Quantum Operations ****************************** CUDA-Q provides a default set of quantum operations on qubits. These operations can be used to define custom kernels and libraries. Since the set of quantum intrinsic operations natively supported on a specific target depends on the backends architecture, the :code:`nvq++` compiler automatically decomposes the default operations into the appropriate set of intrinsic operations for that target. The sections `Unitary Operations on Qubits`_ and `Measurements on Qubits`_ list the default set of quantum operations on qubits. Operations that implement unitary transformations of the quantum state are templated. The template argument allows to invoke the adjoint and controlled version of the quantum transformation, see the section on `Adjoint and Controlled Operations`_. CUDA-Q additionally provides overloads to support broadcasting of single-qubit operations across a vector of qubits. For example, :code:`x(cudaq::qvector<>&)` flips the state of each qubit in the provided :code:`cudaq::qvector`. Unitary Operations on Qubits ============================= :code:`x` --------------------- This operation implements the transformation defined by the Pauli-X matrix. It is also known as the quantum version of a `NOT`-gate. .. tab:: Python .. code-block:: python qubit = cudaq.qubit() # Apply the unitary transformation # X = | 0 1 | # | 1 0 | x(qubit) .. tab:: C++ .. code-block:: cpp cudaq::qubit qubit; // Apply the unitary transformation // X = | 0 1 | // | 1 0 | x(qubit); :code:`y` --------------------- This operation implements the transformation defined by the Pauli-Y matrix. .. tab:: Python .. code-block:: python qubit = cudaq.qubit() # Apply the unitary transformation # Y = | 0 -i | # | i 0 | y(qubit) .. tab:: C++ .. code-block:: cpp cudaq::qubit qubit; // Apply the unitary transformation // Y = | 0 -i | // | i 0 | y(qubit); :code:`z` --------------------- This operation implements the transformation defined by the Pauli-Z matrix. .. tab:: Python .. code-block:: python qubit = cudaq.qubit() # Apply the unitary transformation # Z = | 1 0 | # | 0 -1 | z(qubit) .. tab:: C++ .. code-block:: cpp cudaq::qubit qubit; // Apply the unitary transformation // Z = | 1 0 | // | 0 -1 | z(qubit); :code:`h` --------------------- This operation is a rotation by π about the X+Z axis, and enables one to create a superposition of computational basis states. .. tab:: Python .. code-block:: python qubit = cudaq.qubit() # Apply the unitary transformation # H = (1 / sqrt(2)) * | 1 1 | # | 1 -1 | h(qubit) .. tab:: C++ .. code-block:: cpp cudaq::qubit qubit; // Apply the unitary transformation // H = (1 / sqrt(2)) * | 1 1 | // | 1 -1 | h(qubit); :code:`r1` --------------------- This operation is an arbitrary rotation about the :code:`|1>` state. .. tab:: Python .. code-block:: python qubit = cudaq.qubit() # Apply the unitary transformation # R1(λ) = | 1 0 | # | 0 exp(iλ) | r1(math.pi, qubit) .. tab:: C++ .. code-block:: cpp cudaq::qubit qubit; // Apply the unitary transformation // R1(λ) = | 1 0 | // | 0 exp(iλ) | r1(std::numbers::pi, qubit); :code:`rx` --------------------- This operation is an arbitrary rotation about the X axis. .. tab:: Python .. code-block:: python qubit = cudaq.qubit() # Apply the unitary transformation # Rx(θ) = | cos(θ/2) -isin(θ/2) | # | -isin(θ/2) cos(θ/2) | rx(math.pi, qubit) .. tab:: C++ .. code-block:: cpp cudaq::qubit qubit; // Apply the unitary transformation // Rx(θ) = | cos(θ/2) -isin(θ/2) | // | -isin(θ/2) cos(θ/2) | rx(std::numbers::pi, qubit); :code:`ry` --------------------- This operation is an arbitrary rotation about the Y axis. .. tab:: Python .. code-block:: python qubit = cudaq.qubit() # Apply the unitary transformation # Ry(θ) = | cos(θ/2) -sin(θ/2) | # | sin(θ/2) cos(θ/2) | ry(math.pi, qubit) .. tab:: C++ .. code-block:: cpp cudaq::qubit qubit; // Apply the unitary transformation // Ry(θ) = | cos(θ/2) -sin(θ/2) | // | sin(θ/2) cos(θ/2) | ry(std::numbers::pi, qubit); :code:`rz` --------------------- This operation is an arbitrary rotation about the Z axis. .. tab:: Python .. code-block:: python qubit = cudaq.qubit() # Apply the unitary transformation # Rz(λ) = | exp(-iλ/2) 0 | # | 0 exp(iλ/2) | rz(math.pi, qubit) .. tab:: C++ .. code-block:: cpp cudaq::qubit qubit; // Apply the unitary transformation // Rz(λ) = | exp(-iλ/2) 0 | // | 0 exp(iλ/2) | rz(std::numbers::pi, qubit); :code:`s` --------------------- This operation applies to its target a rotation by π/2 about the Z axis. .. tab:: Python .. code-block:: python qubit = cudaq.qubit() # Apply the unitary transformation # S = | 1 0 | # | 0 i | s(qubit) .. tab:: C++ .. code-block:: cpp cudaq::qubit qubit; // Apply the unitary transformation // S = | 1 0 | // | 0 i | s(qubit); :code:`t` --------------------- This operation applies to its target a π/4 rotation about the Z axis. .. tab:: Python .. code-block:: python qubit = cudaq.qubit() # Apply the unitary transformation # T = | 1 0 | # | 0 exp(iπ/4) | t(qubit) .. tab:: C++ .. code-block:: cpp cudaq::qubit qubit; // Apply the unitary transformation // T = | 1 0 | // | 0 exp(iπ/4) | t(qubit); :code:`swap` --------------------- This operation swaps the states of two qubits. .. tab:: Python .. code-block:: python qubit_1, qubit_2 = cudaq.qubit(), cudaq.qubit() # Apply the unitary transformation # Swap = | 1 0 0 0 | # | 0 0 1 0 | # | 0 1 0 0 | # | 0 0 0 1 | swap(qubit_1, qubit_2) .. tab:: C++ .. code-block:: cpp cudaq::qubit qubit_1, qubit_2; // Apply the unitary transformation // Swap = | 1 0 0 0 | // | 0 0 1 0 | // | 0 1 0 0 | // | 0 0 0 1 | swap(qubit_1, qubit_2); :code:`u3` --------------------- This operation applies the universal three-parameters operator to target qubit. The three parameters are Euler angles - theta (θ), phi (φ), and lambda (λ). .. tab:: Python .. code-block:: python qubit = cudaq.qubit() # Apply the unitary transformation # U3(θ,φ,λ) = | cos(θ/2) -exp(iλ) * sin(θ/2) | # | exp(iφ) * sin(θ/2) exp(i(λ + φ)) * cos(θ/2) | u3(np.pi, np.pi, np.pi / 2, q) .. tab:: C++ .. code-block:: cpp cudaq::qubit qubit; // Apply the unitary transformation // U3(θ,φ,λ) = | cos(θ/2) -exp(iλ) * sin(θ/2) | // | exp(iφ) * sin(θ/2) exp(i(λ + φ)) * cos(θ/2) | u3(M_PI, M_PI, M_PI_2, q); Adjoint and Controlled Operations ================================== .. tab:: Python The :code:`adj` method of any gate can be used to invoke the `adjoint `__ transformation: .. code-block:: python # Create a kernel and allocate a qubit in a |0> state. qubit = cudaq.qubit() # Apply the unitary transformation defined by the matrix # T = | 1 0 | # | 0 exp(iπ/4) | # to the state of the qubit `q`: t(qubit) # Apply its adjoint transformation defined by the matrix # T† = | 1 0 | # | 0 exp(-iπ/4) | t.adj(qubit) # `qubit` is now again in the initial state |0>. The :code:`ctrl` method of any gate can be used to apply the transformation conditional on the state of one or more control qubits, see also this `Wikipedia entry `__. .. code-block:: python # Create a kernel and allocate qubits in a |0> state. ctrl_1, ctrl_2, target = cudaq.qubit(), cudaq.qubit(), cudaq.qubit() # Create a superposition. h(ctrl_1) # `ctrl_1` is now in a state (|0> + |1>) / √2. # Apply the unitary transformation # | 1 0 0 0 | # | 0 1 0 0 | # | 0 0 0 1 | # | 0 0 1 0 | x.ctrl(ctrl_1, ctrl_2) # `ctrl_1` and `ctrl_2` are in a state (|00> + |11>) / √2. # Set the state of `target` to |1>: x(target) # Apply the transformation T only if both # control qubits are in a |1> state: t.ctrl([ctrl_1, ctrl_2], target) # The qubits ctrl_1, ctrl_2, and target are now in a state # (|000> + exp(iπ/4)|111>) / √2. .. tab:: C++ The template argument :code:`cudaq::adj` can be used to invoke the `adjoint `__ transformation: .. code-block:: cpp // Allocate a qubit in a |0> state. cudaq::qubit qubit; // Apply the unitary transformation defined by the matrix // T = | 1 0 | // | 0 exp(iπ/4) | // to the state of the qubit `q`: t(qubit); // Apply its adjoint transformation defined by the matrix // T† = | 1 0 | // | 0 exp(-iπ/4) | t(qubit); // Qubit `q` is now again in the initial state |0>. The template argument :code:`cudaq::ctrl` can be used to apply the transformation conditional on the state of one or more control qubits, see also this `Wikipedia entry `__. .. code-block:: cpp // Allocate qubits in a |0> state. cudaq::qubit ctrl_1, ctrl_2, target; // Create a superposition. h(ctrl_1); // Qubit ctrl_1 is now in a state (|0> + |1>) / √2. // Apply the unitary transformation // | 1 0 0 0 | // | 0 1 0 0 | // | 0 0 0 1 | // | 0 0 1 0 | x(ctrl_1, ctrl_2); // The qubits ctrl_1 and ctrl_2 are in a state (|00> + |11>) / √2. // Set the state of `target` to |1>: x(target); // Apply the transformation T only if both // control qubits are in a |1> state: t(ctrl_1, ctrl_2, target); // The qubits ctrl_1, ctrl_2, and target are now in a state // (|000> + exp(iπ/4)|111>) / √2. Following common convention, by default the transformation is applied to the target qubit(s) if all control qubits are in a :code:`|1>` state. However, that behavior can be changed to instead apply the transformation when a control qubit is in a :code:`|0>` state by negating the polarity of the control qubit. The syntax for negating the polarity is the not-operator preceding the control qubit: .. tab:: C++ .. code-block:: cpp cudaq::qubit c, q; h(c); x(!c, q); // The qubits c and q are in a state (|01> + |10>) / √2. This notation is only supported in the context of applying a controlled operation and is only valid for control qubits. For example, negating either of the target qubits in the :code:`swap` operation is not allowed. Negating the polarity of control qubits is similarly supported when using :code:`cudaq::control` to conditionally apply a custom quantum kernel. Measurements on Qubits ============================= :code:`mz` --------------------- This operation measures a qubit with respect to the computational basis, i.e., it projects the state of that qubit onto the eigenvectors of the Pauli-Z matrix. This is a non-linear transformation, and no template overloads are available. .. tab:: Python .. code-block:: python qubit = cudaq.qubit() mz(qubit) .. tab:: C++ .. code-block:: cpp cudaq::qubit qubit; mz(qubit); :code:`mx` --------------------- This operation measures a qubit with respect to the Pauli-X basis, i.e., it projects the state of that qubit onto the eigenvectors of the Pauli-X matrix. This is a non-linear transformation, and no template overloads are available. .. tab:: Python .. code-block:: python qubit = cudaq.qubit() mx(qubit) .. tab:: C++ .. code-block:: cpp cudaq::qubit qubit; mx(qubit); :code:`my` --------------------- This operation measures a qubit with respect to the Pauli-Y basis, i.e., it projects the state of that qubit onto the eigenvectors of the Pauli-Y matrix. This is a non-linear transformation, and no template overloads are available. .. tab:: Python .. code-block:: python qubit = cudaq.qubit() kernel.my(qubit) .. tab:: C++ .. code-block:: cpp cudaq::qubit qubit; my(qubit); User-Defined Custom Operations ============================== Users can define a custom quantum operation by its unitary matrix. First use the API to register a custom operation, outside of a CUDA-Q kernel. Then the operation can be used within a CUDA-Q kernel like any of the built-in operations defined above. Custom operations are supported on qubits only (`qudit` with `level = 2`). .. tab:: Python The :code:`cudaq.register_operation` API accepts an identifier string for the custom operation and its unitary matrix. The matrix can be a `list` or `numpy` array of complex numbers. A 1D matrix is interpreted as row-major. .. code-block:: python import cudaq import numpy as np cudaq.register_operation("custom_h", 1. / np.sqrt(2.) * np.array([1, 1, 1, -1])) cudaq.register_operation("custom_x", np.array([0, 1, 1, 0])) @cudaq.kernel def bell(): qubits = cudaq.qvector(2) custom_h(qubits[0]) custom_x.ctrl(qubits[0], qubits[1]) cudaq.sample(bell).dump() .. tab:: C++ The macro :code:`CUDAQ_REGISTER_OPERATION` accepts a unique name for the operation, the number of target qubits, the number of rotation parameters (can be 0), and the unitary matrix as a 1D row-major `std::vector` representation. .. code-block:: cpp #include CUDAQ_REGISTER_OPERATION(custom_h, 1, 0, {M_SQRT1_2, M_SQRT1_2, M_SQRT1_2, -M_SQRT1_2}) CUDAQ_REGISTER_OPERATION(custom_x, 1, 0, {0, 1, 1, 0}) __qpu__ void bell_pair() { cudaq::qubit q, r; custom_h(q); custom_x(q, r); } int main() { auto counts = cudaq::sample(bell_pair); for (auto &[bits, count] : counts) { printf("%s\n", bits.data()); } } For multi-qubit operations, the matrix is interpreted with MSB qubit ordering, i.e. big-endian convention. The following example shows two different custom operations, each operating on 2 qubits. .. tab:: Python .. literalinclude:: ../snippets/python/using/examples/two_qubit_custom_op.py :language: python :start-after: [Begin Docs] :end-before: [End Docs] .. tab:: C++ .. literalinclude:: ../snippets/cpp/using/two_qubit_custom_op.cpp :language: cpp :start-after: [Begin Docs] :end-before: [End Docs] .. note:: When a custom operation is used on hardware backends, it is synthesized to a set of native quantum operations. Currently, only 1-qubit and 2-qubit custom operations are supported on hardware backends. Photonic Operations on Qudits ============================= These operations are valid only on the `orca-photonics` target which does not support the quantum operations above. :code:`create` --------------------- This operation increments the number of photons in a qumode up to a maximum value defined by the qudit level that represents the qumode. If it is applied to a qumode where the number of photons is already at the maximum value, the operation has no effect. :math:`U|0\rangle → |1\rangle, U|1\rangle → |2\rangle, U|2\rangle → |3\rangle, \cdots, U|d\rangle → |d\rangle` where :math:`d` is the qudit level. .. tab:: Python .. code-block:: python q = qudit(3) create(q) .. tab:: C++ .. code-block:: cpp cudaq::qvector<3> q(1); create(q[0]); :code:`annihilate` --------------------- This operation reduces the number of photons in a qumode up to a minimum value of 0 representing the vacuum state. If it is applied to a qumode where the number of photons is already at the minimum value 0, the operation has no effect. :math:`U|0\rangle → |0\rangle, U|1\rangle → |0\rangle, U|2\rangle → |1\rangle, \cdots, U|d\rangle → |d-1\rangle` where :math:`d` is the qudit level. .. tab:: Python .. code-block:: python q = qudit(3) annihilate(q) .. tab:: C++ .. code-block:: cpp cudaq::qvector<3> q(1); annihilate(q[0]); :code:`phase_shift` --------------------- A phase shifter adds a phase :math:`\phi` on a qumode. For the annihilation (:math:`a_1`) and creation operators (:math:`a_1^\dagger`) of a qumode, the phase shift operator is defined by .. math:: P(\phi) = \exp\left(i \phi a_1^\dagger a_1 \right) .. tab:: Python .. code-block:: python q = qudit(4) phase_shift(q, 0.17) .. tab:: C++ .. code-block:: cpp cudaq::qvector<4> q(1); phase_shift(q[0], 0.17); :code:`beam_splitter` --------------------- Beam splitters act on two qumodes together and it is parameterized by a single angle :math:`\theta`, relating to reflectivity. For the annihilation (:math:`a_1` and :math:`a_2`) and creation operators (:math:`a_1^\dagger` and :math:`a_2^\dagger`) of two qumodes, the beam splitter operator is defined by .. math:: B(\theta) = \exp\left[i \theta (a_1^\dagger a_2 + a_1 a_2^\dagger) \right] .. tab:: Python .. code-block:: python q = [qudit(3) for _ in range(2)] beam_splitter(q[0], q[1], 0.34) .. tab:: C++ .. code-block:: cpp cudaq::qvector<3> q(2); beam_splitter(q[0], q[1], 0.34); :code:`mz` --------------------- This operation returns the measurement results of the input qumode(s). .. tab:: Python .. code-block:: python qumodes = [qudit(3) for _ in range(2)] mz(qumodes) .. tab:: C++ .. code-block:: cpp cudaq::qvector<3> qumodes(2); mz(qumodes);