTMGer0ep0+fxty5c9GjRw/ExcXJWLUyzZgxA5s2bcInn3wCb29vaRySr68vPDw84Ovri8mTJyMpKQkBAQHw8fHBrFmzEBUVhVtvvVXm6pWnsc/z9OnT2LRpE0aNGoWOHTviyJEjeOKJJzBixAj069dP5urbiNy341HDXn/9dbFLly6im5ubOGTIEHHfvn1yl+Rwxo4dKwYHB4tubm5ip06dxLFjx4qnTp2SuyyHsWvXLhFAnceECRNEUayZPmDhwoWiTqcTNRqNGB0dLZ44cULeohXK1mdZVlYmxsbGikFBQaKrq6vYtWtXccqUKaLBYJC7bEWq73MEIL7zzjvSMVeuXBEfe+wx0d/fX/T09BTvv/9+MScnR76iFayxzzMrK0scMWKEGBAQIGo0GrFHjx7iU089JRYVFclbeBsSRFEU2zKcERERETkSjlkiIiIisoFhiYiIiMgGhiUiIiIiGxiWiIiIiGxgWCIiIiKygWGJiIiIyAaGJSIiIiIbGJaIiIiIbGBYIiKyA0EQ8PHHH8tdBhG1AoYlInJ4EydOhCAIdR7x8fFyl0ZE7QAX0iWidiE+Ph7vvPOO1TaNRiNTNUTUnrCzRETtgkajgV6vt3r4+/sDqLlE9uabb2LkyJHw8PBAt27d8NFHH1k9/+jRo7jrrrvg4eGBjh07YurUqSgpKbE6Zt26dbjxxhuh0WgQHByMmTNnWu3Pz8/H/fffD09PT/Ts2ROffvqptO/y5csYN24cgoKC4OHhgZ49e9YJd0SkTAxLROQUFi5ciDFjxuDw4cMYN24cEhMTkZmZCQAoLS1FXFwc/P398cMPP2DLli3YsWOHVRh68803MWPGDEydOhVHjx7Fp59+ih49eli9xuLFi/HXv/4VR44cwahRozBu3DgUFBRIr//LL7/gq6++QmZmJt58800EBga23QdARC0nEhE5uAkTJohqtVr08vKyejz33HOiKIoiAHHatGlWz4mMjBSnT58uiqIorl69WvT39xdLSkqk/V988YWoUqlEg8EgiqIohoSEiP/85z8brAGAuGDBAun3kpISEYD41VdfiaIoivfee684adIk+7xhImpTHLNERO3CnXfeiTfffNNqW0BAgPRzVFSU1b6oqCgcOnQIAJCZmYn+/fvDy8tL2j9s2DCYzWacOHECgiAgOzsb0dHRNmvo16+f9LOXlxd8fHyQl5cHAJg+fTrGjBmDgwcPIjY2FgkJCRg6dGiL3isRtS2GJSJqF7y8vOpcFrMXDw+PJh3n6upq9bsgCDCbzQCAkSNH4vfff8eXX36J7du3Izo6GjNmzMArr7xi93qJyL44ZomInMK+ffvq/N6nTx8AQJ8+fXD48GGUlpZK+/fu3QuVSoVevXrB29sbYWFhSEtLu64agoKCMGHCBLz33ntYsWIFVq9efV3nI6K2wc4SEbULFRUVMBgMVttcXFykQdRbtmzB4MGDMXz4cGzcuBEHDhzA2rVrAQDjxo1DSkoKJkyYgGeeeQYXL17ErFmz8Mgjj0Cn0wEAnnnmGUybNg1arRYjR45EcXEx9u7di1mzZjWpvkWLFmHQoEG48cYbUVFRgc8//1wKa0SkbAxLRNQupKamIjg42Gpbr169cPz4cQA1d6pt3rwZjz32GIKDg/H+++8jIiICAODp6Yn//e9/ePzxx3HLLbfA09MTY8aMwfLly6VzTZgwAeXl5Xj11Vfx5JNPIjAwEH/+85+bXJ+bmxuSk5Nx9uxZeHh44LbbbsPmzZvt8M6JqLUJoiiKchdBRNSaBEHAtm3bkJCQIHcpROSAOGaJiIiIyAaGJSIiIiIbOGaJiNo9jjYgouvBzhIRERGRDQxLRERERDYwLBERERHZwLBEREREZAPDEhEREZENDEtERERENjAsEREREdnAsERERERkw/8DTjlpQHh72fEAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plotting how the value of the cost function decreases during the minimization procedure.\n", "import matplotlib.pyplot as plt\n", "\n", "x_values = list(range(len(cost_values)))\n", "y_values = cost_values\n", "\n", "plt.plot(x_values, y_values)\n", "\n", "plt.xlabel(\"Epochs\")\n", "plt.ylabel(\"Cost Value\")" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "We see that the final value or our cost function, $\\bra{\\psi}Z\\ket{\\psi} = -1$ demonstrating that the qubit is in the $\\ket{1}$ state." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" }, "vscode": { "interpreter": { "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" } } }, "nbformat": 4, "nbformat_minor": 4 }