{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Variational Quantum Eigensolver" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A common application of the Variational Quantum Eigensolver (VQE) algorithm is to compute the ground state energy of a molecular system. The code below demonstrates how to perform classical preprocessing for a $H_2$ molecule (i.e. obtain the integrals from a Hartree-Fock computation to build the molecular Hamiltonian), prepare the initial Hartree-Fock state on the quantum register, add the parameterized UCCSD ansatz to the kernel, and select the COBYLA optimizer. We are then ready to call `cudaq:vqe` to estimate the minimum energy of the system." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!pip install openfermionpyscf==0.5 matplotlib==3.8.4 scipy==1.13.0" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import cudaq\n", "import matplotlib.pyplot as plt\n", "from scipy.optimize import minimize\n", "import numpy as np\n", "\n", "# Single precision\n", "cudaq.set_target(\"nvidia\")\n", "# Double precision\n", "#cudaq.set_target(\"nvidia-fp64\")" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "The problem of interest here is a chain of hydrogen atoms seperated along the z-axis at a fixed interval called the bond distance. \n", "\n", "The interatomic electrostatic forces due to the electrons and protons and the shielding by the neutrons creates a chemical system whose energy can be minimised to find a stable configuration. \n", "\n", "Let us first begin by defining the molecule and other metadata about the problem.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Number of hydrogen atoms.\n", "hydrogen_count = 2\n", "\n", "# Distance between the atoms in Angstroms.\n", "bond_distance = 0.7474\n", "\n", "# Define a linear chain of Hydrogen atoms\n", "geometry = [('H', (0, 0, i * bond_distance)) for i in range(hydrogen_count)]\n", "\n", "molecule, data = cudaq.chemistry.create_molecular_hamiltonian(\n", " geometry, 'sto-3g', 1, 0)\n", "\n", "electron_count = data.n_electrons\n", "qubit_count = 2 * data.n_orbitals" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "We now generate a Unitary Coupled-Cluster Singles and Doubles (UCCSD) ansatz from the template provided by CUDA-Q. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "@cudaq.kernel\n", "def kernel(thetas: list[float]):\n", "\n", " qubits = cudaq.qvector(qubit_count)\n", "\n", " for i in range(electron_count):\n", " x(qubits[i])\n", "\n", " cudaq.kernels.uccsd(qubits, thetas, electron_count, qubit_count)\n", "\n", "\n", "parameter_count = cudaq.kernels.uccsd_num_parameters(electron_count,\n", " qubit_count)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Using CUDA-Q Optimizers\n", "\n", "We use the builtin optimizers within CUDA-Q for the minimization procedure." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "optimizer = cudaq.optimizers.COBYLA()\n", "\n", "energy, parameters = cudaq.vqe(kernel,\n", " molecule,\n", " optimizer,\n", " parameter_count=parameter_count)\n", "\n", "print(energy)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Integration with Third-Party Optimizers\n", "\n", "We can also integrate popular libraries like scipy with CUDA-Q. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Define a function to minimize\n", "def cost(theta):\n", "\n", " exp_val = cudaq.observe(kernel, molecule, theta).expectation()\n", "\n", " return exp_val\n", "\n", "\n", "exp_vals = []\n", "\n", "\n", "def callback(xk):\n", " exp_vals.append(cost(xk))\n", "\n", "\n", "# Initial variational parameters.\n", "np.random.seed(42)\n", "x0 = np.random.normal(0, np.pi, parameter_count)\n", "\n", "# Use the scipy optimizer to minimize the function of interest\n", "result = minimize(cost,\n", " x0,\n", " method='COBYLA',\n", " callback=callback,\n", " options={'maxiter': 40})\n", "\n", "plt.plot(exp_vals)\n", "plt.xlabel('Epochs')\n", "plt.ylabel('Energy')\n", "plt.title('VQE')\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" } } }, "nbformat": 4, "nbformat_minor": 2 }