{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Anderson Impurity Model ground state solver on Infleqtion's Sqale" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Ground state quantum chemistry—computing total energies of molecular configurations to within chemical accuracy—is perhaps the most highly-touted industrial application of fault-tolerant quantum computers. Strongly correlated materials, for example, are particularly interesting, and tools like dynamical mean-field theory (DMFT) allow one to account for the effect of their strong, localized electronic correlations. These DMFT models help predict material properties by approximating the system as a single site impurity inside a “bath” that encompasses the rest of the system. Simulating such dynamics can be a tough task using classical methods, but can be done efficiently on a quantum computer via quantum simulation.\n", "\n", "In this notebook, we showcase a workflow for preparing the ground state of the minimal single-impurity Anderson model (SIAM) using the Hamiltonian Variational Ansatz for a range of realistic parameters. As a first step towards running DMFT on a fault-tolerant quantum computer, we will use logical qubits encoded in the `[[4, 2, 2]]` code. Using this workflow, we will obtain the ground state energy estimates via noisy simulation, and then also execute the corresponding optimized circuits on Infleqtion's gate-based neutral-atom quantum computer, making the benefits of logical qubits apparent. More details can be found in our [paper](https://arxiv.org/abs/2412.07670)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This demo notebook uses CUDA-Q (`cudaq`) and a CUDA-QX library, `cudaq-solvers`; let us first begin by importing (and installing as needed) these packages:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "try:\n", " import cudaq_solvers as solvers\n", " import cudaq\n", " import matplotlib.pyplot as plt\n", "except ImportError:\n", " print(\"Installing required packages...\")\n", " %pip install --quiet 'cudaq-solvers' 'matplotlib'\n", " print(\"Installed `cudaq`, `cudaq-solvers`, and `matplotlib` packages.\")\n", " print(\"You may need to restart the kernel to import newly installed packages.\")\n", " import cudaq_solvers as solvers\n", " import cudaq\n", " import matplotlib.pyplot as plt\n", "\n", "from collections.abc import Mapping, Sequence\n", "import numpy as np\n", "from scipy.optimize import minimize\n", "import os" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Performing logical Variational Quantum Eigensolver (VQE) with CUDA-QX" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To prepare our ground state quantum Anderson impurity model circuits (referred to as AIM circuits in this notebook for short), we use VQE to train an ansatz to minimize a Hamiltonian and obtain optimal angles that can be used to set the AIM circuits. As described in our [paper](https://arxiv.org/abs/2412.07670), the associated restricted Hamiltonian for our SIAM can be reduced to,\n", "$$ \n", "\\begin{equation}\n", "H_{(U, V)} = U (Z_0 Z_2 - 1) / 4 + V (X_0 + X_2),\n", "\\end{equation}\n", "$$\n", "where $U$ is the Coulomb interaction and $V$ the hybridization strength. In this notebook workflow, we will optimize over a 2-dimensional grid of Hamiltonian parameter values, namely $U\\in \\{1, 5, 9\\}$ and $V\\in \\{-9, -1, 7\\}$ (with all values assumed to be in units of eV), to ensure that the ansatz is generally trainable and expressive, and obtain 9 different circuit layers identified by the key $(U, V)$. We will simulate the VQE on GPU (or optionally on CPU if you do not have GPU access), enabled by CUDA-Q, in the absence of noise:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "if cudaq.num_available_gpus() == 0:\n", " cudaq.set_target(\"qpp-cpu\", option=\"fp64\")\n", "else:\n", " cudaq.set_target(\"nvidia\", option=\"fp64\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This workflow can be easily defined in CUDA-Q as shown in the cell below, using the CUDA-QX Solvers library (which accelerates quantum algorithms like the VQE):" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def ansatz(n_qubits: int) -> cudaq.Kernel:\n", " # Create a CUDA-Q parameterized kernel\n", " paramterized_ansatz, variational_angles = cudaq.make_kernel(list)\n", " qubits = paramterized_ansatz.qalloc(n_qubits)\n", "\n", " # Using |+> as the initial state:\n", " paramterized_ansatz.h(qubits[0])\n", " paramterized_ansatz.cx(qubits[0], qubits[1])\n", "\n", " paramterized_ansatz.rx(variational_angles[0], qubits[0])\n", " paramterized_ansatz.cx(qubits[0], qubits[1])\n", " paramterized_ansatz.rz(variational_angles[1], qubits[1])\n", " paramterized_ansatz.cx(qubits[0], qubits[1])\n", " return paramterized_ansatz\n", "\n", "\n", "def run_logical_vqe(cudaq_hamiltonian: cudaq.SpinOperator) -> tuple[float, list[float]]:\n", " # Set seed for easier reproduction\n", " np.random.seed(42)\n", "\n", " # Initial angles for the optimizer\n", " init_angles = np.random.random(2) * 1e-1\n", "\n", " # Obtain CUDA-Q Ansatz\n", " num_qubits = cudaq_hamiltonian.get_qubit_count()\n", " variational_kernel = ansatz(num_qubits)\n", "\n", " # Perform VQE optimization\n", " energy, params, _ = solvers.vqe(\n", " variational_kernel,\n", " cudaq_hamiltonian,\n", " init_angles,\n", " optimizer=minimize,\n", " method=\"SLSQP\",\n", " tol=1e-10,\n", " )\n", " return energy, params" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Constructing circuits in the `[[4,2,2]]` encoding" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The `[[4,2,2]]` code is a quantum error detection code that uses four physical qubits to encode two logical qubits. In this notebook, we will construct two variants of quantum circuits: physical (bare, unencoded) and logical (encoded). These circuits will be informed by the Hamiltonian Variational Ansatz described earlier. To measure all the terms in our Hamiltonian, we will measure the data qubits in both the $Z$- and $X$-basis, as allowed by the `[[4,2,2]]` logical gateset. Full details on the circuit constructions are outlined in our [paper](https://arxiv.org/abs/2412.07670)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below, we create functions to build our CUDA-Q AIM circuits, both physical and logical versions. As we consider noisy simulation in this notebook, we will include some noisy gates. Here, for simplicity, we will just register a custom identity gate -- to be later used as a noisy operation to model readout error: " ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "cudaq.register_operation(\"meas_id\", np.identity(2))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def aim_physical_circuit(\n", " angles: list[float], basis: str, *, ignore_meas_id: bool = False\n", ") -> cudaq.Kernel:\n", " kernel = cudaq.make_kernel()\n", " qubits = kernel.qalloc(2)\n", "\n", " # Bell state prep\n", " kernel.h(qubits[0])\n", " kernel.cx(qubits[0], qubits[1])\n", "\n", " # Rx Gate\n", " kernel.rx(angles[0], qubits[0])\n", "\n", " # ZZ rotation\n", " kernel.cx(qubits[0], qubits[1])\n", " kernel.rz(angles[1], qubits[1])\n", " kernel.cx(qubits[0], qubits[1])\n", "\n", " if basis == \"z_basis\":\n", " if not ignore_meas_id:\n", " kernel.for_loop(\n", " start=0, stop=2, function=lambda q_idx: getattr(kernel, \"meas_id\")(qubits[q_idx])\n", " )\n", " kernel.mz(qubits)\n", " elif basis == \"x_basis\":\n", " kernel.h(qubits)\n", " if not ignore_meas_id:\n", " kernel.for_loop(\n", " start=0, stop=2, function=lambda q_idx: getattr(kernel, \"meas_id\")(qubits[q_idx])\n", " )\n", " kernel.mz(qubits)\n", " else:\n", " raise ValueError(\"Unsupported basis provided:\", basis)\n", " return kernel" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "def aim_logical_circuit(\n", " angles: list[float], basis: str, *, ignore_meas_id: bool = False\n", ") -> cudaq.Kernel:\n", " kernel = cudaq.make_kernel()\n", " qubits = kernel.qalloc(6)\n", "\n", " kernel.for_loop(start=0, stop=3, function=lambda idx: kernel.h(qubits[idx]))\n", " kernel.cx(qubits[1], qubits[4])\n", " kernel.cx(qubits[2], qubits[3])\n", " kernel.cx(qubits[0], qubits[1])\n", " kernel.cx(qubits[0], qubits[3])\n", "\n", " # Rx teleportation\n", " kernel.rx(angles[0], qubits[0])\n", "\n", " kernel.cx(qubits[0], qubits[1])\n", " kernel.cx(qubits[0], qubits[3])\n", " kernel.h(qubits[0])\n", "\n", " if basis == \"z_basis\":\n", " if not ignore_meas_id:\n", " kernel.for_loop(\n", " start=0, stop=5, function=lambda idx: getattr(kernel, \"meas_id\")(qubits[idx])\n", " )\n", " kernel.mz(qubits)\n", " elif basis == \"x_basis\":\n", " # ZZ rotation and teleportation\n", " kernel.cx(qubits[3], qubits[5])\n", " kernel.cx(qubits[2], qubits[5])\n", " kernel.rz(angles[1], qubits[5])\n", " kernel.cx(qubits[1], qubits[5])\n", " kernel.cx(qubits[4], qubits[5])\n", " kernel.for_loop(start=1, stop=5, function=lambda idx: kernel.h(qubits[idx]))\n", " if not ignore_meas_id:\n", " kernel.for_loop(\n", " start=0, stop=6, function=lambda idx: getattr(kernel, \"meas_id\")(qubits[idx])\n", " )\n", " kernel.mz(qubits)\n", " else:\n", " raise ValueError(\"Unsupported basis provided:\", basis)\n", " return kernel" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With the circuit definitions above, we can now define a function that automatically runs the VQE and constructs a dictionary containing all the AIM circuits we want to submit to hardware (or noisily simulate):" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "def generate_circuit_set(ignore_meas_id: bool = False) -> object:\n", " u_vals = [1, 5, 9]\n", " v_vals = [-9, -1, 7]\n", " circuit_dict = {}\n", " for u in u_vals:\n", " for v in v_vals:\n", " qubit_hamiltonian = (\n", " 0.25 * u * cudaq.spin.z(0) * cudaq.spin.z(1)\n", " - 0.25 * u\n", " + v * cudaq.spin.x(0)\n", " + v * cudaq.spin.x(1)\n", " )\n", " _, opt_params = run_logical_vqe(qubit_hamiltonian)\n", " angles = [float(angle) for angle in opt_params]\n", " print(f\"Computed optimal angles={angles} for U={u}, V={v}\")\n", "\n", " tmp_physical_dict = {}\n", " tmp_logical_dict = {}\n", " for basis in (\"z_basis\", \"x_basis\"):\n", " tmp_physical_dict[basis] = aim_physical_circuit(\n", " angles, basis, ignore_meas_id=ignore_meas_id\n", " )\n", " tmp_logical_dict[basis] = aim_logical_circuit(\n", " angles, basis, ignore_meas_id=ignore_meas_id\n", " )\n", "\n", " circuit_dict[f\"{u}:{v}\"] = {\n", " \"physical\": tmp_physical_dict,\n", " \"logical\": tmp_logical_dict,\n", " }\n", " print(\"\\nFinished building optimized circuits!\")\n", " return circuit_dict" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Computed optimal angles=[1.5846845738799267, 1.5707961678256028] for U=1, V=-9\n", "Computed optimal angles=[4.588033710930825, 4.712388365176642] for U=1, V=-1\n", "Computed optimal angles=[-1.588651490745171, 1.5707962742876598] for U=1, V=7\n", "Computed optimal angles=[1.64012940802256, 1.5707963354922125] for U=5, V=-9\n", "Computed optimal angles=[2.1293956916868737, 1.5707963294715355] for U=5, V=-1\n", "Computed optimal angles=[-1.6598458659836037, 1.570796331040382] for U=5, V=7\n", "Computed optimal angles=[1.695151467539617, 1.5707960973500679] for U=9, V=-9\n", "Computed optimal angles=[2.4149519241823376, 1.5707928509325972] for U=9, V=-1\n", "Computed optimal angles=[-1.7301462729177735, 1.570796033796985] for U=9, V=7\n", "\n", "Finished building optimized circuits!\n" ] } ], "source": [ "sim_circuit_dict = generate_circuit_set()\n", "circuit_layers = sim_circuit_dict.keys()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setting up submission and decoding workflow " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this section, we define various helper functions that will play a role in generating the associated energies of the AIM circuits based on the circuit samples (in the different bases), as well as decode the logical circuits with post-selection informed by the `[[4,2,2]]` code:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "def _num_qubits(counts: Mapping[str, float]) -> int:\n", " for key in counts:\n", " if key.isdecimal():\n", " return len(key)\n", " return 0\n", "\n", "\n", "def process_counts(\n", " counts: Mapping[str, float],\n", " data_qubits: Sequence[int],\n", " flag_qubits: Sequence[int] = (),\n", ") -> dict[str, float]:\n", " new_data: dict[str, float] = {}\n", " for key, val in counts.items():\n", " if not all(key[i] == \"0\" for i in flag_qubits):\n", " continue\n", "\n", " new_key = \"\".join(key[i] for i in data_qubits)\n", "\n", " if not set(\"01\").issuperset(new_key):\n", " continue\n", "\n", " new_data.setdefault(new_key, 0)\n", " new_data[new_key] += val\n", "\n", " return new_data\n", "\n", "\n", "def decode(counts: Mapping[str, float]) -> dict[str, float]:\n", " \"\"\"Decode physical counts into logical counts. Should be called after `process_counts`.\"\"\"\n", "\n", " if not counts:\n", " return {}\n", "\n", " num_qubits = _num_qubits(counts)\n", " assert num_qubits % 4 == 0\n", "\n", " physical_to_logical = {\n", " \"0000\": \"00\",\n", " \"1111\": \"00\",\n", " \"0011\": \"01\",\n", " \"1100\": \"01\",\n", " \"0101\": \"10\",\n", " \"1010\": \"10\",\n", " \"0110\": \"11\",\n", " \"1001\": \"11\",\n", " }\n", "\n", " new_data: dict[str, float] = {}\n", " for key, val in counts.items():\n", " physical_keys = [key[i : i + 4] for i in range(0, num_qubits, 4)]\n", " logical_keys = [physical_to_logical.get(physical_key) for physical_key in physical_keys]\n", " if None not in logical_keys:\n", " new_key = \"\".join(logical_keys)\n", " new_data.setdefault(new_key, 0)\n", " new_data[new_key] += val\n", "\n", " return new_data\n", "\n", "\n", "def ev_x(counts: Mapping[str, float]) -> float:\n", " ev = 0.0\n", "\n", " for k, val in counts.items():\n", " ev += val * ((-1) ** int(k[0]) + (-1) ** int(k[1]))\n", "\n", " total = sum(counts.values())\n", " ev /= total\n", " return ev\n", "\n", "\n", "def ev_xx(counts: Mapping[str, float]) -> float:\n", " ev = 0.0\n", "\n", " for k, val in counts.items():\n", " ev += val * (-1) ** k.count(\"1\")\n", "\n", " total = sum(counts.values())\n", " ev /= total\n", " return ev\n", "\n", "\n", "def ev_zz(counts: Mapping[str, float]) -> float:\n", " ev = 0.0\n", "\n", " for k, val in counts.items():\n", " ev += val * (-1) ** k.count(\"1\")\n", "\n", " total = sum(counts.values())\n", " ev /= total\n", " return ev\n", "\n", "\n", "def aim_logical_energies(\n", " data_ordering: object, counts_list: Sequence[dict[str, float]]\n", ") -> tuple[dict[tuple[int, int], float], dict[tuple[int, int], float]]:\n", " counts_data = {\n", " data_ordering[i]: decode(\n", " process_counts(\n", " counts,\n", " data_qubits=[1, 2, 3, 4],\n", " flag_qubits=[0, 5],\n", " )\n", " )\n", " for i, counts in enumerate(counts_list)\n", " }\n", " return _aim_energies(counts_data)\n", "\n", "\n", "def aim_physical_energies(\n", " data_ordering: object, counts_list: Sequence[dict[str, float]]\n", ") -> tuple[dict[tuple[int, int], float], dict[tuple[int, int], float]]:\n", " counts_data = {\n", " data_ordering[i]: process_counts(\n", " counts,\n", " data_qubits=[0, 1],\n", " )\n", " for i, counts in enumerate(counts_list)\n", " }\n", " return _aim_energies(counts_data)\n", "\n", "\n", "def _aim_energies(\n", " counts_data: Mapping[tuple[int, int, str], dict[str, float]],\n", ") -> tuple[dict[tuple[int, int], float], dict[tuple[int, int], float]]:\n", " evxs: dict[tuple[int, int], float] = {}\n", " evxxs: dict[tuple[int, int], float] = {}\n", " evzzs: dict[tuple[int, int], float] = {}\n", " totals: dict[tuple[int, int], float] = {}\n", "\n", " for key, counts in counts_data.items():\n", " h_params, basis = key\n", " key_a, key_b = h_params.split(\":\")\n", " u, v = int(key_a), int(key_b)\n", " if basis.startswith(\"x\"):\n", " evxs[u, v] = ev_x(counts)\n", " evxxs[u, v] = ev_xx(counts)\n", " else:\n", " evzzs[u, v] = ev_zz(counts)\n", "\n", " totals.setdefault((u, v), 0)\n", " totals[u, v] += sum(counts.values())\n", "\n", " energies = {}\n", " uncertainties = {}\n", " for u, v in evxs.keys() & evzzs.keys():\n", " string_key = f\"{u}:{v}\"\n", " energies[string_key] = u * (evzzs[u, v] - 1) / 4 + v * evxs[u, v]\n", "\n", " uncertainty_xx = 2 * v**2 * (1 + evxxs[u, v]) - u * v * evxs[u, v] / 2\n", " uncertainty_zz = u**2 * (1 - evzzs[u, v]) / 2\n", "\n", " uncertainties[string_key] = np.sqrt(\n", " (uncertainty_zz + uncertainty_xx - energies[string_key] ** 2) / (totals[u, v] / 2)\n", " )\n", "\n", " return energies, uncertainties\n", "\n", "\n", "def _get_energy_diff(\n", " bf_energies: dict[str, float],\n", " physical_energies: dict[str, float],\n", " logical_energies: dict[str, float],\n", ") -> tuple[list[float], list[float]]:\n", " physical_energy_diff = []\n", " logical_energy_diff = []\n", "\n", " # Data ordering following `bf_energies` keys\n", " for layer in bf_energies.keys():\n", " physical_sim_energy = physical_energies[layer]\n", " logical_sim_energy = logical_energies[layer]\n", " true_energy = bf_energies[layer]\n", " u, v = layer.split(\":\")\n", " print(f\"Layer=({u}, {v}) has brute-force energy of: {true_energy}\")\n", " print(f\"Physical circuit of layer=({u}, {v}) got an energy of: {physical_sim_energy}\")\n", " print(f\"Logical circuit of layer=({u}, {v}) got an energy of: {logical_sim_energy}\")\n", " print(\"-\" * 72)\n", "\n", " if logical_sim_energy < physical_sim_energy:\n", " print(\"Logical circuit achieved the lower energy!\")\n", " else:\n", " print(\"Physical circuit achieved the lower energy\")\n", " print(\"-\" * 72, \"\\n\")\n", "\n", " physical_energy_diff.append(\n", " -1 * (true_energy - physical_sim_energy)\n", " ) # Multiply by -1 since negative energies\n", " logical_energy_diff.append(-1 * (true_energy - logical_sim_energy))\n", " return physical_energy_diff, logical_energy_diff" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "def submit_aim_circuits(\n", " circuit_dict: object,\n", " *,\n", " folder_path: str = \"future_aim_results\",\n", " shots_count: int = 1000,\n", " noise_model: cudaq.mlir._mlir_libs._quakeDialects.cudaq_runtime.NoiseModel | None = None,\n", " run_async: bool = False,\n", ") -> dict[str, list[dict[str, int]]] | None:\n", " if run_async:\n", " os.makedirs(folder_path, exist_ok=True)\n", " else:\n", " aim_results = {\"physical\": [], \"logical\": []}\n", "\n", " for layer in circuit_dict.keys():\n", " if run_async:\n", " print(f\"Posting circuits associated with layer=('{layer}')\")\n", " else:\n", " print(f\"Running circuits associated with layer=('{layer}')\")\n", "\n", " for basis in (\"z_basis\", \"x_basis\"):\n", " if run_async:\n", " u, v = layer.split(\":\")\n", "\n", " tmp_physical_results = cudaq.sample_async(\n", " circuit_dict[layer][\"physical\"][basis], shots_count=shots_count\n", " )\n", " file = open(f\"{folder_path}/physical_{basis}_job_u={u}_v={v}_result.txt\", \"w\")\n", " file.write(str(tmp_physical_results))\n", " file.close()\n", "\n", " tmp_logical_results = cudaq.sample_async(\n", " circuit_dict[layer][\"logical\"][basis], shots_count=shots_count\n", " )\n", " file = open(f\"{folder_path}/logical_{basis}_job_u={u}_v={v}_result.txt\", \"w\")\n", " file.write(str(tmp_logical_results))\n", " file.close()\n", " else:\n", " tmp_physical_results = cudaq.sample(\n", " circuit_dict[layer][\"physical\"][basis],\n", " shots_count=shots_count,\n", " noise_model=noise_model,\n", " )\n", " tmp_logical_results = cudaq.sample(\n", " circuit_dict[layer][\"logical\"][basis],\n", " shots_count=shots_count,\n", " noise_model=noise_model,\n", " )\n", " aim_results[\"physical\"].append({k: v for k, v in tmp_physical_results.items()})\n", " aim_results[\"logical\"].append({k: v for k, v in tmp_logical_results.items()})\n", " if not run_async:\n", " print(\"\\nCompleted all circuit sampling!\")\n", " return aim_results\n", " else:\n", " print(\"\\nAll circuits submitted for async sampling!\")" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "def _get_async_results(\n", " layers: object, *, folder_path: str = \"future_aim_results\"\n", ") -> dict[str, list[dict[str, int]]]:\n", " aim_results = {\"physical\": [], \"logical\": []}\n", " for layer in layers:\n", " print(f\"Retrieving all circuits counts associated with layer=('{layer}')\")\n", " u, v = layer.split(\":\")\n", " for basis in (\"z_basis\", \"x_basis\"):\n", " file = open(f\"{folder_path}/physical_{basis}_job_u={u}_v={v}_result.txt\", \"r\")\n", " tmp_physical_results = cudaq.AsyncSampleResult(str(file.read()))\n", " physical_counts = tmp_physical_results.get()\n", "\n", " file = open(f\"{folder_path}/logical_{basis}_job_u={u}_v={v}_result.txt\", \"r\")\n", " tmp_logical_results = cudaq.AsyncSampleResult(str(file.read()))\n", " logical_counts = tmp_logical_results.get()\n", "\n", " aim_results[\"physical\"].append({k: v for k, v in physical_counts.items()})\n", " aim_results[\"logical\"].append({k: v for k, v in logical_counts.items()})\n", "\n", " print(\"\\nObtained all circuit samples!\")\n", " return aim_results" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Running a CUDA-Q noisy simulation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this section, we will first explore the performance of the physical and logical circuits under the influence of a device noise model. This will help us predict experimental results, as well as understand the dominant error sources at play. Such a simulation can be achieved via CUDA-Q's density matrix simulator: " ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "cudaq.reset_target()\n", "cudaq.set_target(\"density-matrix-cpu\")" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "def get_device_noise(\n", " depolar_prob_1q: float,\n", " depolar_prob_2q: float,\n", " *,\n", " readout_error_prob: float | None = None,\n", " custom_gates: list[str] | None = None,\n", ") -> cudaq.mlir._mlir_libs._quakeDialects.cudaq_runtime.NoiseModel:\n", " noise = cudaq.NoiseModel()\n", " depolar_noise = cudaq.DepolarizationChannel(depolar_prob_1q)\n", "\n", " noisy_ops = [\"z\", \"s\", \"x\", \"h\", \"rx\", \"rz\"]\n", " for op in noisy_ops:\n", " noise.add_all_qubit_channel(op, depolar_noise)\n", "\n", " if custom_gates:\n", " custom_depolar_channel = cudaq.DepolarizationChannel(depolar_prob_1q)\n", " for op in custom_gates:\n", " noise.add_all_qubit_channel(op, custom_depolar_channel)\n", "\n", " # Two qubit depolarization error\n", " p_0 = 1 - depolar_prob_2q\n", " p_1 = np.sqrt((1 - p_0**2) / 3)\n", "\n", " k0 = np.array(\n", " [[p_0, 0.0, 0.0, 0.0], [0.0, p_0, 0.0, 0.0], [0.0, 0.0, p_0, 0.0], [0.0, 0.0, 0.0, p_0]],\n", " dtype=np.complex128,\n", " )\n", " k1 = np.array(\n", " [[0.0, 0.0, p_1, 0.0], [0.0, 0.0, 0.0, p_1], [p_1, 0.0, 0.0, 0.0], [0.0, p_1, 0.0, 0.0]],\n", " dtype=np.complex128,\n", " )\n", " k2 = np.array(\n", " [\n", " [0.0, 0.0, -1j * p_1, 0.0],\n", " [0.0, 0.0, 0.0, -1j * p_1],\n", " [1j * p_1, 0.0, 0.0, 0.0],\n", " [0.0, 1j * p_1, 0.0, 0.0],\n", " ],\n", " dtype=np.complex128,\n", " )\n", " k3 = np.array(\n", " [[p_1, 0.0, 0.0, 0.0], [0.0, p_1, 0.0, 0.0], [0.0, 0.0, -p_1, 0.0], [0.0, 0.0, 0.0, -p_1]],\n", " dtype=np.complex128,\n", " )\n", " kraus_channel = cudaq.KrausChannel([k0, k1, k2, k3])\n", "\n", " noise.add_all_qubit_channel(\"cz\", kraus_channel)\n", " noise.add_all_qubit_channel(\"cx\", kraus_channel)\n", "\n", " if readout_error_prob is not None:\n", " # Readout error modeled with a Bit flip channel on identity before measurement\n", " bit_flip = cudaq.BitFlipChannel(readout_error_prob)\n", " noise.add_all_qubit_channel(\"meas_id\", bit_flip)\n", " return noise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, with our example noise model defined above, we can synchronously & noisily sample all of our AIM circuits by passing `noise_model=cudaq_noise_model` to the workflow containing function `submit_aim_circuits()`:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "# Example parameters that can model execution on hardware at the high, simulation, level:\n", "# Take single-qubit gate depolarization rate: ~0.2% or better (fidelity ≥99.8%)\n", "# Take two-qubit gate depolarization rate: ~1–2% (fidelity ~98–99%)\n", "cudaq_noise_model = get_device_noise(0.002, 0.02, readout_error_prob=0.02)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running circuits associated with layer=('1:-9')\n", "Running circuits associated with layer=('1:-1')\n", "Running circuits associated with layer=('1:7')\n", "Running circuits associated with layer=('5:-9')\n", "Running circuits associated with layer=('5:-1')\n", "Running circuits associated with layer=('5:7')\n", "Running circuits associated with layer=('9:-9')\n", "Running circuits associated with layer=('9:-1')\n", "Running circuits associated with layer=('9:7')\n", "\n", "Completed all circuit sampling!\n" ] } ], "source": [ "aim_sim_data = submit_aim_circuits(sim_circuit_dict, noise_model=cudaq_noise_model)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "data_ordering = []\n", "for key in circuit_layers:\n", " for basis in (\"z_basis\", \"x_basis\"):\n", " data_ordering.append((key, basis))" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "sim_physical_energies, sim_physical_uncertainties = aim_physical_energies(\n", " data_ordering, aim_sim_data[\"physical\"]\n", ")" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "sim_logical_energies, sim_logical_uncertainties = aim_logical_energies(\n", " data_ordering, aim_sim_data[\"logical\"]\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To analyze our simulated energy results in the above cells, we will compare them to the brute-force computed exact ground state energies for the AIM Hamiltonian. For simplicity, these are already stored in the dictionary `bf_energies` below:" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "bf_energies = {\n", " \"1:-9\": -18.251736027394713,\n", " \"1:-1\": -2.265564437074638,\n", " \"1:7\": -14.252231964940428,\n", " \"5:-9\": -19.293350575766127,\n", " \"5:-1\": -3.608495283014149,\n", " \"5:7\": -15.305692796870582,\n", " \"9:-9\": -20.39007993367173,\n", " \"9:-1\": -5.260398644698076,\n", " \"9:7\": -16.429650912487233,\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With the above metric, we can assess the performance of the logical circuits against the physical circuits by considering how far away the respective energies are from the brute-force expected energies. The cell below computes these energy deviations:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Layer=(1, -9) has brute-force energy of: -18.251736027394713\n", "Physical circuit of layer=(1, -9) got an energy of: -15.929\n", "Logical circuit of layer=(1, -9) got an energy of: -17.46016175277361\n", "------------------------------------------------------------------------\n", "Logical circuit achieved the lower energy!\n", "------------------------------------------------------------------------ \n", "\n", "Layer=(1, -1) has brute-force energy of: -2.265564437074638\n", "Physical circuit of layer=(1, -1) got an energy of: -1.97\n", "Logical circuit of layer=(1, -1) got an energy of: -2.176531948420889\n", "------------------------------------------------------------------------\n", "Logical circuit achieved the lower energy!\n", "------------------------------------------------------------------------ \n", "\n", "Layer=(1, 7) has brute-force energy of: -14.252231964940428\n", "Physical circuit of layer=(1, 7) got an energy of: -12.268\n", "Logical circuit of layer=(1, 7) got an energy of: -13.26321740664324\n", "------------------------------------------------------------------------\n", "Logical circuit achieved the lower energy!\n", "------------------------------------------------------------------------ \n", "\n", "Layer=(5, -9) has brute-force energy of: -19.293350575766127\n", "Physical circuit of layer=(5, -9) got an energy of: -16.8495\n", "Logical circuit of layer=(5, -9) got an energy of: -18.46681284816878\n", "------------------------------------------------------------------------\n", "Logical circuit achieved the lower energy!\n", "------------------------------------------------------------------------ \n", "\n", "Layer=(5, -1) has brute-force energy of: -3.608495283014149\n", "Physical circuit of layer=(5, -1) got an energy of: -3.1965000000000003\n", "Logical circuit of layer=(5, -1) got an energy of: -3.4531715120183297\n", "------------------------------------------------------------------------\n", "Logical circuit achieved the lower energy!\n", "------------------------------------------------------------------------ \n", "\n", "Layer=(5, 7) has brute-force energy of: -15.305692796870582\n", "Physical circuit of layer=(5, 7) got an energy of: -13.336\n", "Logical circuit of layer=(5, 7) got an energy of: -14.341784541550897\n", "------------------------------------------------------------------------\n", "Logical circuit achieved the lower energy!\n", "------------------------------------------------------------------------ \n", "\n", "Layer=(9, -9) has brute-force energy of: -20.39007993367173\n", "Physical circuit of layer=(9, -9) got an energy of: -17.802\n", "Logical circuit of layer=(9, -9) got an energy of: -19.339249509416753\n", "------------------------------------------------------------------------\n", "Logical circuit achieved the lower energy!\n", "------------------------------------------------------------------------ \n", "\n", "Layer=(9, -1) has brute-force energy of: -5.260398644698076\n", "Physical circuit of layer=(9, -1) got an energy of: -4.8580000000000005\n", "Logical circuit of layer=(9, -1) got an energy of: -5.1227150992242025\n", "------------------------------------------------------------------------\n", "Logical circuit achieved the lower energy!\n", "------------------------------------------------------------------------ \n", "\n", "Layer=(9, 7) has brute-force energy of: -16.429650912487233\n", "Physical circuit of layer=(9, 7) got an energy of: -14.3635\n", "Logical circuit of layer=(9, 7) got an energy of: -15.448422736181264\n", "------------------------------------------------------------------------\n", "Logical circuit achieved the lower energy!\n", "------------------------------------------------------------------------ \n", "\n" ] } ], "source": [ "sim_physical_energy_diff, sim_logical_energy_diff = _get_energy_diff(\n", " bf_energies, sim_physical_energies, sim_logical_energies\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Both physical and logical circuits were subject to the same noise model, but the `[[4,2,2]]` provides additional information that can help overcome some errors. Visualizing the computed energy differences from the above the cell, our noisy simulation provides a preview of the benefits logical qubits can offer:" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACIMAAAVkCAYAAABNJ02+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd1RU1/c28GfovWNXsBCxKwhWBLEbe+81tqgxliTGxBLLV41Go9FYE3vXqLFrFDv2ggVsoGKnd6n3/cNXfg73DkxlAJ/PWq7l7Ln3nM30mbvvPjJBEAQQERERERERERERERERERERUZFgoO8EiIiIiIiIiIiIiIiIiIiIiEh7WAxCREREREREREREREREREREVISwGISIiIiIiIiIiIiIiIiIiIioCGExCBEREREREREREREREREREVERwmIQIiIiIiIiIiIiIiIiIiIioiKExSBERERERERERERERERERERERQiLQYiIiIiIiIiIiIiIiIiIiIiKEBaDEBERERERERERERERERERERUhLAYhIiIiIiIiIiIiIiIiIiIiKkJYDEJERERERERERERERERERERUhLAYhIiIiIiIiIiIiIiIiIiIiKgIYTEIERERERERERERERERERERURHCYhAiIiIiIiIiIiIiIiIiIiKiIoTFIERERERERERERERERERERERFCItBiIiIiIiIiIiIiIiIiIiIiIoQFoMQERERERERERERERERERERFSEsBiEiIiIiIiIiIiIiIiIiIiIqQlgMQkRERERERERERERERERERFSEsBiEiIiIiIiIiIiIiIiIiIiIqAhhMQgRERERERERERERERERERFREcJiECIiIiIios/IjBkzIJPJ5P7NmDFD32kRAD8/P9F9c/r0aX2nRVrA513B5+rqKrqPnj59qu+0CgQ+fgufsLAwmJuby91np06dUmpfvhdRQbd+/XrRY3TQoEH6Tkvn+FpMhUGTJk3kHqNfffWVvlMiIvrsGek7ASIiIso/oaGhePLkCZ4/f474+HgkJyfDxMQEdnZ2sLe3R/HixVGrVi3Y2NjoO1WiXCUmJuLevXsIDQ1FREQEkpKSIAgCLC0t4ezsjIoVK6Jq1aqwtrbWd6pESktMTERwcDCePXuGN2/eIDk5Genp6bCxsYG9vT3s7OzwxRdfwM3NDTKZTN/pEhV6sbGxuHHjBt68eYPY2FjExsbCwMAAlpaWsLKyQqlSpeDq6goXFxeYmZnpO10iIqWNGzcO79+/z77cpk0b+Pv76zEjIiL6HMyfPx8NGzbMvvz3339jxIgR8PLy0mNWRESfNxaDEBERFWExMTHYv38/9u7diwsXLiAqKirPfWQyGSpXrgxvb2906dIFbdq0gYmJidJzrl+/HoMHDxbFw8LC4Orqqkr6uXJ1dcWzZ8/kYgMHDsT69euV2l+VA6kGBgYwNTWFqakprK2t4ezsjOLFi6NixYpwd3dHzZo14eXlpbcDRe/evUOZMmWQnp4uuu6HH37AvHnz9JCV9j1+/Bhbt27FgQMHcPPmTWRmZua6vaGhIWrXro0OHTqgb9++qFixYj5lqn21a9fG7du3RfF69erh0qVLWp9P6vkxffp0pc88mzFjBn755ReF13t6euLatWvqpiciCAIqVKiQ6xncquSfny5fvow9e/bg2LFjuHfvXp6PawCwtbWFp6cnmjZtij59+qBChQr5kClR0XD37l2sWbMGR44cwePHjyEIQp77GBgYoHLlyvDy8oKXlxeaN28Od3f3fMiWiEh1hw4dwoEDB7IvGxgYYP78+XrMiIiIPhcNGjRA586dsXfvXgAfvquPHj0aly9f5gkNRER6wmIQIiKiIuj58+eYP38+1q9fj+TkZJX2FQQBISEhCAkJwcaNG+Hg4ICePXti0qRJn+0Bx6ysLKSkpCAlJQWxsbEIDw8XbWNiYoJ69eqha9eu6N69O0qVKpVv+W3atEmyEOTjdXPmzIGhoWG+5aNtt2/fxowZM7B//36lDtp9lJmZievXr+P69euYMWMGunTpghkzZqB69eo6zFb7rl+/LlkIAnwoJAgODkaVKlXyOSvNXL9+HXfv3tXafXHq1KlC1cpfEARs374dv/76K27duqXy/nFxcTh16hROnTqFqVOnomHDhhg+fDj69+8PAwOuBPq5evnyJe7cuSMXK126NGrUqKGnjAqW4OBgfP3112otdZCVlYXg4GAEBwdj48aNAD4UpY4fPx7ffPONljMlUt/jx4/x+PFjuVilSpVQqVIlPWVE+S0jIwPjx4+Xi/Xs2ZPvBURUJKWkpODMmTNyMXNzc/j6+mo0bnR0NK5cuSIXc3BwgLe3t0bjfi5mzZqFffv2Zf9+c/XqVWzatAkDBgzQc2ZERJ8n/lJIRERUhGRkZGD27Nlwd3fHn3/+qXIhiJTo6GisWLECVapUwbfffovIyEgtZFr0pKWl4dy5c/j222/h4uKCXr16qXWQVx3r1q1TeN2rV69w9OjRfMlD21JTUzFx4kR4enrK/ZCgDkEQsGfPHtSpUwdTpkxRWDxTEOV2/wIf2q4WRnn9XaooTLdBUFAQGjRogD59+mjtNeLixYsYNGgQatWqhUOHDmllTCp8Tpw4gTZt2sj9++233/SdVoGwcOFC1KlTR61CEEWePn2Ks2fPam08Im3YvHmz6HVg8+bN+k6L8tG6devw6NEjudjkyZP1lA0RkW69fftW9L43cOBAjccNCgoSjfv9999rIePPQ7Vq1dC+fXu52IwZMwrV7zBEREUJi0GIiIiKiNevX8Pf3x9Tp05FSkpKrts6OzvD09MTfn5+aNasGerVq4eyZcvmekZ5WloalixZgp49e2o79SInIyMDO3bsgKenJ0aMGIG4uDidzXXlyhXcu3cv1220edA9v7x8+RI+Pj5YtGhRrstmWFlZoXbt2vDz84O/vz88PDxgY2OjcPuMjAzMnTsX/v7+ePfunS5S16rU1FRs3bo11202bdqEjIyMfMpIezZv3qyVvOPi4rJb0BZ0a9euRb169XD58uVctzM1NYWbmxsaNWqE5s2bw8fHBzVr1oSVlVWu+929exft2rXDuXPntJk2UaE2ffp0fPfdd0hNTVW4jZmZGapVq4aGDRuiWbNmqFu3LipUqABTU9N8zJSISDOpqamYNWuWXOzLL79EzZo19ZQRERF9rn788Ue5y2FhYVi7dq2esiEi+rxxmRgiIqIiIDQ0FM2bN0dYWJjk9ebm5ujWrRu6dOmCxo0bw8nJSXK75ORkXLp0CcePH8f27dvx7Nkz0Ta5HZgv7IYOHYqvvvpK8rrMzEy8f/8e8fHxePPmDcLCwnDnzh1cunQJsbGxkvtkZWVh9erVOHnyJPbs2YNatWppPWdlCj0OHDiAqKgoODo6an1+XXj27Bn8/PwULvtRunRpfPXVV+jUqRNq1aolue7s3bt3sX//fqxevRrPnz8XXX/+/Hn4+voiICAAJUqU0PafoDX79u1DTExMrtu8ffsWR44cEZ15U9C9e/cOhw4dQseOHTUaZ9u2bXkWwBUEv/zyC2bMmKHw+ho1aqBv375o2bIlatasqXBpp9DQUJw+fRp79uzBiRMnJM+uyut1esaMGbnmQvqjzc4VBPz111+YOXOm5HXlypXDV199hS5dusDd3V3yOZeeno67d+/i2rVrOHLkCI4ePar26w2fd1SY8fFbOKxZs0a0nOXEiRP1lA2R7gwaNAiDBg3SdxpElIv69eujYcOGuHjxYnZszpw5+Oqrr2BsbKzHzIiIPj8sBiEiIirk3r17B39/f8nCDUNDQ4wdOxZTpkyBs7NznmNZWFjA398f/v7+mDt3Lg4cOIA5c+aI1kotqsqUKYP69eurtE9WVhYuXbqEzZs3Y+PGjUhKShJt8+TJE/j6+uLEiRPw8vLSVrp4//49tm/fLoqbm5vLHaxKS0vD5s2bMW7cOK3NrSvR0dFo1qyZZCGIsbExpk2bhkmTJsHMzCzXcapXr47q1avju+++w++//45p06aJzgoPCQlBixYtEBgYmGfHBX2RWv4k5/37cbuCXgxSu3ZtPH78GImJidmxdevWaVwMkvM2cnFxgSAIkkVA+jJ//nyFB9Hc3d2xaNEitGnTRqmxKlSogAoVKmDIkCF4/fo1Fi9ejOXLl2tlWTCioiQqKkphO+/Jkydj+vTpeb6XGBsbo06dOqhTpw6GDRuGpKQkHD58GCtWrEBAQIAu0iYiUktWVhYWL14sF/viiy/QtGlTPWVERESfu2HDhskVg7x8+RLbt29H//799ZgVEdHnh8vEEBERFWIZGRno2LGjZCFIyZIlce7cOSxevFipQpCcZDIZOnTogEuXLmHDhg1wcHDQRspFjoGBARo2bIg///wTYWFhGDFihGSniri4OLRq1Uph9xZ17NmzR9SVpESJEvjhhx9E2xaGpWIEQUCvXr3w5MkT0XVOTk44e/Ysfv755zwP3n3KxMQE33//PS5cuIBixYqJrr97926BPassPDwc//33nyj++++/i2KHDh1CREREPmSlPktLS3Tv3l0udujQIY2W67l37x6uXr0qFxs4cKDkc1BfDhw4IGqR+9Hw4cNx+/ZtpQtBcipZsiR+/fVXBAcHo1OnThpkSVT0LF68GNHR0aL4r7/+irlz56r0XvLRx9exU6dO4c6dO+jcubM2UiUi0ti+ffsQGhoqFxs2bJiesiEiIgJ69uwJW1tbuVjOwkUiItI9FoMQEREVYrNnz8alS5dE8TJlyuD8+fNo0KCBxnPIZDIMGDAAt2/fRuPGjTUeryhzdnbGypUr8e+//0p2moiJiUH37t2RkZGhlfmkCjz69u2LwYMHiw6G3759Gzdu3NDKvLqyfPlynDhxQhS3s7NDQECAyl1bPuXp6YnTp0/D3t5edN2ePXuwefNmtcfWlQ0bNiArK0su5unpieHDh6NSpUpy8fT0dGzatCk/01PL4MGD5S5nZGRodNvn7Aoik8kKVHFPREQEhg4dCkEQRNdNmTIFq1atgomJicbzlCtXDnv37sXKlSu1Mh5RUbBnzx5RrF69epg0aZJWxq9evTr69u2rlbGIiDS1dOlSucuGhoYYMGCAnrIhIiL60NW0V69ecrGbN2/i7NmzesqIiOjzxGIQIiKiQurJkyf43//+J4obGhpiz549qFChglbnK1OmDE6ePInevXtrddyiqF27djh8+DBMTU1F112/fh0rVqzQeI5nz57h1KlTovjAgQNRrlw5yZbQBbk7SGRkJKZMmSJ53fr161G9enWN56hSpQo2btwoed348eORkJCg8RzaIggC1q9fL4oPHDgQACR/3C/I9+9HPj4+okIWdfNOT08XFZL4+fmhfPnyauenbT/88INkx5b27dtjzpw5Wp9vxIgR+O+//2BnZ6f1sYkKk2fPniEkJEQUHzp0aIHqHEREpA1hYWGiA2tNmjSR7IpHRESUn7p16yaKSf3WQUREumOk7wSIiIhIPVOnTkV6erooPnnyZHh7e+tkThMTE4wYMUInYxc1Pj4+WLx4Mb7++mvRdb/88gu++uormJubqz3++vXrRd0GateujRo1agD4UDSQs1hk69atWLhwoWSRir7Nnz9fshijW7du6Nixo9bmadeuHXr06IGdO3fKxSMjI7FkyRL8/PPPWptLE2fPnhUtl2NsbJxdjNW/f39Mnz5d7jFw9+5dXLt2DXXr1s3XXFU1ePBg/PTTT9mX1c374MGDoiVmcnYe0afg4GDJ4iNHR0esWbNGZ/P6+PjobGx1hIWF4c6dO3j27Fn2c9ze3h5NmjRBtWrVVBorOjoat27dwtOnTxEdHY3379/DzMwMNjY2KFu2LKpUqQIXFxce7M8HgiAgNDQUQUFBiIiIQHx8PN6/fw9zc3NYWFjA2dkZrq6uqFixomRHJl17/vy5ZLx27dr5m4ie3Lt3D0FBQXj9+jWSk5NhY2MDV1dX1K9fX+WDwykpKbh58ybu37+fvexO8eLFUalSJdSvXx+Ghoa6+BOKjPT0dDx58gQhISF4+/YtEhISkJaWBjs7Ozg4OKB06dKoW7euRp8JC7uMjAzcvn0bDx48wJs3b5CcnAwTExPY2dmhQoUK8PT01MvryP379xEUFIRXr17h/fv3sLe3h7OzM7y8vODi4pLv+eRm06ZNou8FXbt21VM2uUtMTMT169fx5MkTREVFITU1FWZmZihWrBjc3NxQp04dtZbx+lwkJyfj5s2bePLkCSIiIpCSkgI7OzsUL14cZcqUgZeXF4yM8vfn/levXuH27dsICwtDfHw8MjMzYWtrCy8vL9SrVy9fc9FEQkICgoKC8PjxY8THxyM+Ph6GhoawsLCAtbU1ypYtC1dXV5QvX75QvPe9f/8e169fR0hICKKiopCeng47Ozu4ubmhfv36sLGx0XkOcXFxuHnzJkJDQxEdHY3U1FQ4ODigWLFicHV1RZ06dWBgwHOVc4qIiMj+zhMTE4OMjAw4OTllv06q+h1KG0JCQnDv3j28ePECiYmJMDQ0hIODA1q1apXne6Kfnx8cHR0RFRWVHdu9ezeWLVsGCwsLXadOREQAIBAREVGh8+LFC8HQ0FAAIPfP1dVVSEtL02tu69atE+UFQAgLC9PqPC4uLqI5Bg4cqPT+UjlOnz5dqzkKgiDUr19fcq41a9aoPWZWVpbg6uoqGnPx4sXZ2yQmJgpWVlaibXbs2KGFv0q7EhMTBRsbG1GuFhYWwqtXr7Q+3+vXrwVLS0vRfM7Oznp//nw0YMAAUX4dO3aU28bPz0+0zahRo7Qyv6bPj+nTp4v2b9SokSAIghAeHi4YGBjIXff111+rnGP79u3lxrCxsRGSkpIEQZB+fdDF8zs3I0aMkLwdV69ena95SJG6f5S9fQICAkT7+vr6ym0TEREh/PLLL0KFChUkbwNV5gsPDxemTZsmVK9eXeFYOZ/HvXv3FrZt2ya8f/8+z/Gl3rNUeS+RIpWXsnx9fUX7BgQEqDSXuv+UcebMGWHw4MGCnZ2d0uNWrFhR6Nu3r7BlyxYhPj5e6dtCE7t27ZLM5eHDh/kyvxRdP++ioqKEadOmCaVLl1Z4XxgaGgpt27YVrl27luecd+/eFfr16yf5WeLjP0dHR2H8+PFCbGysGreIZreJlLCwMNF4Li4uSu8v9d6h6ufXzMxM4fTp08KUKVOEhg0bCsbGxnk+R4yNjYUGDRoIS5YsEZKTkzX+m9X9l9ttpe37ShAE4dixY0K3bt0ECwuLXPOSyWSCl5eXsGTJEiExMVHt+ZR5vY+NjRXmzJkj+Vj49F/lypWF33//XUhNTdXoNtCWL774QpRjeHi42uOp+l6Ul9TUVOGvv/4SmjRpIvkd9tN/JiYmQtu2bYU9e/YIWVlZKs1z9+5d0Xg1a9ZUaYzk5GTB1NRUK+8hXbp0EY2xf/9+lcYQBEFISUkR1qxZI/j5+QlGRka53n62trZCt27dhOPHj6s8z0fKvJYmJiYKixcvzvXzmaafp3Kjrc9vUVFRwuLFi4W6desKMplMqddKS0tLwdfXV5g6dapw69Yt7f9xuVDmtfjWrVtCnz59JL/vfvxnZGQktGvXTjhz5ozWc4yNjRUWLVokeHt7i77z5fzn7OwsDBgwQLhy5YpKc0i9Rqn779PXtrxe+1X5p+rnhzdv3ggzZ85U6jtP2bJlhREjRggPHjxQaY5PKfMcevbsmTBp0iShVKlSCnNZt26dUvMNHDhQtO/WrVvVzp+IiFTD0ksiIqJC6O+//0ZmZqYoPnz4cBgbG+shI1JkxowZkvENGzaoPWZAQACePn0qFzMyMkKfPn2yL1taWkqeEVgQlxLZtWsX4uPjRfEePXqgZMmSWp+vRIkS6NGjhygeERGB/fv3a30+VSUkJGD37t2ieM6lYT4uGfOpbdu24f379zrLTRvKlCmDFi1ayMW2bduG1NRUpcd48+YNjhw5Ihfr2bNngTmzKDk5GVu3bhXF7ezs0K9fPz1klH82b96MypUrY/r06QgNDVV7nKioKIwaNQrly5fHzJkzcffuXaX2i4iIwLZt29C7d2+ULl0aAQEBaudA/+f58+fo0KEDfH19sW7dOsTGxiq975MnT7Blyxb07dsXzs7OukvyE1lZWZLxnN2Eiop///0X7u7umDlzJl6+fKlwu8zMTBw+fBje3t6YPXu25Dbp6en47rvvULNmTWzevBmJiYkKx4uKisLixYvh7u6OS5cuafx3FGaCIGDcuHEoU6YM/Pz88L///Q8XL16U7OKXU3p6OgIDAzFu3Di4uLjotHtUQXD//n34+PigVatW2L17N5KTk3PdXhAEXL16FePGjUP58uUVLvmnqcOHD6NKlSr46aef8OzZs1y3ffDgAb799ltUq1ZNckmq/PTw4UM8fPhQLubm5oYyZcroKSN5Bw8ehJubG4YOHYqzZ89Kfof9VFpaGg4fPoyuXbuidu3auHz5stJzVatWDSVKlJCL3blzR3LJPkUuXLig8DPpyZMnlR4nKytL9BnE0NAQvr6+So8hCALWrVsHV1dXDBs2DKdPn0ZGRkau+8TFxWH37t1o2bIl2rZtiwcPHig9n7KOHz8Od3d3jB8/XunPZwXRX3/9hS+++ALjx4/HtWvXRN11FElKSsKZM2cwa9Ys1K5dG/PmzdNxpsrJzMzEDz/8AA8PD2zduhVJSUkKt83IyMDBgwfh6+uL/v37S34XV1VGRgYWLlyIcuXKYcKECbhy5YrCz2MfRUREYOPGjahXrx769u2LV69eaZxHYZOcnIwff/wRrq6umDZtmlLPqfDwcKxatQrVqlXD2LFjERcXp/W8fvvtN7i7u2PhwoVauV/8/f1FsYMHD2o8LhERKYfFIERERIXQP//8I4oZGxtj6NChesiGctOyZUu4urqK4oGBgYiMjFRrzL///lsUa926taj1u1SxwPHjx3M9UKQPe/fulYx/9dVXOptT0XNlz549OptTWTt27BAdGHFwcEC7du3kYt26dYOlpaVcLDY2Fvv27dN1ihrLuZxLTEyMSnlv3LhR9GN4QVoi5sSJE5LLHg0YMKBILwUwY8YM9O/fP3spCXWdPXsWNWrUwMqVK/M86JGbqKioPA/oUd6Cg4PRoEEDHDhwQOOxVCn60oSTk5NkvCgWB61cuRKdO3dW6WBnVlYWpk6diqlTp8rFU1JS8OWXX2LhwoV5HsD51Js3b9CqVStcu3ZN6X2KmszMTCxduhSvX7/WaJyIiAgMHz4cI0eOVKqQpLDZtWsXvLy8cP78ebX2j4iIwMCBAzFo0CCt3j7Lli1D+/btVb7/Hj9+DB8fHwQFBWktF1XlLI4FPrTk1zdBEPD999+jffv2CpfuyktQUBAaN26MP//8U+l9mjZtKsoj59KZucmt4EOVYpCbN28iJiZGLubp6QlbW1ul9o+Pj0fnzp0xZMgQvH37Vul5P3XkyBHUr18f586dU2t/KX/99Rfatm2LFy9eaG1MfZgwYQK++uoruWUr1FUQCvEzMjLQtWtX/Prrryq9fwMfCrl9fHzw5s0bted//fo1fH198d1336lVWCIIArZu3Yr69esjODhY7TwKmwcPHqBu3bqYN2+eWo+jjIwMLFu2DD4+PlorpBEEAUOGDMGkSZOQkpKilTEB8WszABw7dkzlxysREamHxSBERESFzOvXr3Hr1i1R3M/PT+V14En3ZDIZOnXqJIpnZmbi7NmzKo8XFxcnWQwkVfjh5+cnWr81KytLo64k2paeni75A62rqysaNWqks3kbNWokWaRz4sQJvf8gIVXs07t3b5iYmMjFrKys0KVLF6X2L2g6deoEe3t7uZgqXWtybuvu7o4GDRpoJTdtkDowA3zoXlJUrV69Gr/88oso7uzsjNq1a6Np06aoVq1anuuT79u3Dy1btsz1gJytrS2qVq0KX19fNG7cGNWqVRMVRpF2JCUloXXr1gp/YDYwMEDZsmVRv359NGvWDE2aNEHt2rVRunTpfM5U3hdffCEZ/+OPP9QuxCyI9u/fj9GjR4vetypUqICGDRuiSZMmqFixosL9Z8+ejWPHjgH48Pmge/fuOHHihNw25ubmqFatGvz8/ODt7Q0HBwfJseLj49G3b998K/gpTExMTODm5oa6devC398fjRs3RvXq1WFqaqpwn1WrVuG7777Lxyx1b/v27ejVq5fCTiCmpqaoXLkyfH19UadOHTg6Oioca8OGDejZs6dWPrNt2rQJ33zzjWissmXLwtvbG02bNkWNGjUUdl+MjIxEnz59kJaWpnEu6vj4HP6Uj4+PHjKRN2bMGCxYsEDh9ba2tqhZs2b25wNF7+MZGRkYPXo0fv/9d6XmbdasmSimShFHbtsGBAQo3T1Cahyp3KTExMSgWbNmuXYsdHR0RO3ateHv7w8vLy8UL15ccrvY2Fi0bNkS//33n1Jz5+bIkSMYMWKEqLuLvb199n1Zq1atXJ+7BcGyZcuwePFihddbWVmhZs2a8PHxQfPmzVGvXj1UqVKlQBd0jx8/XvLx4uLigoYNG6Jhw4ai3wU+FRQUhDZt2kgWs+fl+fPnaNy4MS5evKhwmxIlSsDDwwP+/v7w8PBQ+FkiPDwcjRs31muBXX65desWGjVqlGvxS9myZeHl5QV/f3/UqlUL1tbWktvduXMHDRs21MpJPz/99JPk9/JSpUrB09MTfn5+cHd3V/m7V9myZVG+fHm5WFRUFK5evapRvkREpBwjfSdAREREqlHUKtfb2zufMyFl+fv7S/6Aef36dcmD+bnZvn276AwNe3t7tG/fXrStTCZD//79Ra3g169fjylTpqg0r67cvXtXsgV9/fr1dT53vXr1RMvtREVF4dGjR6hcubLO55fy4MEDBAYGiuI5l4j5aODAgdi0aZNc7OTJkwgPD0fZsmV1kqM2mJqaok+fPli+fHl27MSJE3jx4kWebc0DAwNFLdkLUlcQAJLLJRgZGaFOnTp6yEb3nj9/jvHjx2dfNjExwZgxYzBgwADUqlVLbtusrCz8999/kgdTLly4gF69ekkeTLa0tMSYMWPQpUsX1K1bFwYG8uc1ZGVlITg4GKdPn8b27dtx4cIFpQ/YFGafvl4cOnRI9Hrftm1bUfcHVcyZM0fyjO769etjwoQJaNmypcKznOPi4hAUFIRjx47hwIED+frDfpkyZVC5cmVRe/x3796hRYsW2L59u95e57Xl7du3GDJkSPYBbAcHB0yZMgW9evUSFeOEhYVh9uzZksWC48aNw/379zFnzhwcOnQoO16/fn389NNPaNasmdwBsMzMTJw8eRITJkzAvXv35MZ6+PAhFi5ciJ9++kmbf2qhY2VlhRYtWqB9+/bw8vKCu7s7jIzEP7+lp6fjxo0b2LBhA/7++2/Ra9+SJUvQrFkzyc94H5UsWVLudWDt2rX466+/5LYZOnSoUt3WcitO0dTDhw8xdOhQyeINNzc3TJ06FZ06dZI70CUIAi5cuIClS5di165dov327t2LBQsW4IcfflA7r/v372Pnzp3Z7xcODg74/vvv0bNnT1HRcHx8PLZu3Ypp06aJOvHcu3cPCxcu1Mvna6nPHDnfe/Pb5s2bFXbzaNGiBSZOnIhmzZrJPS/ev3+Pw4cPY86cObhx44Zov0mTJsHb2xsNGzbMdW5NikHi4uIk5/4oKioKt27dUurznFSxuzLFIIIgoH///pKdlmxtbfH111+jd+/eqF69OmQymdz1t2/fxvLly0VLyr5//x59+/bFnTt31D55JDExEYMHD84e18DAAAMHDsTw4cPh7e0t+lx28eLFAteNEvhQvCX1HmVpaYnRo0ejT58+Cp8/WVlZePz4MS5duoQDBw7g2LFjahVPaNupU6fkur+YmZnhu+++w+DBg0UH30NDQ7F+/XosWLBA1Ini1q1b+O6777By5Uql505NTUWnTp0kl4YsUaIExo0bh65du8LNzU3uuqysLFy5cgULFy4UdeaMjo5Gr169cP36dYUFOH/++Wd2B5LXr1+LflMpUaKEwu6jOVWtWjX7/3v37s1+L75x4wZGjx4tt22dOnWU7lSU23K30dHR6NChg2RnmooVK2LChAno0KGD6Htxeno6zp49i//973+i15hnz55hwIAB+O+//0SvDcq6cuWK3Gdna2trTJo0Cb179xbdh+np6Thw4ABKlSql9Pi1atVCWFiYXCwwMBD16tVTK18iIlKBQERERIXKtGnTBACif/v27dN3aoIgCMK6desk8wsLC9PqPC4uLqI5Bg4cqPT+UjlOnz5dqzl+9OzZM8n5OnbsqPJY3t7eonFGjhypcPuHDx9Kzn327FkN/iLt+fvvvyXzW7hwoc7nXrBggeTcW7du1fncinz//feifNzd3RVun5mZKZQtW1a0z8yZMzXKQ9Pnx/Tp00X7N2rUSG6ba9euibaZM2dOnmN/9dVXcvsYGhoKr1+/lttG6vVBV8/vnFJTUwVjY2PR/LVr186X+ZUhdf8oe/sEBARIPj4+/qtYsaLw4MEDlXOKiYkRSpcuLTlm+/btRfdxXh4+fCgMGTJE2LJlS67bSb1nqfJeIkXqb1CWr6+vaN+AgACl9tX235KVlSWULFlSNObYsWOFzMxMlce7evWq0LdvX7XzUdXcuXMVPk6NjY2FPn36CMePHxfS0tLyJR9dPu8aNmwoREZG5jmOove9efPmCSYmJgIAQSaTCfPmzctzrPj4eMHLy0s0VtmyZZV+fGhym0gJCwsTjefi4qL0/lLvHcp+fk1PTxfc3d2FVatWCcnJySrn/uDBA6FmzZqi+atWrarSONq+TbUxbnp6uuRjBYAwZMgQpW6vnTt3CqamppLP5Rs3biiVh6LvKB//+fv7C9HR0XmOExoaKpQrV060f5kyZdR6bdTEo0ePJG+T1NRUjcbV5L3o6dOngq2trWh/AwMDYcWKFXnun56eLvl5GIBQvnx5IT4+Ps8xypcvr9Zzed++fXL7yGQy0d+yYMGCPMdJTU0VLCws5PYzNTUVUlJS8txX0et069atlXqdFwRBuHDhguDo6Cgao3379krtL/Va+uk/Jycn4dKlS0qNpSvqfuZZsWKFaD9nZ2fh3r17KueQkJAgLF26VFi3bp3qf4CapF6LP/1XoUIFISQkJM9xgoODJZ8nMplMOHPmjNL5jB49WjKPgQMHCklJSUqNsXfvXsHc3Fw0xtixY5XaX9P3fkWkPnv5+vpqPK4gCEL79u0lb/sffvhBSE9PV2qMP//8UzA0NBSN89tvvym1f17viV5eXip//8qL1G+Zffr00eocREQkjcvEEBERFTJSZ10AKLJnnBcF5cqVkzyrJTw8XKVx7t+/jytXrojiirpGAB/OtpQ6g06VJTl06cmTJ5JxDw8Pnc/t6ekpGX/8+LHO55aSmZkp6vIB5H7/GhgYoH///qL4+vXrC3xXBE9PT9SsWVMutn79+lz3SU5Oxo4dO+Ribdq0QYkSJbSdntrCw8ORnp4uin8Or9GlSpXCuXPnFC7RkZtp06ZJnkE6ePBg7N27V+X72M3NDX/99Rf69Omjci70QVBQkGi5ngoVKmDx4sWiM4CVUbduXWzevFlb6eVpzJgxCh836enp2Lp1K1q2bAlHR0e0bNkSU6dOxb///qu1NdfzS506dfDff/8p1ZZ/0qRJaNKkiSg+efLk7CUu5s+fr1SnBWtra2zYsEHU8SI8PFzyjPiizsjICPfv38fw4cPVWkrgiy++wKlTp1ChQgW5+P3790VL9xQ2mzZtkmwD37t3b6xdu1ap26t79+7Ytm2b6LUnPT0dEydO1DjHpk2b4ujRo6Il7KSUL19e8nP0ixcvtLIUhyqkuli4ubmJlhbMT9OmTUNcXJwo/ueff2LkyJF57m9kZIT58+fLdRz7KCwsLNflPT5StztIzm1q1qyJVq1aqTzOpUuXRMshNWzYEGZmZrnuFxYWJtldpkePHjh8+LDSy680bNgQJ0+eFM134MABXL9+XakxFLG0tMSZM2cK7Zn8UssqzZ8/X647hLKsrKwwduxYDBo0SAuZaa5YsWI4ceKEUp3P3N3dceLECVGnGEEQJJ97Us6fPy/X5fGj7777DuvXr4eFhYVS43Tq1An//POPqJvFypUrc102srDasmULDhw4IIr/8ccfmDdvnmQnMSmjRo2S7FIyd+5cUdcXVdWsWRMnT57U+nfsGjVqiGJSXZCIiEj7WAxCRERUyLx48UIy7uTklM+ZkCqk2meqesBJqr37F198gQYNGuS638CBA0WxXbt2ISkpSaX5dUFR+2BF615rk6I2yYqeY7p25MgR0Q9eioo9PiV1/4aGhuLs2bNazU8Xci7v8ujRI5w/f17h9rt27RK1Yy5oS8R8zq/RK1asyLUlsiIvX76UbEnt5eWF1atXw9DQUBvpkYqkChZbt25daO4PKysr7NmzJ8+lLxISEnDixAnMnj0bHTt2ROnSpVGqVCl07twZixcvxvXr1yWXtigIjI2NsXXrVpWKD3I7yNO0aVNMmjRJ6bGqVKmCNm3aiOKftqv/nKjblv0jR0dHyWUFt2zZotG4+vbHH3+IYqVLl8bq1atVus06d+6MESNGiOIBAQG4e/eu2vnZ2dlhy5YtMDY2Vnoff39/NGrUSBS/cOGC2nmo49GjR6KYPpcJjIiIEBXtAkDHjh0l77vc/Prrr5IHDleuXClZdPspf39/UUydYpBmzZqJCkvOnTuX5/xSc0nllNPixYtFY1erVg0bNmxQ+fWlVq1amDt3rigu9Rqjiv/9739qFU4UFFKfbdq1a6eHTLTv999/FxUU5qZixYqSxVU3btyQPAElp19//VUUa9GiBebPn690Dh+1bt0a33zzjVwsPT1d6SVZChOp223o0KGiJWmUMXz4cHTs2FEuFhkZqdHnBiMjI6xbt05u2TZtkXp/CgsLK7Cfs4mIihIWgxARERUyMTExopixsbHSZ16QftjZ2YliqhRjZGRkSJ5RnVehAPDhbLKcZ4YlJiZi586dSs+vK9HR0ZJxW1tbnc8tdZ8AH35A0QepYp+mTZuK1grO6YsvvkD9+vWVGq+g6du3r+jgS25da3Je5+TkhPbt2+skN3VJvUYD+fOY1idPT0906NBBrX3Xrl0rOvhhYGAg2XWA8s/Htdg/ZWNjo4dM1NewYUMcPHhQ5WKs169fY9++fZgwYQLq1q0LFxcXTJ48GQ8fPtRRpurp0aMH3N3dVdqndevWCg96T506VeUDjjkPQgDS3QpIOW3bthU9XgMDA/WUjeYCAwNx8+ZNUXzu3LmwsrJSebw5c+ZIvp9KnZ2urJEjR6pVyNijRw9RTNOuC6p6+vSpKFa6dOl8zeFTa9euRWpqqlzM0NBQqW4eORkZGUkWLrx+/Rr//PNPrvtKFV7k1bHozZs3uH//vlxMqhgkKSkJly5dynUsqbmkupV8Kjo6WvKz+8KFC/PsKKLIyJEjRcXvO3fuVPuEgBIlSuDrr79Wa9+Coih8tpHi7e2N3r17q7xfnz594OXlJYqvWrUq1/1CQkJw8OBBuZihoSEWLVqkdmHk5MmTRV2NCsP3WVUcO3YMQUFBcjFra2v873//U3vMadOmiWKa3G4dO3bUWZdWqd810tPTFZ4gRERE2sNiECIiokImJSVFFCvqBxmLAqmzdqXuS0UOHTqEt2/fysVkMplSxSB2dnaSB2sKwlIxim4DRYUa2qToeaPK/aItERERoh/UAOmuH1Kkttu9e7eoi0ZB4+zsLDobT9GP1E+ePBF1O+nXr59KZ/LmB30+pvVp6NChau+7a9cuUaxNmzaoUqWKJimRhqQes8qcKVrQNG/eHDdv3kTPnj3VPkDx4sWL7DbyX331VYFZSmbIkCEq72NmZia5lJOLiwuaNm2q8ng5l/sCUOCKZgoTQ0ND0UGYR48eKSyeLeiklmSws7OTLKRQhr29veS+UvMoS933L6nlBqU6dejS8+fPRTGpboT5Rep+aNGiBcqXL6/WeP7+/pKvV3nd38WLF0f16tXlYm/fvs21g0zOAg5jY2M0adIEFStWRLly5eSuy63LSFJSEi5fviwXs7a2ljzg/qkDBw6IPv+6ubmhdevWue6XGzMzM3Tr1k0ulpaWJspPWQMGDCj0RbpF5bNNTup8Hsht36NHj+a6z44dO0RLkvr7+4ued6ooUaIEmjdvLhd79eqVwmWSC6Pt27eLYr169VLYsVQZHh4eom49165dU3upGE2+0+WlRIkSkp/Fpd7LiIhIu1gMQkREVMhkZGSIYnm1QCf9k2p9qcpBKamzO3x9feHi4qLU/gMGDBDFzp07h8ePHyudgy5kZmZKxvPjMa1ojrS0NJ3PndPmzZtFnRGsrKzQpUsXpfbv2bOn6O9JTk6WbNVd0ORc5iUxMRG7d+8Wbbdu3TrRj44FbYkYQPo1Gij6r9PqHEQGPpzhe+/ePVFclz9EknKqVasmip06dQobNmzQQzaaKVOmDLZv346goCAMHz4cDg4Oao2TmZmJv/76C9WrV8eJEye0nKVqjIyMJLtCKUPqs4PUkhfKcHV1FcXi4uLUGos+yHlQSBCEQnswTKqrSadOnTR6T+zbt68oFhYWJiqaVkbJkiVRqVIltfKQ2i+/H/uxsbGimDodV7QhIyMDV69eFcV79eql0bh9+vQRxZTplqPqUjE5r/P29s6+LXN29chtnLNnz4o+0zdp0iTPIgqp5R27du2a6z7K8PHxEcUuXryo1ljqftYrSKQ+24wbN05hZ7/CQCaTiYp+VNG9e3dR7NWrV7kunVoYHq8FUX7dbmlpabh27ZrK4xgYGKBJkyYa56OIoaGh5ElSUu9lRESkXSwGISIiKmSk2sTyR/eCL2fLZEC6W4iUt2/f4vDhw6K4sl0jAKBVq1YoUaKEKK7v7iCK2h5LtfDVNkVzWFpa6nzunKTuh65duyqdi729veRyKfq+f5XRpk0b0WMzZ95ZWVnYuHGjXMzT01PyjHR9U/SYLsqv01ZWVpJn7ipDUUt9qR+DKX+5uLhIHjQZNGgQevXqlWeb/IKoevXqWLVqFV6/fo3Dhw/ju+++Q7169VTuMBQTE4M2bdpInuGZX1xcXNReIlBqHXh1O/FIjVWUX+9UkZiYiF27duHHH39Eu3btUKVKFZQqVQrW1tYwMDCATCaT/Ce1LGBhPFAiCIJkB4J69eppNK6XlxcMDMQ/Z6qznI4mHaiklpbI78d+cnKyKKbs9wttu3PnjmQ+mt7fUkVvDx48yPPgvdSyLLkVceTsDPLp/jnHunz5ssKlVqTmyGuJGED6IHHdunXz3C8vUgV7OZepUJZUN5zC5ssvvxTFbt68ierVq2PZsmWF8rW2fPnycHR0VHt/R0dHyceJoo4p6enpkp8BC9rjtaB5+fKlZGFnQbrd3N3ddf5biNRnV3WXriIiIuUV7t5uREREnyGpL2eJiYnIzMyEoaGhHjIiZURFRYliyp65t2nTJlG3AUtLS5XOADI0NETfvn3x22+/ycU3btyIWbNmSf6o/lF8fLxoDW1lVaxYEc7OzgqvV3QgKzY2Vu0zt5Wl6Me+/F43+tq1a7hz544orkqxz8ftc3bUuHjxIh4+fKj2gfr8YGRkhP79+2PBggXZsbNnzyI0NBQVKlQAAJw4cQLh4eFy+xXEriCA4mKionxwtFSpUrm+huRGqqV+hQoV4OTkpGlapAU//fST5FnZO3bswI4dO+Di4oK2bduiSZMmaNy4seRa4AWRiYkJ2rRpgzZt2gD4ULAZFBSEGzdu4Nq1azh37hwePHiQ6xiZmZkYMmQIKleujDp16uRH2nI0eY+UKlpTdzypsdRtTV5U3L17F3PmzMG///4reXBcHYXxAGVcXJzke5+mzxcLCwtUrlwZwcHBcnF12sxr8jySKrrI78e+1ONLUVGqrj179kwUs7Cw0PgzqNTjRRAEhIeHw97eXuF+vr6+MDQ0lOtCeObMGcnvzKGhoXj69Klc7NMCjpxdRtLT03H27Nns95BP5SwqyTmWlNTUVMlujcnJyRoXXko9L9RZdsrExCTX73SFRefOnVGlShXR68erV68wduxYTJgwAX5+fmjevDl8fHzg4eFR4Lv71apVSytj5HwOSD2ngQ/PF6nXnpiYGI0fr1IdngrrMmk5SS1TZWVlhUePHmm8xJjUZwR1brf8+Bwv9d6prc9KRESkGItBiIiIChmp7g7Ahx9cdX3wnNT35s0bUUzZNb2lujt07txZ5TbQAwcOFBWDvHjxAsePH891PeobN26o3RZ43bp1GDRokMLrFT2e8+Ogh6KD8/ldDCJ1/5YrVw5+fn4qjdO6dWsUK1YM7969k4v//fffmDdvniYp6tzgwYPlikEEQcD69esxc+ZMAOJlkkxNTSUPUBcE+nxM64utra3a+758+VIUKywFBZ+D3r1748SJEwq7DD179gwrVqzAihUrAAClS5eGr68vmjZtipYtW6JcuXL5ma7aTE1N4eXlBS8vL4wYMQLAhyWMdu3ahdWrV0suZQQAKSkp+Prrr9XqSKApdbuC5Nd4n6OMjAxMnjwZS5YsUbhkmLoK41mzijo3lCxZUuOxS5UqJTqYq84yD/roBqdNUl2NtP3YU5bU7V+8eHG1i0U/KlasGIyMjER/V173t62tLTw9PeW6G8THx+Pq1auibiM5u3lYWFjIbVOyZElUrVpVrjj+5MmTomKQqKgo3Lp1Sy7m7OyMGjVq5Jqr1EkDgPQyn9qgzkFiTT7rFSSGhobYuXMnGjZsiISEBNH16enpOHHiRPZScCYmJvD09ETTpk3h7+8PX1/fPJf8yW85lxbT1hiKnmOKHq8tWrTQOA8pRaUYROp2S0xMRIMGDXQyX0F9nudcRguQfi8jIiLt4jIxREREhUzZsmUl42FhYfmciWoEQSjQ4+nS06dPJc8UVHRffury5cuSXTlU7RoBADVq1JA8u06fS4koug00PTtGGQ8fPpSMly9fXudzf/T+/Xts27ZNFO/fvz9kMplKYxkZGaFv376i+KZNm+TOiiyIqlSpImojvmHDBmRlZSE6Ohr79++Xu65Tp065ng2qT4X1NVoTmhxETkxMFMXs7Ow0yIa0be3atfj555+V6j728uVLbN26FcOGDYOrqyuaNGmCDRs26O3gpCZKliyJb775Bnfu3MGGDRsUFgpeunQp+6ARfb7S09PRo0cP/Pbbbzp5vBemz70fKTqQqI2iW6kDVuoUgxR2Uu+/KSkpeshE+vbXVoG11DjK3N9SHTn+++8/USxnMYiPjw9MTExyHUtqnICAANFztWnTpnl+ps/vg93qdKsrSgWD1atXR2BgINzd3fPcNi0tDYGBgfjf//6H5s2bo2TJkhgzZky+fFdVVn6/phaGx2tBVBhut/x4nkt1ASnshZlERIVBwSplJSIiojxVq1ZNMn7lypUCsY6vojaq2m79KHWGpL7aIucl5xliH1WvXj3PfXN2RAA+/OBjYWGhVhvW+vXr4+bNm3Kx/fv3IyYmRi8H1xU9nq9evYqePXvqdO6rV69KxhXlpAt79+6V/KGtcuXKat2/VatWFcVevXqFY8eOoW3btmrlmF8GDx6My5cvZ19+/vw5Tp06hZCQEKSmpoq2LaicnZ0lO7Qoerx97qQKlaTaB5P+GBgYYNasWejbty9mzpyJf/75R/SclCIIAs6dO4dz585h1qxZ+PPPP9GyZct8yFi7ZDIZBgwYgDp16qBx48aIj48XbbNnzx6dnRFLhcPkyZOxd+9eyevMzc2zO8+ULVsWZcqUgaWlJczMzCQ/u86aNQuHDx/Wdco6p6goQRuv8VJjFMbuKZqS6hKor2IQqXm19X6u7v3t7++PuXPnysVOnjyJn3/+OfuyIAgICAiQ20aqiKRZs2b4448/si8HBQUhMjJSblk7qSVici4xIyW/u8cV9CLx/FCtWjUEBQVh7dq1WLJkSZ5Lw30UGRmJ5cuXY+XKlRgyZAgWLVqkcrdObctZuKQOqd9wFH3W4+NVPbzdPpB6r2AxCBGR7rEYhIiIqJBRVPBx9epVjBo1Kp+zEVN0RrfU2d+akGrrWlA7BeQ82+yjvIp3UlJSsGPHDlE8Pj4ejRo10kpuwIcferZs2YIxY8ZobUxleXh4SMavXbum87kVzZGfxSCKurJouy3033//XeCLQXr16oXx48fL/UC0bt06URv4MmXKFPiDrh4eHjh69Khc7O3bt3j+/HmhWTYjv0i9Z0gdbCf9c3d3x9atWxEbG4v9+/fj5MmTOH36NMLDw/Pc98mTJ2jdujV+/fVXTJo0KR+y1b4aNWrg119/xciRI0XXKXqfp8/D/fv3sXTpUlHc0dERM2fOxMCBA1U60FFQP8+qStHZ6gkJCQqLx5Ul9T2gqCxjoQqpJXciIiL0kIn0/S11P6lD3fu7UaNGMDU1lTuoHRgYiJSUlOwCk7t374oKeKWKQfz8/GBoaJh9gFUQBJw6dQo9evTI3kbqvUBqrJwK2rIjnwtjY2OMGjUKo0aNwuXLl3H48GEEBATgypUreRa9ZmZmYs2aNTh79iwCAgK0svyVurTxPJP67K3odx0+XtXD2+1DtxKpZWKUXT6ZiIjUx2ViiIiIChkPDw/JH7/OnDlTIFpIK/oBW5vtPVNTU5GWlqb03PqUlZUlWuIC+PBjQJMmTXLdd8+ePfnWFjW3pWL8/PwgCIJa/wYNGpTrvCVLlkTlypVF8cuXL+v07JnY2Fi5NcQ/cnFxybeD9c+fP8+3A4gHDhxQuL5zQWFra4suXbrIxXbu3CnqZDNw4ECN15/XtaZNm0rGc555SoCDg4Molt9nzmmT1A+cRY2dnR0GDhyIjRs34vnz53j69Ck2b96M4cOHw83NTeF+giDg+++/x759+/IvWS0bPHiw5BnAYWFhBeIz2OdOX8+/FStWiJaGKV68OK5du4avv/5a5TNei8pyJ4o+l2uj4E/q87HU+0lR5+rqKoq9fPky/xOB9P2tjftaEATJg93K3N/m5uZo2LChXCw1NRXnz5/Pvpzzs7iDgwNq164tGsvW1lZUyP/pvi9evBAtQVmuXDlUqlQpzzwVFU7dv39f7e9guf17+vRpnjl9burVq4dffvkFZ8+eRVxcHM6dO4c5c+agVatWuXa4efDgATp06KDXLgza+L1AagxFxSCKHq/Jyck6ebyePn1a47+vIJC63YoVK6aT20wQBKxfvz7//8g8KHp/cnFxyedMiIg+PwX7V1QiIiISMTY2RqtWrUTx0NDQAnFmqqIf5pRtvaqMkJAQlebWp6NHj0qeNd24ceM8i1dyK9DQths3biAoKCjf5vvUl19+KYq9f/8eW7Zs0dmcW7Zswfv370Xxjh076mzOnDZs2ICsrKx8mSstLQ2bN2/Ol7k0kXP5l5wH16S2KYjat28vGV+zZk0+Z1Lwfdpe/aPHjx/n2/xSZ+lJPe6UVdCLrnTBxcUFffv2xapVq/Dw4UOEhITg559/hrOzs2hbQRAwadIkjW5jfTIxMYG3t7conpmZme9rwRcFReX5d+DAAVHs999/lzxQr4zIyEgNMyoYFH3ODQ0N1XjsJ0+eKD1fUSb1GHvx4kX+JwLp2//169eSn7dVERoaKllsp+z9LbVMy6ffmXN+f27atKnCouOcY+U2jqK5pZQtW1Yy/jl+pigITE1N0bhxY0yZMgVHjx5FVFQU/vnnH8nfYIAP3SY3btyYz1n+n0ePHmk8Rs5CJuBDdyspfLyqR+p2+9w+O0oVgzg6Oup9qSUios8Bi0GIiIgKof79+0vGV65cmc+ZiFWoUAEWFhai+N27d7U2h6KxatSoobU5tEEQBMyYMUPyurw6Zjx9+jTfuwj8/fff+TrfR/369ZOMr127Vmdz/vXXX5Lx/CoG0cfZOvlZXKQuf3//XM8MatKkCSpWrJiPGamnSpUqkstAXbhwQauvhUWB1Nm3ERERkgf6dMHa2loU02RZM32dkV2QVK5cGbNmzcKjR48kC6OePHmCixcv6iEz7ShevLhkvKCuzV6QFYXnX2RkJJ49eyYXs7KyQufOndUaLz09HXfu3NFGanpnaWkp2W0tZ8cvVUVGRkoWPFStWlWjcQsjqe8++VlQ+Smp2z8jI0Pjx7PU48XU1FTpz4NSy7R8LNzIzMzE2bNn5a5r3ry50mM9efIk+/l/6tQppeaWYm1tjTJlyojiOV9bSD/Mzc3RuXNnHD16FAcOHJD8rWPTpk16yOyDoKAgjbqTZWVlST5PpT6jA4Cbm5tkMScfr7lT9Br5OX13kCo6qlmzph4yISL6/LAYhIiIqBBq06aN5I+r+/fv1/gHVk0ZGRmhXr16ovi5c+e0NseFCxdEMTMzM3h4eGhtDm1Yvnw5rl69KooXL14cvXr1ynXf9evXi37UsbOzw/v377XSNnThwoWiObds2aKXFut16tSBl5eXKH7r1i3s2LFD6/NJLT0CfDiAr2h5D207c+aM5Jmxly5d0sr9e+3aNdHYt2/f1vvrQ15kMlmuhVKFoSvIRyNHjpSMKyoQ+1x5eHhIHhA+ceJEvswvtezamzdv1B5P6v0pv8hkMr3NLcXW1hbbtm1DiRIlRNd92qK/sJFa9sDQ0FCyyw3lrig8/96+fSuKlS9fHqampmqNd/36daSkpKidT0F7HWjQoIEodubMGY3GlCqWNjIykvwsWdR5eHjA0NBQLhYVFYVXr17ley7ly5eXLJbTxf3t4eEBExMTpfb38vISfc64ceMGYmJicPXqVdFrem4FHI0aNRI9tz8WlmjSGQSQfq5wecGCp127dpg5c6YofvHiRb0tF5eYmIhLly6pvf/ly5eRlJQkFzMxMVFYDGJmZoY6deqI4vp6vOrqfU/b41asWFGya97n9Dy/ffu2KPY5vncTEekDi0GIiIgKIUNDQ0ydOlUUz8jIwIABA5CamqqzuZVp/9moUSNRLDg4WCvLkGRkZGDXrl2iuJeXF4yNjTUeX1tOnz6NSZMmSV43c+bMXA8SKOoa0aVLF7UPLuTUs2dPUQvkyMhI/Pvvv1oZX1VSj2cAGDduHGJiYrQ2T2xsLMaNGyd53ffff59vB1GkurBUrFhRspBKHZ6envjiiy+UmregGThwoOT9YGVlhe7du+shI/UMHDgQ5cuXF8X37Nmj0yWQMjMzERsbq7Pxtc3Q0BCNGzcWxVesWJEv85cqVUoUu3v3rtpLOOnrNRSA5PuDPgr8PmVpaYl27dqJ4poc8Nc3qWXvnJycFC4rQIpJPf/U/awoCAIOHjyoaUoqi4uLE8U0aXeuqHOZsgra60DDhg1FsWPHjiEiIkLtMaWWY6hZs6bk2fpFnYWFheTZ5vpa+lHq/tZkmcK0tDTJwnCpwglFjIyM0KRJE7lYVlYWTp8+LSrgKFu2LNzc3BSOZW5uLvobT548iQcPHojO7nd3d5d8jVNE6r3y8OHDOv1eT+qROqkjNTVVq99ZVaXJdwupriYeHh65/u4g9Xjdu3ev2jloQlfve7oYV+p2++effzQaszCRem+qW7euHjIhIvr88NcKIiKiQmrw4MGSLRXv3r2L7777TidzHjx4MM/lTQAoPGC7bNkyjXPYvn275FrqPXr00Hhsbfn333/Rrl07yR/vGjRogK+++irX/U+ePCnZZrVPnz5ay7FMmTLw8fERxfW1lEj79u3h6+srir99+xYjR47U2plWX3/9teRByEqVKqFv375amSMv8fHx2LNnjyjeu3dvrc4jNd7WrVsL/I/K5cuXx7Fjx7B37165f0ePHoWlpaW+01OasbExfv31V8nrxowZo5NlUBITE9GpUyfcunVL62PrktT7SlBQEPbv36/zud3c3ERnDCclJam1jMnt27clzwzOL1IdVnKe6akPUh0zCuuSKjdv3pRcgkHqACjlTaqjW0hICMLDw1Ue699//8WjR4+0kZZKpLqbqNuV4dWrVxoXCxa014FOnTqJOldkZGSo/Z0gODgYR48eFcULU7Gotkl1tbty5YoeMgG6desmit2+fVvtM983bNggeSKCqve3oqVicr5nK7OsS85tTp06Jfner+wSMR916tRJVEj2+vVrrF69WqVxSPcUdQLT52ebjRs34vXr1yrv9/r1a8liEEXLEn/Ut29fURHsjRs3cODAAZVz0JSu3vd0Ma7U7bpv3z69FfDlp7S0NNHfKZPJJH8DIiIi7WMxCBERUSFlaGiIjRs3SnbD+OOPPzB58mStHUBPS0vD999/jw4dOiAhISHP7WvWrCm53vLatWvVOsD2UWxsrGS3DXt7+wKxfMS7d+8wYsQIdOrUSfKHAicnJ+zYsSPPs4elCjJKliyp9SVMpIpLjh49qtYPSdqwdu1amJubi+I7d+7Et99+q/HjeeLEidi2bZsobmBggHXr1uVbZ5kdO3YgOTlZFNdmsY+i8aKjo/PlALumWrRogU6dOsn9k+o4VNB169ZNslAtNjYW/v7+kh0G1HXt2jV4eHjo5cx4TXXt2hUVK1YUxYcPH67R2ePKkMlkkgek165dq9I4aWlpGDp0qLbSUou9vb0o9vTp0/xPJAepwqfSpUvrdM5r165h0KBBWi0OyMrKUthZqmPHjlqb53Pi5OQEFxcXuZggCCp3x4iJicE333yjzdSUVrJkSVHs2bNnCA4OVmkcQRAwZMgQjZaIAQre60C5cuUknx+//vorwsLCVB5v9OjRyMjIkIuZmZlh2LBhaudY2LVp00YUO336dP4ngg9FGlJLg33zzTei+y0vUVFR+PHHH0VxLy8v1K9fX6WxpJZrOXLkCAIDA+Vi6hSDvHnzBsuXL1dqztzY2NhIPo6nTZum8usJ6ZbU5xoTExO9LheXkJCgsCtpbiZOnIjExES5mKWlJfr165frfhUrVpR8bR8zZky+d3+ztLQULRsVFxencadEqfdTqRN2VNG0aVPR9w5BEDBo0KACUcCtS5cuXRJ9xqlbty6KFSump4yIiD4vLAYhIiIqxGrVqiX54xMAzJ8/H+3btxe1rFXV4cOHUaNGDSxYsEClg/FS3UkEQUDnzp1x48YNlfOIiopCq1atJNdmHzVqlN46BmRmZuLixYsYNWoUypcvj9WrV0veTg4ODjh+/DjKli2b63hxcXGSLVallnXRVLdu3UQFEJmZmZLtt/NDpUqVFJ79tnTpUnTr1k2tH3Xi4+PRu3dvLFq0SPL6CRMmSC5ToStSS7XUrl0bVapU0eo8X3zxBTw9PUVxfXV/+VytXr1asoX78+fP4e3tLXk2nioiIyMxZswY1K9fXy9nxWuDoaEhpkyZIoq/e/cOLVq0ULtALSMjQ6liEqkzmTdu3IizZ88qNU96ejoGDx6M69evq5yjNkk9zu7fv4/4+Hi1xlu9ejU2b96s8gG8Tz158kTyLFFdt4TOyMjAhg0bUKVKFfTv31/j+yYtLQ39+vXDuXPnRNc5OjqyGEQDUs+/BQsW4OHDh0rtHx8fj65du+L58+faTk0pDg4OqFatmij+008/KT2GIAj49ttvcezYMY3zkXoduHz5stYKxNXx7bffimLv379Hx44dVVpWYeLEiZIdJgYMGABHR0dNUizU/Pz8RMXUly5d0ksnOGNjY4wePVoUv3v3LgYPHqz04zA5ORmdOnWS7Aoyfvx4lfOqWbOm6EB9aGgo3r9/LxdTpoDDy8sLNjY2crH79+/LXTYwMFCriP/nn38WPZZjY2PRtm1brRSEPHr0SG/f8wqChIQEfP3115IdvlTx+++/i2Kenp75ttyoIlu3bsXs2bOV3n7mzJmSJ0oMHz5c9BiXMn/+fNFSKs+fP8eXX36p8W9QwIdubMouoSL1PTpnsZeqSpUqBTs7O7lYbGysxs/FRYsWiR4rN2/eRJcuXbSy1OeZM2fw33//aTyOtkm9f0sVMxIRkW6wGISIiKiQGzZsGKZOnSp53aFDh+Du7o7vvvsOoaGhSo8ZHx+P9evXw9PTE19++aXSP8h/qmXLlpJnN7179w6+vr6YPXu26CwUKVlZWdiyZQu8vLwkWx7XqlVL4d+vqhcvXuDSpUuS/y5evIhTp05h3759WLlyJX744Qe0bdsWTk5OaNSoEVauXCnZ7QH4cFD+7NmzqFOnTp45bNu2TfKsUG13jQA+HMBo3bq1KL5+/Xqtz6Wsfv36Yfr06ZLX/fPPP6hSpQqWL1+u1JkzKSkpWLNmDapWrYrt27dLbtOlSxfMmzdPo5xVERISgkuXLoniurh/FY17/PhxrfxAR8qxtbXFoUOHUK5cOdF18fHxGDBgAOrXr49//vkHaWlpSo97/fp1jBkzBi4uLli+fHmhXXbjoyFDhqBz586i+O3bt7NvH2XFxsZi+fLlqFSpEg4dOpTn9n379oWZmZlcTBAEdOjQIc+Ds7du3YK/vz+2bt0KALCwsFA6T22zs7NDhQoV5GLp6emYO3euWuPdv38f/fv3R4UKFTBz5kyEhISotP+dO3fQpk0b0cG24sWLq9w+X12ZmZnYvHkz6tati2rVqmH+/PkqfR7KzMzE/v37UatWLckDJgAwb9480cECUp5UR53k5GQ0a9YM165dy3XfM2fOoFGjRtkHGPT1/OvUqZMotnfvXowdOxbp6em57vvmzRv07NkTS5cuzY7lXFZFFdWqVRMdnHvz5g1WrVql9pia8vHxkfxOcOfOHTRt2hR37tzJdf+EhAQMHz5csqi3dOnS+fo5riAyMzPDl19+KRdLSUlRuqBR27777jvUqFFDFN+8eTN69uwpudznp0JDQ9GyZUucP39edF3btm3VWlZRJpPlWehRpUoVlCpVKs+xDA0N81zWoE6dOpJdBfLi4OAg2Zns6dOnqFu3Ln7//XeF3zcVSUxMxO7du9G+fXtUrlw5+/PK5ygzMxMrVqxA5cqV0blzZ/zzzz8qdWNKT0/H1KlTsWbNGtF1+bXcqJRP3/umTp2Kr776CnFxcQq3j4uLw9ChQyW/c7u4uGDmzJlKzevm5ob58+eL4jdu3ECtWrWwYcOGPN8Dc4qOjsbGjRvh6+sLDw8PHD9+XKn9pE6AmD9/vsZFcVLdA2fPno2srCy1x/T19ZXsNHf8+HHUrl0b//77r8oFnK9evcLKlSvh4eEBPz+/PD8/6YPUd6quXbvqIRMios+Tkb4TICIiIs3NnDkTlpaW+PHHH0VfHBMTE7Fw4UIsXLgQtWvXRuPGjVG1alWUK1cO1tbWMDQ0RFJSEl69eoUHDx4gMDBQa2eTLV26FNeuXcPNmzdFOU2dOhULFiyAr68v/Pz8ULZsWTg4OMDY2BjR0dF4+/YtLl68iJMnTyo8cG1jY4Pdu3eLDuKp66+//lK5NXluDA0NMWLECMybN09yzVkpUl0j3Nzc4OXlpbW8PtWnTx/RWdshISG4ePEiGjZsqJM58zJjxgzIZDLMmDFDdN2bN28wZswY/Pjjj2jRogUaNmwINzc32NnZQSaTIS4uDo8fP0ZgYCCOHTuW6w9hrVq1wrZt2zQ66KIqqftXJpOp9cO2Mnr16oXvvvtO7gerrKwsbNiwQbITA+mGq6srzp07h5YtW0ouDXP58mV07doVtra28PPzg5eXFypUqIBixYrB3NwcqampiIuLw5MnTxAUFIQzZ85o3Ka4IFq3bh1u374tOlj//PlzdO3aFXXq1EGXLl3QvHlzlC1bFk5OTsjMzERMTAyePHmCa9euISAgAMePH1epsMbe3h7ff/+96MfvuLg4tG7dGv7+/ujYsSPc3NxgZWWFyMhIPHr0CEePHsXp06fl3neXLVuGIUOGaHZDaKBbt2749ddf5WLz5s1DYGAgOnfujC+++AI2NjaSr3uK2u6Hh4dj+vTpmD59OqpXrw5fX194enqiVq1aKFasGOzt7WFmZobExESEh4fj1q1b2LdvH/bt2ydZpPTrr7/m6+vuR/fv38fkyZMxefJklChRAg0bNoSXlxdKlCgBR0dH2NvbIzU1FfHx8Xjy5Alu376NY8eO5dpdpnPnznpfHqiwq1KlCgYMGCA6W/3FixeoV68e2rdvj7Zt28LV1RWmpqaIiIjA/fv3cejQIbkiYQMDAyxduhRfffVVfv8J+Pbbb7F06VLRUorLli3Df//9h6+//hr+/v5wdXWFsbEx3r59i+DgYOzfvx+bNm2S269y5cqoVasWdu7cqVYuxsbG6Nixo2j/UaNG4fDhw2jTpg0qVKgAa2trUcc5U1NTpQqX1bF48WKcPn1a1MHq9u3b8PT0RK9evdCzZ0/UqFEDxYsXR0JCAp4+fYp///0X69atw4sXL0RjymQybNiwQa2D7kXNgAEDsHv3brnY7t270aJFi3zPxdTUNLuQP+f3yV27diEgIAADBw5Ely5dUKFCBTg4OCAiIgIhISHYtWsXNm3aJFnw4OzsLPk5Wln+/v65Pq9UKVL09/eX7Hr16fXq6tSpE2bNmiU62SE5ORnjx4/HzJkz0atXL/j4+KBOnTpwcnKCnZ1d9vtXdHQ0goODERQUhKtXryIgIEAvXWIKsqysrOzPKZaWlmjRogW8vLzg4eGBSpUqwd7eHra2tkhPT0dMTAwePnyIgIAAbNy4UXLZrSpVquj1s8DIkSOxa9cuhIeHA/jwm8bu3bvRuXNn+Pn5ZRc5vXr1CgEBAdi3b5/kd2QDAwOsXr0aVlZWSs89btw43L17V1TEFBUVhUGDBmHKlCno2bMnGjdujJo1a8LBwQG2trZISUlBXFwcIiMjce/ePdy5cweBgYE4f/68WgXu3bp1E70+nDlzBjVq1EC/fv2y5865nAzwoaOWok4o3bp1w6lTp+RiW7duRXBwMHr16oWqVavC1tZWcrnZOnXqiIozP1qwYAFCQkJw9OhRufizZ8/QsWNHVKpUCd27d0ejRo1QtWpVODg4wMrKCklJSYiLi8O7d+9w9+5dBAUF4fz587h69apeO4Dl5dWrV6ITYmrXro2aNWvqKSMios+QQEREREXG4cOHBWdnZwGATv7Z2NgIf/75p0o5vXv3TmjatKnWc3FxcRGuX7+u9m2lq9sIgGBkZCT06dNHCAoKUimnu3fvSo43bdo0tf/OvCQlJQlWVlaiOb/66iudzams7du3S+amjX+TJk0S0tPT8/XvSU9PF0qUKCHKpUmTJjqdV+r55+bmlus+UrfZ9OnTlZ5z+vTpov0bNWqk4V+iPBcXF43y15X4+Hihd+/eOn398fPzE16+fJlrHlL3j7K3T0BAgGhfX19fzW+c/+/JkyeCq6ur1m6PdevWKTVvamqqUKtWLY3m+uGHHwRBkH7+KMvX11e0b0BAgEq3n5mZmVr55zRu3DitPz4HDhyo9N+iicDAQJ0+zwAI3bt3V+l9pCA97wYOHKj2c0WKJo95QRCE6OhooXTp0hrdHytWrBDCwsJEcRcXF6XzkHrvCAsLU2rftWvXavyYsre3F+7evavx/XP+/HlBJpOpPH9ut5Umj9+PQkJCJD8Hqftv2bJlKs2/bt06rb8mafrY15b09HTRd8BixYoJmZmZao2n6XuRIAjC7t27BSMjI63c19bW1kJgYKBaf8tHjx49ynWOvXv3Kj1WUFBQrmMdPXpUo1wFQRDmzJmjtefKp/9atWqV59yavpbmB3WezzExMVq/Pe3s7IQbN27kzx8tKH4tvnLlimBubq7R37JkyRK1csrMzBRGjRqlk8friBEjlM7B3d1drTlye22Li4sTnJyc1Bo3r88PycnJQseOHXVyu82dOzfP20wX74mK/PHHH6K5Fi1apJO5iIhIGpeJISIiKkLatGmDkJAQfP3115JnJ6jL1NQU48aNw5MnTzBq1CiV9nV2dsbx48cxceJEGBlppylZ69atce3aNcm2nfpiamoKX19fLFmyBM+fP8eWLVskWyTnRtHZbrpaQgT40Fa2Y8eOovjOnTtVbkOsbT179sT9+/cl26+rq3z58vj333+xYMECrT0elXXkyBG8efNGFNfl/ato/EePHkm23ybdsra2xtatW3Ho0CFUrlxZq2PXqFEDhw4dQkBAgFJtzguqChUq4MqVK2jVqlW+zmtiYoITJ06odVa8TCbDrFmzCsRSBRUqVJBcy17fZDIZJkyYgHXr1uXLfMWLF4e3t7doTXZtcHR0xMqVK7F9+/Z8fx8pquzt7XH69Gm4uLiovK+JiQn+/vtvjBw5UgeZKW/o0KH4+eef1d6/RIkSOHbsGKpVq6ZxLo0aNcIPP/yg8TjaVrlyZVy8eBG1atXSaBwLCwts27YNo0eP1lJmhZ+RkZGoK9W7d+9w8uRJPWX0of3/4cOH4ejoqNE45cuXx7lz5xR2r1JWpUqVJJfsAz50RPDz81N6rOrVq6NYsWKS15mYmMDHx0edFOVMmTIFBw8eRPHixTUe61Pa/I3gc1euXDmcO3dOZx2VVOHl5YUjR46otWydqakp1q5di2+++UatuQ0MDPDnn3/i77//VrobqrKUfbwaGBhg69atMDc31+r8NjY22LBhg0462pmbm+Off/7B3LlzJTuWaKKgPc9zLrVobm6O/v376ykbIqLPE4tBiIiIihgHBwcsX74coaGhmDx5ssIfvZTh7e2NZcuW4eXLl/j999/h5OSk1jhGRkZYuHAhHj9+jNGjR6v1JV0mk6F9+/a4ePEijhw5onYu6pDJZDA1NYWNjQ3KlCmDOnXqoHXr1hg9ejT++OMPnD17FnFxcTh9+jS++eYblCxZUuU50tPTsXnzZlHcw8ND6weNc5IqFoiPjxe1m9aHsmXLYu/evbh+/Tr69u0rtyayKqysrPD7778jJCQE7du313KWypEq9jE2Nkb37t11Om+3bt0kf2DSpNU2aaZt27a4f/8+/vnnH7Ru3VrtH+zs7OwwbNgwnDt3DkFBQWjbtq2WM9UPZ2dnHD16FFu3blX79c/CwgKDBw9W6eCOs7MzTp8+jQkTJij9o2zNmjVx+vRpjQ4Ca9uIESOwb98+lC5dWqNx+vTpgyFDhqBEiRIajePt7Y3z58/jt99+00lxhpTy5cvj8uXLePnyJVauXImOHTtq/LmhWrVqmDNnDh4+fIgRI0aIltggzVSqVAmXLl3CoEGDlL5tfXx8cO3aNQwePFjH2Sln1qxZ2LZtm8oHv7t27Yrr169rdUnAuXPnYtWqVXBwcNDamNpQvnx5XLlyBbNmzVL5oKVMJkPnzp1x9+5d9OrVSzcJFmJjx44VfZ5YvXq1nrL5oEWLFrh37x4GDRqkcvGchYUFJk2ahKCgII0LiD5StHyLp6enSo9HmUymcKx69eqp/X0lpy+//BIPHz7ETz/9pNFz2djYGG3atMH27duxa9cureRWGFlZWWHevHlo3LixRgf3LS0t8dNPPyE4OBjVq1fXYoaa8fX1xe3bt9GxY0elP2/5+vriypUrWlnmZvDgwXj06BHGjBkDS0tLtccxNzdH9+7dceDAASxevFjp/erUqYNr167B29tb7bmltG3bFmfOnNHJbzIGBgaYPHkygoOD0a9fP42KQmxtbTF48GAEBARgwoQJWsxSM/fu3cPFixflYv3798/X3/OIiAiQCUIBXlCMiIiItOLGjRvZa4k+efIEz58/R1xcHFJSUmBiYgJ7e3vY29ujRIkS8PDwgJeXF+rVq6dRIUlukpOTERgYiHPnziEwMBBv3rxBdHQ0oqOjkZGRAXt7ezg4OMDJyQl16tRBkyZN4OPjo/AMrKLgxYsXorV2gQ9nd+p6ve+MjAz873//Q1ZWlly8Ro0a6Nq1q07nVlVSUhJOnjyJ8+fP4/bt2wgLC8O7d++QlJSEjIwMhfsZGBhg27Zt6NGjRz5m+38EQcDcuXORlpYmFy9dujSGDRum8/n/+uuv7HWkP7K2tsbEiRN1PjflLSYmBgEBAbh06RLu3r2Lp0+f4u3bt9mPa1tbW9jZ2cHBwQGVK1dG3bp14eXlhbp16ypci7qoEAQBJ0+exJ49e3D27FmEhISIXqsAwMzMDG5ubqhXrx5atWqFli1bKlz/Wxnh4eHYu3cvjh49iocPHyIiIgLJycmwtrZGhQoVUK9ePXTp0gXNmjXT5M/TqczMTBw7dgwnTpzArVu3EBoaivj4eCQmJkq+Xir6aUAQBNy+fRsXL15EYGAggoKCEBoaisTERMntbW1tUbNmTTRq1Ai9e/cuUOuBBwcH49KlSwgJCcHDhw/x5MkTREdHIyEhAUlJSTAzM4O1tTVsbGxQokQJ1KhRAzVr1kSDBg1U7vZF6nvw4AH27duH48ePIywsDBEREUhNTYWtrS3c3NzQqFEjdO/eXesHfLQlKSkJa9aswb59+3Dp0iWkpqbKXW9oaAh3d3e0bNkSQ4YMER1MPHnyJIKDg+VizZs3h7u7u8q5pKam4t9//8Xp06dx+/ZtPH36NPvxnpmZKbeti4sLnj59qvIc6kpISMCOHTuwf/9+XLx4EdHR0aJtjI2NUbt2bbRq1Qr9+vXTeYF0YdevXz9s2bIl+7KxsTHCw8O13l1CHR87Jx4+fBjXr19HSkqKaBtra2vUr18f7dq1Q58+fbR+sPDKlSs4fPiwKF63bl20a9dOpbEuXryI48ePi+L169dH69at1c5RkZSUFBw6dAgHDx7EpUuX8OjRI8nPQwBQqlQpuLu7w8PDA/7+/mjSpIlGB+eLoujoaJw/fx6BgYG4cuUKHj58iJcvX0p+FjIwMEDFihVRp04dtG/fHp07dy7wt2dwcDB27tyZ/dn54+8stra2qFSpEho3boyePXtqtQjxU3Fxcdi/fz8OHz6MK1eu4OnTp5K3rUwmQ7ly5eDu7o66deuiWbNmaNiwocbfb27cuIG9e/fi1q1bCA4ORmxsLBISEkTfxQEgICBA6eLxs2fP4tChQ7h16xYePnyI+Ph4JCQkID09XbRtWFgYXF1dVcr73bt3+Oeff3D06FFcu3YNL1++lNzO0NAQ5cuXR5UqVVCvXj00a9YMXl5eOulgoqlx48Zh6dKl2ZdlMhnu37+v1mcaIiJSH4tBiIiIiKhIOXnyJNq2bSv6scfExASHDh1C8+bN9ZQZEWkqPT0dL168QFxcHDIyMmBpaQkbGxuULFmSnRryWURERPaP68CHVtq2trZwdnbWc2ZEBUdaWhrevn2LqKgoCIIAGxsblC1bVust4YuCyMhIvHnzBikpKTA2Noa9vT3KlClTIA9uFVR37txBrVq15A66zpo1q0B1rwI+FBm+fPkSUVFRSEtLg6mpKYoXL14gilYKi/T0dLx8+RJxcXFIS0uDhYUFrK2t4ejoWOALFQqq1NRUvH37FgkJCUhOToaFhQVsbGzg5OSk9eVHPjepqal48eIFEhISsj+/W1tbw8nJCWZmZvpOr8BKTk7Gy5cvkZiYiMzMTFhZWWU/JgvD54jExESUK1cOMTEx2bHOnTvjn3/+0WNWRESfJxaDEBEREVGRs3XrVvTr1090BpKVlRVOnTqls7OgiIiIiIj0pU+fPti2bVv2ZWdnZzx79owHs4mIKF/99ttvmDRpUvZlAwMDBAUFoVq1anrMiojo88RTp4iIiIioyOnTpw8WLFggiicmJqJt27Z48OCBHrIiIiIiItKdX375BUZGRtmXIyIi8Ndff+kxIyIi+tykpaVh0aJFcrE+ffqwEISISE9YDEJERERERdLEiRMxfvx4UTwyMhItW7bEixcv9JAVEREREZFuuLm5YdiwYXKxBQsWiJZPJCIi0pV169bh1atX2ZfNzMwwc+ZMPWZERPR5YzEIERERERVZv/32G3r16iWKP3/+HK1atUJ0dLQesiIiIiIi0o3Zs2fD0dEx+/Lz58+xfPlyPWZERESfi6SkJPzyyy9yse+//x7ly5fXU0ZERMRiECIiIiIqsmQyGTZs2AB/f3/Rdffv38eXX36J5ORkPWRGRERERKR9Dg4OmDt3rlxszpw5iIuL01NGRET0uVi0aBFev36dfdnV1RWTJ0/WY0ZERCQTBEHQdxJERERERLoUHx+P4cOHIzY2VnRdmzZtMG7cuPxPioiIiIhIB7KysrBgwQKkpKRkxzp06AAPDw89ZkVEREXdokWLEB8fn325RYsWaNSokR4zIiIiFoMQERERERERERERERERERERFSFcJoaIiIiIiIiIiIiIiIiIiIioCGExCBEREREREREREREREREREVERwmIQIiIiIiIiIiIiIiIiIiIioiKExSBERERERERERERERERERERERQiLQYiIiIiIiIiIiIiIiIiIiIiKECN9J0CkyPv373Hnzh0AgLOzM4yM+HAlIiIiIiIiIiIiIiIiIqKiJSMjAxEREQCAGjVqwMzMTOMxeXSdCqw7d+7A29tb32kQERERERERERERERERERHliytXrsDLy0vjcbhMDBEREREREREREREREREREVERws4gVGA5Oztn///KlSsoWbKkHrMhIiIiIiIiIiIiIiIiIiLSvtevX2evmvHpcXJNsBiECiwjo/97eJYsWRJlypTRYzZERERERERERERERERERES69elxck1wmRgiIiIiIiIiIiIiIiIiIiKiIoTFIERERERERERERERERERERERFCItBiIiIiIiIiIiIiIiIiIiIiIoQFoMQERERERERERERERERERERFSEsBiEiIiIiIiIiIiIiIiIiIiIqQlgMQkRERERERERERERERERERFSEsBiEiIiIiIiIiIiIiIiIiIiIqAgx0ncCRVlUVBQePnyI8PBwvH37FklJScjKyoKtrS2cnJxQq1YtVK5cGTKZTN+pAgAiIiIQGBiI0NBQJCYmwsLCAi4uLvD29kbZsmX1nR4REREREREREREREREREREpgcUgWnT79m0cOnQIFy5cwM2bN/H69es897Gzs0OvXr0watQo1KxZMx+yFDt79ixmz56NkydPIisrS3Kb+vXrY/LkyejYsWM+Z0dERERERERERERERERERESqkAmCIOg7iaKiX79+2LJli1r7GhgYYMyYMZg3bx7Mzc21nJm0jIwMTJgwAX/88YfS+/To0QN///03LC0tdZjZBy9evMjuSBIeHo4yZcrofE4iIiIiIiIiIiIiIiIiIqL8pItj4wYaj0BKMTExgaOjI6ysrCSXhcnKysLSpUvRpk0bJCYm6jyfrKws9O3bV2EhiK2trWR8586daNu2Ld6/f6/L9IiIiIiIiIiIiIiIiIiIiEhNLAbRgRIlSqBXr15YsWIFAgMDER0djdTUVERGRiIhIQGJiYm4cOECxo0bJ+oCcubMGYwYMULnOc6dOxc7d+6Ui9WoUQM7d+5EQkICYmNjkZycjMOHD6NRo0Zy2509exbffPONznMkIiIiIiIiIiIiIiIiIiIi1XGZGC3at28fnJ2d0bBhQ8nuH1KePHmC1q1b4/Hjx3Lxs2fPwsfHRxdpIjw8HG5ubkhNTc2OtWzZEnv37oWFhYVo+4yMDAwdOhQbN26Ui1+5cgVeXl46yRHgMjFERERERERERERERERERFT0cZmYAq5Tp05o1KiR0oUgAFCxYkUcPHgQJiYmcvFNmzZpO71ss2bNkisEKVmyJHbs2CFZCAIARkZGWLt2LapXry4X//nnn3WWIxEREREREREREREREREREamHxSAFQOXKldGhQwe52JkzZ3QyV0REBNatWycXmz17Nuzs7HLdz9jYGL///rtc7Pjx47h165Z2EyQiIiIiIiIiIiIiIiIiIiKNsBikgKhfv77c5VevXulkngMHDiAjIyP7sq2tLXr16qXUvv7+/qhUqZJcbO/evVrNj4iIiIiIiIiIiIiIiIiIiDTDYpACwtraWu5yVlaWTubZv3+/3OV27dopXB4mJ5lMhh49euQ6HhEREREREREREREREREREekXi0EKiJcvX8pdLlu2rE7mCQgIkLvcqFEjlfZv2LCh3OXbt28jKipK47yIiIiIiIiIiIiIiIiIiIhIO1gMUkAcPHhQ7rK/v7/W5wgPD0dCQoJcrF69eiqNkXM5GwAIDg7WKC8iIiIiIiIiIiIiIiIiIiLSHhaDFAArVqzAjRs3si8bGhpizJgxWp8nJCREFKtQoYJKYzg6OsLGxibPcYmIiIiIiIiIiIiIiIiIiEg/WAyiR4mJiZg6daqo8GP69OmoWrWq1ud7+PCh3GVra2vY2dmpPE7OJWwePHigSVpERERERERERERERERERESkRUb6TqAoEwQBq1atkoulpqYiKioKQUFB+O+//5CUlJR9nYGBAX766SdMnTpVJ/lER0fLXS5RooRa45QsWRL37t3LvhwTE6NRXkRERERERERERERERAWNIAh4//494uLikJqaiszMTGRmZuo7LSIi0jJDQ0MYGhrC1NQUtra2MDMzg0wm03daGmMxiA5lZmZi1KhReW5nZGSENm3a4Oeff4a3t7fO8klMTJS7bGFhodY45ubmuY5LRERERERERERERERUWGVkZCA2NhZxcXFIS0vTdzpERKRjGRkZAIDk5GTExMTAxMQEtra2sLOzg5FR4S2pKLyZFyGNGzdG165dUatWLZ3O82kXEgAwMzNTa5ycxSA5x1XWixcvcr3+9evXao1LRERERERERERERESkjvT0dDx79gzp6emi62QyGQwNDfWQFRER6VJmZiYEQci+nJaWhoiICMTGxsLFxQXGxsZ6zE59LAYpAE6fPo3Tp0/jxx9/xJ9//olOnTrpZJ6UlBS5yyYmJmqNY2pqmuu4yipbtqxa+xEREREREREREREREWlbZmYmwsPD5QpBLCwsYGtrC2traxaCEBEVYZmZmUhISEBcXBySk5MBfCgQDA8Ph4uLS6F8DzDQdwJFmZGREQRBkPuXkJCAJ0+eYNeuXejdu7dcQcbr16/RuXNnLFiwQCf55OwEom5rs9TU1FzHJSIiIiIiIiIiIiIiKkyysrIQHh6efQzE2NgYFStWhIuLC+zs7ArlQUAiIlKeoaEh7Ozs4OLigooVK2Z3A0lNTUV4eDiysrL0nKHq2Bkkn1lZWcHKygoVKlRAt27dEBISgt69e+PWrVvZ23z//fdwd3dH+/bttT73p96/f6/WODk7geQcV1nh4eG5Xv/69Wt4e3urNTYREREREREREREREZGyYmJiso9/GBoaoly5cmp3WCciosLNxMQE5cqVw9OnT5GZmYmUlBTExMTA0dFR36mphMUgeubu7o5Tp06hQYMGePDgQXZ87NixaNu2rVYrTXMWbXxsb6MqbRWDlClTRq39iIiIiIiIiIiIiIiItCkhISH7/2XKlGEhCBHRZ87ExARlypTBs2fPAACJiYmFrhiEy8QUAPb29vjjjz/kYs+ePcPhw4e1Ps+n3r59q9Y4r1+/znVcIiIiIiIiIiIiIiKiwiIjIyP7RFgTExNYWFjoOSMiIioILCwssosDk5OTkZmZqeeMVMNikAKiefPmKFWqlFwsICBAq3N88cUXcpfj4+MRGxur8jg5l3fJOS4REREREREREREREVFhkZSUlP1/a2trPWZCREQFzafvC4mJiXrMRHUsBikgZDIZateuLRcLCwvT6hzu7u6iWGhoqEpjREdHIz4+Ps9xiYiIiIiIiIiIiIiICoNPD+5ZWVnpMRMiIipoPn1fYDEIqc3W1lbucnJyslbHL1u2rOhDzOXLl1Ua49KlS6JYlSpVNMqLiIiIiIiIiIiIiIhIX9LT07P/b25ursdMiIiooPn0feHT94vCgMUgBUhUVJTcZWdnZ62OL5PJ0LRpU7nYhQsXVBoj5/Y1a9aEk5OTxrkRERERERERERERERHpQ1ZWFgDAwMAAMplMz9kQEVFBIpPJst8bPr5fFBYsBikgsrKycOPGDblYqVKltD5Px44d5S4fPHhQpQ4kO3fuzHU8IiIiIiIiIiIiIiKiwiQzMxPAh2IQIiKinAwNDQH83/tFYcF3tQLi4MGDiIyMlIs1b95c6/O0b98eRkZG2Zfj4uKwfft2pfY9deoUHj9+LBfr1KmTNtMjIiIiIiIiIiIiIiIiIiIiDbEYREtSU1PV3jciIgLjx4+Xizk4OMDPzy/X/VxdXbPb0shksjy3B4BixYph4MCBcrGff/4ZsbGxue6Xnp6Ob7/9Vi7WvHlzeHh45DknERERERERERERERERERER5R8Wg2jJ2LFjMXr0aDx//lyl/W7dugU/Pz+EhobKxWfOnAkTExNtppht2rRpcmO/fv0avXr1UrhcTEZGBoYNG4Y7d+7IxWfPnq2T/IiIiIiIiIiIiIiIiIiIiEh9RnlvQspIS0vDmjVrsGLFCjRq1AgdO3aEp6cnatasCUdHx+ztBEHA06dPcfXqVezYsQP79+8XrS3k7++PkSNH6izXcuXK4aeffsL06dOzY8eOHUP9+vUxbdo0tGnTBpaWlkhJScHZs2cxa9YsXLhwQW6MIUOGoF69ejrLkYiIiIiIiIiIiIiIiHRnxaqjWLH6qNbHHTW8NUaNaK31cYmISDUsBtEyQRBw/vx5nD9/PjtmaGgIGxsbZGVlISEhAVlZWQr3b9q0KQ4cOABDQ0Od5vnzzz/jzp072L17d3bszp076N69OwDA1tYW8fHxEARBtG/jxo2xbNkyneZHREREREREREREREREupOQmILXb2J0Mi4REekfi0HyQWZmJmJicn8ztbCwwC+//ILx48frvBAEAAwMDLB161YUK1YMf/75p+j6uLg4yf26du2K9evXw9zcXNcpEhERERERERERERERkY5YW5mjZAl7hddnZQl4+y5WLla8mB0MDGR5jktERPrHYhAtWbx4MVq3bo2jR4/iwoULePz4cZ77GBoaonbt2ujXrx/69esHJyenfMj0/xgbG2P58uXo3r07Zs+ejVOnTkl2AgEAb29vTJ48GZ07d87XHImIiIiIiIiIiIiIiEj7Ro3IfTmXyKh4VKk5Vi52+r9ZcHK00XVqRESkBSwG0RJ7e3v06tULvXr1AgDExMQgODgYz549w7t375CUlASZTAYbGxvY2tqiYsWKqFWrFiwsLNSe8+nTp1rJ3c/PD35+fnj79i0uXbqE0NBQJCUlwdzcHOXKlUO9evVQrlw5rcxFREREREREREREREREREREusViEB2xt7dHw4YN0bBhQ32norTixYujY8eO+k6DiIiIiIiIiIiIiIiIiIiINGCg7wSIiIiIiIiIiIiIiIiIiKhgWr9+PWQymdy/06dP6zutImfGjBmi21lbK0UUJXw8Ko+dQYiIiIiIiIiIiIiIiIiICjiZTKb0tgYGBrCxsYGdnR2KFSsGT09PeHt7o02bNihevLgOsySigoKdQYiIiIiIiIiIiIiIiIiIipCsrCzExsbi6dOnuHLlClasWIHBgwejXLly6Nu3L+7du6fvFIlIx1gMQkRERERERERERERERET0GUhLS8PWrVvh6emJ33//Xd/pEJEOcZkYIiIiIiIiIiIiIiIiIqJCyNraGgYG4vP/s7KykJCQoHC/1NRUjB8/HpGRkZg9e7YuUyQiPWFnECIiIiIiIiIiIiIiIiKiQigoKAixsbGif/Hx8UhPT0dISAiWLVsGNzc3yf3nzJmDrVu35nPWRJQfWAxCRERERERERERERERERFTEGBkZoXLlyhg9ejSCg4MxYcIEye1++OEHpKam5nN2lNOMGTMgCILcP1dXV32nRYUYi0GIiIiIiIiIiIiIiIiIiIowQ0ND/Pbbbxg+fLjouhcvXmD9+vX5nxQR6RSLQYiIiIiIiIiIiIiIiIiIPgO//fYbHBwcRPGDBw/qIRsi0iUWgxARERERERERERERERERACAtLQP7D1zBT9O3iK7r3H0exk38C/sPXEFaWoYesiNNWVlZoX///qL4mTNnkJmZqYeMiEhXjPSdABERERERERERERERERHpV3p6BlauOYYVq48hIiJOcpuQBy8R8uAltm4/i2LFbDFyWCuMHNYKxsY85FiY+Pn5YcmSJXKxhIQEvHv3DiVLltRo7JCQENy4cQOvXr1CWloanJycULJkSTRu3Bj29vYajV1QxMfH486dO3j06BHi4uKQkJAAY2NjWFhYwNHREa6urqhUqRKKFSum71SzPXz4EA8ePEBkZCQiIyORkZEBGxsblCxZElWrVoWbmxsMDQ01muP9+/fZ80RERCA+Ph4ymQwODg5wdHREjRo14ObmpqW/iJTBV2YiIiIiIiIiIiIiIiKiz1jIgxcYPW41gu48U3qfd+/iMHPOTuz79zKWLxkO98pldJghaVO5cuUk45GRkWoVg6SlpWHVqlVYunQpHj9+LLmNoaEhGjdujJkzZ6JJkyZKjduuXTscOnRILnb79m3UrFlT5Rw/1bt3b2zfvl0udu7cOTRu3FjhPqmpqVi/fj02bdqEixcvQhCEPOdxcXFBw4YN0alTJ3z55ZewtLTMdfsZM2bgl19+kYuFhYXB1dU1z7mkXLlyBStWrMB///2HFy9e5LqtjY0N/P390alTJ3Tv3h0WFhZ5ji8IAs6fP49Dhw7h9OnTuH79OjIycu8YVLx4cbRt2xaTJk1C1apVVfp7SHVcJoaIiIiIiIiIiIiIiIjoM3Xl6iO07ThbpUKQTwXdeYa2HWfjytVHWs6MdMXGxkYynpCQoPJYwcHB8PDwwDfffKOwEAQAMjMzcebMGfj6+mLMmDHIysrKc+xRo0aJYqtXr1Y5x09FRkZi7969crGqVavmWghy7tw5VK9eHSNHjsSFCxeUKgQBgGfPnmHbtm3o2bMnxowZo1Heqrh79y7atm2LevXqYf369XkWggAfup3s27cPgwYNQqlSpfDmzZtct9+6dSvKlSuHJk2aYP78+bh8+XKehSAA8PbtW6xbtw7Vq1fHoEGDkJycrPTfRapjMQgRERERERERERERERHRZyjkwQv06v8bEhJSNBonISEFvfr/hgcPX2opM9KluDjpZYBsbW1VGufatWto0KAB7t27p9J+y5cvx7Bhw/Lcrk2bNnBxcZGLbdmyBSkp6j9eN2zYgNTUVLnY8OHDFW5/5MgRtGzZMtdCF2UoW0CiqT179qB+/fo4cuSI2mPExcXh/fv3uW5z5coVpYpMFBEEARs2bECjRo3w9u1btceh3HGZGCIiIiIiIiIiIiIiIqLPTHp6BkaPW61xIchHCQkp+PqbVTh6YBqMjXkIsiALCwuTjDs5OSk9Rnh4OCZMmCBXWOLq6gp/f3+UKVMGlpaWePfuHc6fP48rV66IiiH+/vtvdOjQAR07dlQ4h4GBAUaMGIEpU6Zkx2JjY7Fjxw4MGjRI6Vw/tWbNGrnLZmZmGDBggOS2ERER6Nevn2RhROnSpdGoUSNUrFgRNjY2MDQ0RHx8PKKionD//n0EBQUhJiZGrRzV9eeff2LMmDGShSeGhobw8vKCp6cnnJ2dYW5ujtjYWLx8+RLXrl1DSEiIUt1aFDEwMECFChVQvXp1VKhQATY2NrC0tERSUhLevXuH27dvS3YPuXXrFvr27Yvjx4/DwIB9LLSNr8REREREREREREREREREn5mVa46pvTSMIkF3nmHlmmMY+/WXWh2XtCsgIEAUs7Ozg7Ozs9JjjB8/HlFRUQCAGjVqYOHChWjZsqXktoGBgejXrx9CQ0Pl4hMnTkSHDh0gk8kUzjN06FBMnz4d6enp2bHVq1erVQxy5swZPHjwQC7WrVs32NvbS27/22+/ITo6Wi5WqVIlLF++XOHf+pEgCLh69SoOHDiAv//+W+VcVXX27FmMGzdOVAhiYWGBb7/9FhMmTICjo6PC/d+9e4d//vkH69atw5UrV5Sa09DQEO3bt0eXLl3Qtm3bXMf/OMfy5cvx66+/yhXYnDx5EkuXLsW3336r1LykPJbXEBEREREREREREREREX1G0tIysHLNMZ2MvXLNMaSnZ+S9IelFfHw8Nm/eLIr7+fmp1JnhYyFI27ZtERgYmGtxRIMGDXDmzBk4ODjIxZ88eYLTp0/nOk+xYsXQpUsXuVhgYCDu3r2rdK4frV69WhQbMWKEwu13794td9nZ2Rnnz5/PsxAEAGQyGby9vTFr1iw8e/YMP/zwg8r5Kis2NhY9evQQdd0oV64crl27hjlz5uRZqFGsWDGMHDkSly9fxsmTJ2FnZ5fr9p07d0ZoaCj27t2L/v375zn+xzl++eUXnD9/XvRYWLRokSh/0hyLQYiIiIiIiIiIiIiIiIg+I0eO3cC7d3F5b6iGd+/icPjoDZ2MTZobM2YM4uPjRfH27durPFblypWxc+dOWFpa5rltmTJlMHPmTFF87969ee47atQoUUyqsCM30dHR2LNnj1ysatWqaNy4seT2aWlpePLkiVxs8ODBKF68uErzAoCRkRGqVKmi8n7KWrZsGd6+fSsXc3BwwPnz59Wa19/fP89iEF9fX5QrV07lsQHA09NTtFxPeHg4Dhw4oNZ4pBiLQYiIiIiIiIiIiIiIiIg+I6dO39Hp+AFndDs+qS41NRUjRozApk2bRNe5urqif//+Ko+5dOlSpQpBPurXrx/MzMzkYtevX89zP19fX1StWlUutnnzZrmlRvKyYcMGpKamysWGDRumcPvIyEhRrGLFikrPl1+Sk5OxZMkSUXzVqlUoW7asHjJSTpcuXVCpUiW5mNTyRaQZFoMQERERERERERERERERfUZuBz0t1ONT3rKyshAdHY2rV69i7ty5qFSpkmQ3DZlMht9++w3GxsYqje/u7q7UcimfsrW1Re3ateViQUFBSu07cuRIucsxMTHYuXOn0nPn7ERhZmaGAQMGKNzeyspKFAsLC1N6vvxy7NgxUeFKzZo10a1bNz1lpDxfX1+5y5cuXdJTJkUXi0GIiIiIiIiIiIiIiIiIPiNPQl/rdvwnb3Q6Pv2f8uXLQyaTif4ZGhrC0dER3t7emDJlCl68eCG5/5w5c9ClSxeV523RooVa+VarVk3ucmJiItLS0vLcb8CAAbCwsJCL5SzwUOT8+fMIDg6Wi3Xr1g0ODg4K97GxsUHJkiXlYqtWrcLjx4+VmjO/nD59WhTLWThTUJUoUULu8v379/WUSdHFYhAiIiIiIiIiIiIiIiKiz0hqaoZOx3+fmq7T8UlzlpaWWL16NX788Ue19vfw8FBrP3t7e1EsLi4uz/1sbW3Ru3dvuZhUkYcUqY4ow4cPz3O/Dh06yF2OiYlB3bp1MWfOHLx+rduCKmWdPXtWFGvatGm+5xETE4MNGzZg3Lhx8Pf3R4UKFeDs7AwzMzPJYiWZTIY5c+bIjZGUlIT0dL52aBOLQYiIiIiIiIiIiIiIiIg+I6amRjod38xUtSVHKP9YWlpi2LBhuH37NoYNG6b2OE5OTmrPn1NycrJS+44aNUoUkyr0+FRMTAx2794tF6tSpQp8fHzynO+HH34Q5RsXF4eff/4ZpUuXRv369TFlyhQcOXIEsbGxef8BOhAaGip32dbWFpUrV863+e/fv48uXbqgRIkSGDRoEJYuXYqAgACEhYUhMjISqampKo2nr9uxqNLtKz0RERERERERERERERERFSgVK5TEvfvPdTd+xRJ5b0RaYW1tDQMD8fn/BgYGsLa2hp2dHYoVKwYPDw94e3ujefPmsLW11XheKysrjcf4SBAEpbbz9PSEl5cXrl69mh3buHEj5s2bB1NTU8l9Nm3ahJSUFLmYMl1BgA9L8GzduhU9evQQFTUIgoDLly/j8uXLmDt3LmQyGWrUqAE/Pz+0aNECLVu2hImJiVLzqCs9PR3x8fFysRIlSkAmk+l03o9mzpyJWbNmISNDe52GlC0MIuWwGISIiIiIiIiIiIiIiIjoM1KrpqtOi0Fq1XTV2dgkLygoCK6urvpOI9+MGjVKrhgkOjoau3fvRt++fSW3X7NmjdxlMzMzDBgwQOn5OnTogIsXL+Lrr7/G5cuXFW4nCAKCgoIQFBSEpUuXwt7eHv3798cPP/yAUqVKKT2fKqKjo0UxOzs7ncyV08SJE7Fo0SKltjUyMoKZmRkMDQ3l4u/fv5cssiHt4TIxRERERERERERERERERJ8Rf78aOh2/qa9ux6fPV69evUQFD4qWirl48SLu3r0rF+vWrRscHBxUmtPDwwOXLl3CiRMn0K9fP6UKLmJiYrB06VJUrFgRy5YtU2m+gu7o0aOShSDm5ubo27cvVq1ahcuXL+PFixfIyMhAeno6EhISEBsbK/dv8uTJesj+88LOIERERERERERERERERESfkTatPFCsmC3evYvT+tjFitmibWsPrY9LBHwoOBg4cCCWLFmSHTt79iwePHiAypUry20rVSSi7BIxUpo3b47mzZsjKysLt27dwtmzZ3H+/HmcP38eb9++ldzn/fv3GDt2LN6+fYtZs2apPbcUqaKW2NhYrc4hZeLEiaJYly5dsGbNGpUKbZKSkrSZFklgZxAiIiIiIiIiIiIiIiKiz4iJiRFGDmulk7FHDmsFY2Oej066M3LkSFEsZ+FHXFwcdu7cKRerUqUKfHx8NJ7fwMAAHh4e+Pbbb7F79268efMGISEhWLRoEerXry+5z+zZsxEYGKjx3J8yNjaGjY2NXOzt27c6XWrl3r17uH//vlysQYMG2Llzp8odV6SWuSHtYjEIERERERERERERERER0Wdm5LBWqFnDRatj1qrpilHDW2t1TKKc3N3d0bRpU7nYxo0bkZqamn1506ZNSElJkdtGk64gealcuTLGjx+PwMBAXLhwARUrVhRts3DhQq3Pm3Oe2NhYPHz4UOvzfHTy5ElR7IcffoChoaHKY+kyT/qAxSBEREREREREREREREREnxljYyMsXzIc1tbmWhnPxsYCy5cMh5GR6geFiVQ1atQoucuRkZHYu3dv9uU1a9bIXW9mZoYBAwbkS24NGzbE0aNHYWJiIhf/77//tD5XkyZNRLGAgACtz/PRq1evRLGGDRuqPE5qaiquXr2qjZQoFywGISIiIiIiIiIiIiIiIvoMuVcug+2bJmpcEGJjY4FtGyeg8heltZQZUe46deqEEiVKyMU+LhVz+fJlBAUFyV3XtWtXlZcx0USlSpXQuHFjuVh8fDxiY2O1Ok/ODikAsHLlSq3O8SmppV3s7OxUHmfnzp1ynVxIN1gMQkRERERERERERERERPSZ8vZyw5F/p6q9ZEzNGi44vP9neHu5aTkzIsWMjY0xdOhQudjp06fx6NGj7KKQT40YMSK/UstWrFgxUSwtLU2rc7Rq1Uo0z+3bt+W6pGiTtbW1KPb69WuVxsjIyMCCBQu0lRLlgsUgRERERERERERERERERJ+xyl+UxtED0zDtpx4oVsxWqX2KFbPFtJ964OiBaewIQnoxfPhwGBj83+FuQRDw22+/YceOHXLbValSBT4+PvmdHu7fvy932djYGM7Ozlqdw8zMDOPGjRPFhw8fjpcvX2p1LgAoXVr8XD9w4IBKY8yYMQN37tzRVkqUCxaDEBEREREREREREREREX3mjI2NMPbrL3HryiKsXTkaXTs3EG1Txb0M+vZugrUrR+PWlUUY+/WXMDY20kO2REC5cuXw5ZdfysVWrVqFpKQkudjw4cNVHvvQoUPo3bs3rl69qlZuO3fuFC1VU79+fchkMrXGy83o0aNRsmRJuVhkZCR8fHzw4MEDlcc7c+aMwuVs/Pz8RLHZs2crXXiyaNEi/O9//1M5J1IPi0GIiIiIiIiIiIiIiIiICMCHopCO7b0x+5c+ouv+2fkDfl84FB3be7MIhAqEUaNG5Xq9mZkZBgwYoPK46enp2L59O7y9vVG3bl3MmzcPDx8+zHO/hIQEzJo1C3379hVdN2TIEJXzUIatrS127NgBIyP552RYWBg8PT0xdepUREdH5zpGVFQU1q5diwYNGsDPz09hMUidOnXg7u4uF3vz5g2aNGmCM2fOKBz/8ePH6Nq1KyZOnAhBEABAVMBC2sdXaSIiIiIiIiIiIiIiIiIiKnRatWqF8uXLIywsTPL6rl27wsHBQaM5rl+/juvXr+PHH3+Ek5MT6tSpg8qVK8Pe3h62trZIS0tDREQE7t69i3PnzuH9+/eiMXx9fTFw4ECN8siNj48Pfv/9d4wdOza72AIAkpKSMHv2bMydOxf16tWDh4cHnJ2dYW5ujri4OLx8+RI3btzA/fv3kZGRkec8MpkMs2fPRrdu3eTioaGh8PPzQ82aNeHr64tSpUohKysLb968wcWLF3Hjxg25vHx8fODr64vZs2dr70YgERaDEBERERERERERERERERFRoWNgYIDhw4fjxx9/lLx+xIgRWp0vMjISJ06cwIkTJ5Tep27duti5c6dOloj51OjRo+Hs7IxBgwYhJSVF7rrMzExcvHgRFy9e1Hierl27YuzYsfjjjz9E1wUFBYmWx8mpWrVq2Lt3r+T+pF1cJoaIiIiIiIiIiIiIiIiIiAqlIUOGwMTERBSvUqUKfHx81BrTyckJ9vb2GuVlZGSEMWPGICAgAMWKFdNoLGX16NEDFy9eRNOmTdUew9nZGRYWFrlu8/vvv+PHH39UucClY8eOuHDhAhwdHdXOj5THYhAiIiIiIiIiIiIiIiIiIiqUihUrhvbt24viw4YNU3vMxo0bIyIiAmfOnMGUKVPg6+ubZ4HER+XKlcOkSZNw9+5d/PHHH7CyslI7D3XUrl0bp06dwqlTp9CrVy84OTnluY+DgwN69OiBHTt24MWLF3kWrxgYGOB///sfLly4gHbt2sHQ0FDhtkZGRmjevDkOHTqEffv2wdbWVuW/idQjEz5dnIeoAHnx4gXKli0LAAgPD0eZMmX0nBERERERERERERERERU1jx49QkZGBoyMjODm5qbvdAqMyKh4VKk5Vi4WHPQHnBxt9JQRkWJVq1ZFcHBw9mUzMzO8fPkSDg4OWpsjMzMToaGhePz4MV68eIH4+HgkJyfDwsICNjY2KFOmDGrVqoVSpUppbU5tyMrKwu3btxEaGorIyEhERUXByMgI1tbWKF26NKpUqYKKFSvCwED9PhLx8fG4cOECnj17hujoaBgYGMDe3h6VKlWCl5cXbGwK9+tGfrxP6OLYuJHGIxAREREREREREREREREREenBxYsX5QpBAKBr165aLQQBAENDQ7i5uRW6ojEDAwPUqVMHderU0dkcNjY2aNOmjc7GJ/VwmRgiIiIiIiIiIiIiIiIiIiqUVq5cKYoNHz5cD5kQFSwsBiEiIiIiIiIiIiIiIiIiokLn3bt32LVrl1ysevXqaNKkiZ4yIio4WAxCRERERERERERERERERESFzoIFC/D+/Xu52OjRo/WUDVHBwmIQIiIiIiIiIiIiIiIiIiIqVG7evIklS5bIxYoVK4YBAwboKSOigoXFIEREREREREREREREREREVCi8efMGy5YtQ4sWLZCeni533eTJk2FhYaGnzIgKFiN9J0BERERERERERERERJRfVqw6ihWrj2p93FHDW2PUiNZaH5dIV/J6LmRlCaKYX/OpMDCQ5TounwukbVu3bsXXX38NAEhNTRUtC/NR1apVs7cjIhaDEBERERERERERERHRZyQhMQWv38ToZFyiwkSd58Lbd7FKjUukTWlpaYiLi8t1GwsLC2zcuBGmpqb5lBVRwVegikHevn2Lhw8f4unTpwgPD0dCQgKSkpKQkZEBCwsLWFpaolixYnBxcUH58uXh7u4OQ0NDfadNRERERERERERERESFhLWVOUqWsFd4fVaWIDrgXbyYXZ7dEKytzLWRHlG+yeu5oMm4RPmpWLFi2LZtGzw9PfWdClGBotdikMePH+PIkSM4ffo0rl69ipcvX6q0v6mpKWrVqoV69eqhVatW8Pf3Z7UXEREREREREREREREpNGpE7ktYREbFo0rNsXKx0//NgpOjja5TI8pXeT0XiAoqQ0ND2Nvbo2rVqmjfvj2GDh0Ke3vtFzYRFXb5XgwSFhaGjRs3YuvWrXj8+HF2XBDE647l5f3797hy5QquXLmCP/74A2ZmZmjRogUGDBiA9u3bw9jYWJupExERERERERERERERERFRPho0aBAGDRqk7zSICp18KwbZu3cvlixZgnPnzgEQF3/IZLm3V8vNx7FSUlJw4MABHDhwAPb29hg8eDC++eYblC1bVv3EiYiIiIiIiIiIiIiIiIiIiAoRA10OnpGRgZUrV8LNzQ3dunXDuXPnIAgCBEGATCaT+/cxruo/AJLjREdHY9GiRahYsSJ69+6Ne/fu6fJPJSIiIiIiIiIiIiIiIiIiIioQdNIZRBAEbNq0Cb/88guePn0qKtr4uM1Hzs7OqFWrFmrUqAEXFxeUKVMGJUuWhIWFBczNzWFkZISUlBSkpKQgOjoaL168wMuXLxESEoLbt2/j4cOHyMjIyB7v0zkyMjKwc+dO7N69G71798aMGTNQoUIFXfzZRERERERERERERERERERERHqn9WKQixcvYsyYMbh9+7ZcEQjwfwUgzs7OaNOmDZo2bYqmTZuiXLlyGs2ZmpqKwMBABAQE4L///sOlS5dEc2dmZmLLli3YuXMnJkyYgJ9//hkWFhYazUtERERERERERERERERERERU0Gh1mZgBAwbAx8cnuxDk0yIQGxsbjBw5EidPnsTr16+xfv16DBw4UONCEAAwNTWFn58ffvnlF1y4cAEvXrzAH3/8gQYNGsgtSwMAaWlpmD9/PqpUqYJz585pPDcRERERERERERERERERERFRQaLVYpDNmzfLXRYEAfXq1cP69evx+vVr/Pnnn2jatCkMDLQ6rUjJkiUxevRoXLhwAXfu3MHYsWNhZWWVXRQiCAJevHiBgIAAneZBRERERERERERERERERERElN90UpUhCAJatWqF06dPIzAwEAMGDICZmZkupspTtWrVsGTJEjx//hyzZs2Ck5OTXvIgIiIiIiIiIiIiIiIiIiIiyg9aLwbx8fHBpUuXcOTIETRp0kTbw6vN1tYWP/30E54+fYpZs2bB2tpa3ykRERERERERERERERERERERaZ2RNgc7ePAg2rZtq80htc7c3Bz/j737Dq+qSt8+fu8kJyFAEkIJQarUgBIkVEUgtAmCgKJYR8ogSBFQnBn5iaIijjqOjg2lCYhiQUURBYKFIkqTGmGCEDokJJQUSEjd7x+8OXJIgJR9spPw/VzXuebstdd+1nOU0ci5WWvy5MkaNWqU9u/fb3c7AAAAAAAAAAAAAAAAlrI0DFLagyAXq1atmqpVq2Z3GwAAAAAAAAAAAAAAAJay/JgYAAAAAAAAAAAAAAAA2IcwCAAAAAAAAAAAAAAAQDlCGAQAAAAAAAAAAAAAAKAccUsYpHfv3vriiy+UmZnpjvIAAAAAAAAAAAAAAAC4DLeEQVauXKl7771X1113nSZOnKioqCh3LAMAAAAAAAAAAAAAAIBLuPWYmFOnTunNN9/UTTfdpPbt22vWrFlKSUlx55IAAAAAAAAAAAAAAADXNLeGQQzDkGmaMk1Tv/32m0aPHq1atWppyJAhWrNmjTuXBgAAAAAAAAAAAAAAuCa5NQwiXQiEGIYhSTJNU6mpqfroo4/UvXt3NWnSRC+//LJiY2Pd3QYAAAAAAAAAAAAAAMA1wS1hkOnTp6tNmzbOXUGkP0MhF+8WEhMTo8mTJ6t+/fq6/fbb9fXXXys7O9sdLQEAAAAAAAAAAAAAAFwTvNxRdPTo0Ro9erR27dql999/XwsXLlRCQoIk151CpAu7hWRlZWn58uVavny5atSoocGDB2vYsGFq3ry5O9oDAAAAAAAAAAAArmmvx+zU6zE7La87sVGoJjYKtbwuAKBw3HpMzA033KDXX39dx44d05dffqnbb79dnp6ezt1CJOXZLSQ+Pl6vvfaabrzxRt1yyy2aO3euzp075842AQAAAAAAAAAAgGtKcmaGjp0/Z/krOTPD7o8GAJCbdgbJs4iXl+68807deeedOnHihD744APNnz9f0dHRkvLfLUSSNm7cqI0bN+qxxx7TPffco2HDhqlTp04l0TIAAAAAAAAAAABQbvk7vFW7QqXL3s8xTcWmp7qM1fKpKI+LvtO7XF0AgP0M8+JtOkrY+vXrNXfuXC1atEgpKSkXGsonFHLxeNOmTTV8+HANHjxYQUFBJdswStTRo0dVt25dSdKRI0dUp04dmzsCAAAAAAAAAJR3J08lq3noOJex/+18W9Wr+dvUEdxt7969ysrKkpeXl5o0aWJ3O6VGQnqagiIXuIzFRwxWDR9fmzoCAHuUxL8n3PHduFuPibmam2++WbNnz1ZcXJzmzZunrl27SvozBJK7Y8jFx8js2bNHTz75pOrWras77rhD3377rXJycuz8GAAAAAAAAAAAAAAAAKWGrWGQXL6+vhoyZIhWrVqlvXv36qmnnlKdOnWcARApbzAkMzNTS5cu1YABA1SnTh099dRT2rt3r82fBAAAAAAAAAAAAAAAwF6lIgxysYYNG2ratGk6ePCgVqxYoXvuuUfe3t75BkNyx+Li4vTKK68oJCREXbp00YIFC5SWlmbzJwEAAAAAAAAAAAAAlDXz58932azAMAytXr3a7rZKndWrV+f56zR//ny728L/V+rCILkMw9Bf/vIXffrpp4qNjdVbb72lsLCwK+4WYpqmfvnlFw0bNky1atXSqFGjtHHjRps/CQAAAAAAAAAAAAAUz6VfuhuGoYMHD9rdFoBSqtSGQS5WpUoVPfroo/rtt9+0Y8cOjRs3TlWrVr3ibiHJycmaNWuWOnXqZHP3AAAAAAAAAAAAAAAAJadMhEEu1rJlS7355ps6fvy4Fi1apN69e8vDw8MZArk4CSfJGRYBAAAAAAAAAAAAAAC4FpS5MEguh8Ohu+++W8uWLdPhw4f1wgsvyNfX1+62AAAAAAAAAAAAAAAAbOVldwPFFRMTo7lz52rBggU6f/68JDl3CAEAAAAAAAAAAAAAALjWlMkwSGpqqhYtWqR58+Zp3bp1klyPgyEIAgAAAAAAAAAAAAAoiqFDh2ro0KF2twEUS5kKg/zyyy+aO3euPv/8c507d07S5UMgueNdunQp2SYBAAAAAAAAAAAAAABsVOrDILGxsfrggw80f/587d27V9LVAyC1atXSkCFD9Le//U2NGzcu2YYBAAAAAAAAAAAAAABsVCrDIJmZmVqyZInmzZunlStXKicn54rHwJimKS8vL/Xt21fDhw9Xnz595OHhUdJtAwAAAAAAAAAAAGVaRk62lsQd1NexB/Pc6/brUnUIDFLvoLoaENxA3h6eJd8gAKBASlUYZMeOHZo7d64+/vhjnT59WtKfu33kFwCRpGbNmulvf/ubBg8erJo1a5ZswwAAAAAAAAAAAEA5kJmTrf/GROn1/Tt1Ij0t3zm7Us5oV8oZzT28R8E+FfV4w5Z6vFFLOQiFXFNycnK0bds2HThwQPHx8UpMTFSVKlUUFBSk66+/Xq1bt3bbH9yPj4/Xpk2bdPz4cSUkJMjX11d16tRRWFhYmTkx4vDhw4qKitLJkyd18uRJpaeny8/PT0FBQWrevLlCQkLk7e1drDUyMzO1b98+RUdHKy4uTsnJyTJNU4GBgapataqaN2+uG264Ic938ChfbA+DnDlzRgsXLtS8efO0fft2SVc/BqZSpUoaNGiQhg8frk6dOpVovwAAAAAAAAAAAEB5siv5tAZvW6WtSScL/Exceqqe/N9GfXY8Rgtad9MN/lXd2CFKgy1btui///2vIiMjdfLk5X+t1KhRQxEREZo4caJat25tydpff/213nrrLa1du1bZ2dn5zgkJCdGECRP08MMPy8vrwtfgzz33nJ5//nmXeQcOHFCDBg2uuN78+fM1bNgwl7FVq1YpPDy8SP1HR0fr7bff1sqVK7Vv374rzvX19VWXLl3Ur18/Pfjgg6pSpUqB1ti6dau++eYbrV69Whs2bFB6evoV5wcGBqpnz5564okn1KFDh4J+FJQhtpylYpqmVqxYoXvvvVfXXXedJkyYoG3btsk0TZmmKcMwnK/c+aZpqkOHDpo1a5ZiY2M1d+5cgiAAAAAAAAAAAABAMfx6Ok63rFtSqCDIxbYmndQt65bo19NxFneG0iI+Pl4PPvig2rVrp4ULF14xCCJJCQkJ+uijj9SmTRsNHjz4qvOv5MSJExowYIDuvPNOrVq16rJBEOlC4GL06NHq0KGDDh06VOQ1rXT48GE98MADuuGGG/Tuu+9eNQgiSWlpaYqMjNSjjz6q6667Tlu3br3i/B9//FFNmzZVmzZt9Pzzz2vNmjVXDYJIFzZt+Pzzz9WxY0f17dtXp06dKvDnQtlQojuDxMTEaO7cuVqwYIGOHz8u6eq7gFSvXl0PPfSQhg8frhYtWpRkuwAAAAAAAAAAAEC5tSv5tG7bsFzJWRnFqpOclaHbNizX+s53qIVfoEXdoTSIiYlRRESEYmJiCv2saZr68MMPtXHjRkVGRl51N45LxcXFqVu3boqOji7Uc1u3btXNN9+sX3/9tVDPWe3nn3/WXXfdpYSEhCLXSEtLU3Jy8hXnREVFae/evUVeQ5KWLVumtm3basWKFWrWrFmxaqH0cHsYJDU1VYsWLdLcuXP1yy+/SLp8ACT3noeHhyIiIjR8+HD1799fDofD3W0CAAAAAAAAAAAA14zMnGwN3raq2EGQXMlZGXpo60/a0PkOOTw8LakJex0+fFidOnXSiRMn8tzz9vZWz5491aJFC9WoUUMnT57Url279MMPPygjw/XX1B9//KGbb75Zv/32m2rXrl2gtVNTU9WjR498gyAOh0Ph4eEKDQ1VUFCQEhMTtW/fPkVGRjqDE7GxsRowYID69u1bhE9efEuWLNGgQYOUmZmZ555hGAoNDVXHjh0VFBQkPz8/JSUlKS4uTlu3btXvv/+e73OFUb9+fd14441q0qSJ/P395efnp7S0NJ06dUo7d+7Uhg0blJaW5vLMwYMHNXDgQG3evFkVK1Ys1vooHdwWBlm3bp3mzZunzz//XOfOnZP0ZwgkvwCIJF1//fUaNmyYhg4dqjp16rirNQAAAAAAAAAAAOCa9t+YqCIfDXM5W5NO6r8xUfpnk5ssrYuSl5OTo4ceeihPEMQwDD3yyCP617/+pcDAvLvAnD59WpMmTdLs2bNdxuPi4jR48GD98MMPeb4rzs9TTz2l3bt35xkfNmyYXnnlFdWoUSPPvfT0dP33v//V1KlTlZaWpp07dzpPqyhJe/bs0UMPPZQn0OHl5aURI0boqaeeuuJ34UlJSVqyZIkWLFigH3/8sUBrGoahHj166O6779btt99+1dBNcnKy5s6dq+eee05JSUnO8d27d+upp57SG2+8UaB1Ubq5JQzSrFkz53lHVzsGpkKFCrrzzjs1fPhwde/e3R3tAAAAAABs9t7MFXpv1grL644e2VujH+lteV0AAAAAKM8ycrL13/1Rbqn93/1RerxRS3YHKePefvttrV271mXMMAzNnTtXQ4cOvexzVatW1axZs9SuXTuNHDnS5d5PP/2k6dOn69FHH73i2lu3btXbb7+dZ/zNN9/U+PHjL/ucj4+PJk2apE6dOql3795KTU3VyZPWBp6uJjs7W3fddZdSUlJcxgMDA7VkyRJ17tz5qjUCAgI0ePBgDR48WFu2bFH16tWvOP/WW2/Vrl271Lx58wL36e/vr8cee0wDBgxQ9+7ddfDgQee92bNn69lnn8037IOyxS1hkL1798owDJmmedldQG666SYNHz5cDz74oKpUqeKONgAAAAAApUTK2TTFxp1xS10AAAAAQOEsiTuouPRUt9SOS0/V13EHNei6Rm6pD/fLysrSa6+9lmf86aefvmIQ5GIjRoxQTEyMXnnlFZfx//znPxo9erQ8PS8fFnrzzTeVk5PjMvbII49cMQhysc6dO2vGjBkaPHhwgeZb6ZNPPtGuXbtcxnx8fPTDDz8oLCys0PXatGlz1Tlt27YtdN1c119/vRYtWqSOHTs6/5qnpqZq/vz5evzxx4tcF6WDhzuL5wZBTNOUaZoKCAjQmDFjtGXLFm3dulVjx44lCAIAAAAA1wC/yr6qFRx42VfNoCp5nqkZVOWKz9QKDpRfZd+S/zAAAAAAUMatiD/i1vqR8UfdWh/u9fXXX+vIEddfIw0bNtRTTz1VqDrPPvus6tev7zJ26NAhLVmy5LLPnDlzRosWLXIZq1Klil566aVCrf3QQw+pU6dOhXqmuEzT1Msvv5xnfNq0aUUKgpSUdu3aqVu3bi5jq1atsqkbWMktO4Pkyt0ZpFu3bho+fLjuuusu+fj4uHNJAAAAAEApNPqRKx/ncvJUspqHjnMZW/3DC6pezd/drQEAAADANWdLonuPztiSmODW+nCvxYsX5xkbO3asKlSoUKg6vr6+Gjt2rP75z3/mqT9w4MB8n/nhhx90/vx5l7H77ruvSEeWjBkzRr/88kuhnyuq7du359kVpEaNGho3btxlnig9wsPD9eOPPzqvN27caGM3sIrbdga57rrrNHnyZO3bt08//vijHnjgAYIgAAAAAAAAAAAAgM32nE10b/1zSW6tD/f69ddfXa4Nw9ADDzxQpFoPPfSQ8zSJy9W/WH4hhEGDBhVp7TvvvFMOh6NIzxbF6tWr84wNGzasTHxHHhwc7HIdHx+vkyfdGxqD+7llZ5DvvvtOERER8vBw6yk0AAAAAAAAAAAAAAopPSfbrfXPZ2e5tT7cJy4uTocOHXIZa9iwYZ6wQEEFBwerYcOGiomJcY4dOHBAJ06cUM2aNfPM37x5s8u1YRhq06ZNkdb29fVVixYttGPHjiI9X1hr167NM3bp8Ssl4dy5c/ruu++0efNm7dy5UzExMUpJSVFKSorS0tIKXOfMmTOqXr26GzuFu7klDHLbbbe5oywAAAAAAAAAAACAYvLx8NR5NwZCKni65StIlIDDhw/nGbvpppuKVTMsLMwlDCJJR44cyTcMcvz4cZfr2rVrKyAgoMhr33jjjSUWBtm/f3+esQ4dOpTI2tKFv6bPPPOMvvjiC507d67Y9RITE4vfFGzF1h0AAAAAAAAAAADANaRZ5SrurV+p6F/ew15nzpzJM5ZfaKMw8ns+v3XyG69atWqx1g4MDCzW84Vx6tQpl2sfH58SW3/OnDkKCQnRBx98YEkQRJJSU1MtqQP7lNpY3pEjR7Rt2zadPHlSp06dcm5ZM2XKFJs7AwAAAAAAAAAAAMquNlWqa0fyqatPLHL9Gm6rDffKL6Th7+9frJr57exx+vTpfOcmJSW5XPv5+RVr7eL2XhiXhkGqVKlSIuu+9dZbmjBhQoHmenp6qkKFCvLyco0JZGRk5DlCxjRNy3qEPUpVGOT48eN6/fXX9dVXX+ngwYP5zrlSGOTjjz9WXFyc87pz585q166d1W0CAAAAAAAAAAAAZVbvoLqae3iP2+pHBNVxW22Ubz4+PsrKynJeZ2RkFKtecZ8v7aKiovTEE0/kGffy8lK/fv3UrVs3tWnTRnXq1FGtWrXkcDjyrTN//nwNGzbM3e2ihJWKMEh2draeeuopvfXWW8rIyLhsysgwjCvWOXbsmCZNmuS87t69u77//ntLewUAAAAAAAAAAADKsgHBDRTsU1Fx6dYfAxHsU1F3BDewvC5KRn7HmiQnJxer5qW7fUiXP/6lSpUqLsecuGNtd6lWrZqOHTvmvE5MTHT7mpMmTXIJz0gXNkxYuHCh6tatW+A6Vh0tg9LFw+4GTp48qW7duuk///mP0tPTZZqmDMPI8yqIUaNGObf6MU1Tq1at0pEjR9zZPgAAAAAAAAAAAFCmeHt46vGGLd1S+/GGLeXw8HRLbbhffmGQEydOFKtmfs/nt05+48eOHSvWcSUl+V1xtWrVXK7T09PzPXbHKomJiVq5cqXLWMOGDbVs2bJCBUGkyx/bg7LN1jBIRkaG+vfvr3Xr1rmEQEzTdHkVlJ+fn+655x7nM6Zp6uuvv3ZT9wAAAAAAAAAAAEDZ9HijlgoLqG5pzTYB1TWxUailNVGy6tWrl2ds+/btxaq5bdu2PGOXCyu0aNHC5frs2bPau3evpWu7S6NGjfKMbdq0yW3rrV27Ns+uIOPHj1flypULXeuPP/6wqi2UIraGQSZMmKANGza4hECqVaumF154QVu3btXp06fVqlWrQtW85557JP15pMwPP/xged8AAAAAAAAAAABAWebw8NSC1t3k7+VtSb0AL28tCOsuLw/bDyZAMQQHB6t+/fouY/v37y/y7iDx8fGKiYlxGbv++utVs2bNfOd36NAhz9hPP/1UpLV3795d7F1NCqNLly55xlatWuW29Y4fP55n7JZbbilSrXXr1hW3HZRCtv3TeM+ePZozZ44zBCJJvXr10r59+zR58mTddNNNqlKlSqHrhoeHuxwVs2bNGivbBgAAAAAAAAAAAMqFG/yrannH24odCAnw8tayjrephV/+R3+gbOnUqZPLtWma+uSTT4pU66OPPspzEsSl9S/WuXPnPGMLFiwo0toffPBBkZ4rqm7duuUZmzdvnjIyMtyyXn5HuxTl+/Wff/5ZBw8eLH5DKHVsC4O89NJLys7OlnRhF482bdrou+++cwY5isrT01OtW7d2/kMlJSVFhw8fLna/AAAAAAAAAAAAQHlzS9Vgre98R5GPjAkLqK5fO9+hW6oGW9wZ7DJw4MA8Y9OnT1d6enqh6qSnp+vdd98tUP1c7dq1y3NUzPr167Vs2bJCrX3s2LF813anVq1aKTTU9Zik+Ph4TZ8+3S3r+fn55RmLjY0tdJ2XXnrJinZQCtkWBvnuu+9cdgWZM2eOvLy8LKndpk0bl+vo6GhL6gIAAAAAAAAAAADlTQu/QG3ofIdead5BwT4VC/RMsE9FvdK8gzZ0voMdQcqZO+64Q3Xr1nUZ27dvn15++eVC1XnxxRfzHBHToEED9e/f/4rPPfLII3nGxowZo7i4uAKtm5WVpYcfflhnz54teLMWefLJJ/OMPfXUU9qxY4fla9WuXTvP2NKlSwtVY86cOVq+fLlVLaGUsSUMsm3bNp06dUrShV1Bbr311jwpqeKoV6+ey/WxY8csqw0AAAAAAAAAAACUNw4PT/2zyU063OsBLWrbUw/Wbpxnzo1+gRpeL0SL2vbU4V4P6J9NbpLDw9OGbuFOnp6eeuKJJ/KMT506VQsXLixQjQ8++EDTpk3LM/7EE0/I0/PKv2YefvhhNWrUyGXs0KFD6tmzp/bu3XvFZ5OSknTvvfdqxYoVBerTavfee2+e773Pnz+vHj16aP369YWut23bNh06dCjfe126dJGHh+vX/dOnT9fvv/9eoNqfffaZxo4dW+ieUHbYEga59P+kPXr0sLT+pWchJScnW1ofAAAAAAAAAAAAKI8cHp4adF0j/ffGW/Lc++mWfppzU1cNuq4RIZBybty4cerSpYvLWE5OjgYPHqxx48YpMTEx3+fOnDmjsWPHatiwYc4TInJ1795dY8aMueraFStW1Jw5c2QYhsv4rl27FBoaqscff1wbNmxQamqqJCkjI0PR0dF6+eWXFRISosWLF0uSvLy8rroLidU8PT31+eef5znC5dSpU+rataseffTRq25kcPbsWX388cfq3bu3wsLCdODAgXznVa9eXb169XIZS0tLU/fu3fXVV19dtn5cXJxGjhypBx54QBkZGZKkWrVqFeTjoYyx5lyWQkpISJAkmaYpwzDUoEEDS+tXqlRJkpz/gDh37pyl9QEAAAAAAAAAAADAbqGhoXl2hyiKhQsXqm/fvs5rDw8Pffjhh2rXrp3i4+Od4zk5OXrnnXc0e/Zs9erVSy1atFC1atV06tQp7d69WytXrnQGDC4WHBysBQsWFLjX8PBwvfrqq/r73//uMn7+/Hm98cYbeuONNyRJvr6+SktLy7fGiy++qNTUVH3zzTcu45eGTKzWtGlTffjhhxo0aJAyMzOd45mZmZo+fbreffdd3XTTTerQoYOCgoLk5+en5ORkxcXFadu2bYqKilJ6enqB1nrhhRf0/fffKycnxzmWkJCggQMHqkmTJurevbvq1asnDw8PxcfH67ffftOvv/6q7Oxsl37Hjx+vRx991Lq/CCgVbAmDXLpTR+XKlS2tn5SUJOnPsInV9QEAAAAAAAAAAADAbikpKZbUuTi0kKtevXr65ZdfFBERof3797vcS09P17fffqtvv/32qrWbNGmiyMhI1a5du1A9PfHEE/Lw8NDf//53l7DDxS4XBHnyySf1z3/+U88880yee7kbC7jTgAED9P3332vgwIE6ffq0yz3TNLVt2zZt27at2Ou0a9dOr776ar7H+uzdu/eqx+pcd911Wr58udauXVvsXlD62HJMTGBgoMt1bnjDKhen0ySpWrVqltYHAAAAAAAAAAAAgPKucePG+vXXX3XfffcVekcNwzD04IMP6pdfftH1119fpPUff/xx/frrr7rpppsKNP+6667TokWL9PLLL0tSvsfZBAQEFKmXwuratas2b96sgQMHFnk3En9//zzfrV9q4sSJeuutt+RwOApVu1OnTtq0aZMaNmxYpN5Q+tkSBqlRo4akP7fgOXLkiKX1N27c6HJdvXp1S+sDAAAAAAAAAAAAwLWgZs2a+uSTT7R582Y9+OCDV/2D+NWrV9df//pXbdmyRR999JHzu+Gi6tChg7Zs2aJVq1ZpzJgxCgsLU3BwsLy8vFS5cmWFhITo/vvv18KFC3XgwAENGjTI+eylu3L4+voWOjRRHA0bNtSXX36p3377TcOGDSvQ7iiVK1dWv379NGfOHB0/flytWrW66jPjxo3Ttm3b9MADD8jb2/uy8wzD0M0336yFCxfq559/LvRuLShbbDkmpn79+i7Xl4Y3iiM9PV1r1qyRYRgyTVOSFBYWZll9AAAAAAAAAAAAAChpud992qVNmzb66KOPlJOToy1btujgwYOKj49XYmKiqlSpoqCgIF1//fUKCwuTh4e1exJ4eHgoPDxc4eHhhXpu+/btLtd169Yt0HNDhw7V0KFDC7XWlYSFhWnu3LmSpN27d+uPP/5QQkKCTp06JUny8/NTcHCwmjdvrqZNm8rLq/Bf499www1auHCh5syZo/Xr12vfvn06ffq0TNOUv7+/GjVqpLZt2+a7kUJRP294eLjtvy5xebaEQcLCwlSlShUlJSXJNE399NNPOnXqlCXHucydO1eJiYnOXUeaN29e7LQZAAAAAAAAAAAo3zIysrQ8cquWRW7Jc+/OQS8rrHUjdQ9vqdsiwuTtbcvXKwBQKnh4eKhdu3Zq166d3a1c0ZkzZxQdHe0yVhp6btGihVq0aOG2+r6+vurevbu6d+/utjVQNthyTIyHh4d69uzpTAllZGToP//5T7HrxsbG6vnnn3fuCmIYhiIiIopdFwAAAAAAAAAAlE+ZmVl6+93vdFP7iXp41HQt/mpDnjnRe47p40/X6uFR09W6w0S9/e53yszMsqFbAEBBzZ8/Xzk5OS5jbdu2takboOTZEgaRpJEjR0qSM7jx+uuva+3atUWul5iYqIEDByo+Pt455unpqfHjxxe7VwAAAAAAAAAAUP5E7zmq3v2mauqLi5SQkFSgZ+LjkzT1xUXq3W+qovccdXOHAICiSE5O1htvvOEyZhiG+vbta09DgA1sC4P07NlT3bp1c+7gkZmZqdtvv12LFy8udK3Vq1erbdu22rRpk8uuIPfff7/q16/vhu4BAAAAAAAAAEBZtmnzXvUZME07ow4V6fmdUYfUZ8A0bdq81+LOAADShdMliiI7O1vDhw/X4cOHXca7d++uJk2aWNEaUCbYFgaRpDfeeEOVKlWSdCGJdfbsWQ0aNEg9evTQp59+muf/oJKUmZmpuLg4bdy4Ua+++qpuvvlm9ejRQ/v373ceO2MYhoKDg/Xvf/+7RD8PAAAAAAAAAAAo/aL3HNV9D72mlJS0YtVJSUnTfQ+9pj1/HLOoMwBArnHjxmnkyJHat29fgZ+Ji4tT37599cUXX+S5N3HiRCvbA0o9LzsXb9mypT7++GPdeeedzt08TNPU6tWrtXr1aue83JCHaZqqUKFCnjq5z+a+dzgc+uyzz1SzZs0S+RwAAAAAAAAAAKBsyMzM0tgJs4odBMmVkpKmMeNnasXSKXI4bP3aBSiU12N26vWYnZe9n/P/v5+7WKvVX8jj/38ndzkTG4VqYqPQYvcHpKen64MPPtDs2bN18803a+DAgWrXrp1atmypwMBAGYah7OxsJSQkaMOGDVq2bJk+/PBDnT9/Pk+tIUOGqE+fPjZ8CsA+tv9U0q9fPy1YsEAjR45UWlqaS6gjP/mNX/yMn5+fFi5cqFtvvdV9TQMAAAAAAAAAgDJpxuzIIh8Nczk7ow5pxuxIjRvT19K6gDslZ2bo2PlzhXomNj21QHUBq61fv17r1693Xnt4eMjX11fnzl3913Dr1q319ttvu7M9oFSyPQwiSQ888IBatWql++67T7t27ZJhGM6AR0GZpqmQkBB9/vnnuuGGG9zUKQAAAAAAAAAAKKsyMrI0Y3akW2rPmB2pUSMi2B0EZYa/w1u1K1RyS13A3XJycgoUBOnXr58++eQTVapk/a91oLQrNT+R3HDDDdq5c6e++OIL/fvf/9aWLVvyzMk9RuZSTZo00eTJk/XXv/5VHh4eJdEuAAAAAAAAAAAoY5ZHblV8fJJbasfHJ2nZiq0a0K+9W+oDVuM4F5R2vXr10saNGxUdHV3oZ1u2bKmnn35agwYNKvQmBEB5UWrCINKFsMegQYM0aNAgHTp0SGvWrNEvv/yio0eP6tSpUzpz5ox8fX1VvXp11axZUx06dFCvXr3UvHlzu1sHAAAAAAAAAACl3E+ro9xaf9WaKMIgAGCRBx98UA8++KD27NmjdevWaePGjdq7d68OHTqk06dPKzU1VYZhKDAwUFWrVlWDBg3UuXNndevWTR06dCAEgmteqQqDXKx+/foaPHiwBg8ebHcrAAAAAAAAAACgHNix82CZrg8A16JmzZqpWbNmGj58uN2tAGUKZ6oAAAAAAAAAAIBrQsz+WPfWj4lza30AAICCIgwCAAAAAAAAAACuCenpWW6tfz490631AQAACoowCAAAAAAAAAAAuCb4+Hi5tX4FH4db6wMAABQUYRAAAAAAAAAAAHBNaNSwlnvrNwp2a30AAICCIgwCAAAAAAAAAACuCa1CG5Tp+gAAAAVFGAQAAAAAAAAAAFwTuoe3dGv9bl3dWx8AAKCgCIMAAAAAAAAAAIBrwm0RYQoKCnBL7aCgAPXpHeaW2gAAAIVFGAQAAAAAAAAAAFwTvL29NGpEhFtqjxoRIYfDyy21AQAACoswCAAAAAAAAAAAuGaMGhGh0Jb1La3ZKrSBRo/sbWlNAACA4iAMAgAAAAAAAAAArhkOh5emvzlSfn6+ltTz96+o6W+OlJeXpyX1AAAArEAYBAAAAAAAAAAAXFNCmtXRpx8+UexAiL9/RX2yYKKaNa1tUWewg6fnhSBPdna2zZ0AAEqj3H8/5P77oqwgDAIAAAAAAAAAAK457ds10fJvninykTGhLetr2ZKn1b5dE4s7Q0nz8LjwdZlpmsrJybG5GwBAaZKdnS3TNCURBgEAAAAAAAAAACgTmjWtrRVLp2jK5HsUFBRQoGeCggI0ZfI9WrF0CjuClBM+Pj7O92fPnrWxEwBAaXPu3Dnne29vbxs7KTwvuxsAAAAAAAAAAACwi8PhpXFj+mrUiAgtW7FVyyO36suv1rvMaR5SR2GtG6pb15bq0ztMDgdfr5Qn/v7+SkxMlCQlJyfL39/f3oYAAKVGcnKy831Z+/cDP624UXp6uqKjo7V7924lJCQoJSVFlSpVUtWqVdW0aVOFhYWVufQQAAAAAAAAAADlkcPhpQH92qvTLSF5wiCLFz2p6tXK1hdAKLiKFSvK09NT2dnZOnv2rLKzs8vcUQAAAOvl/ntBunBETMWKFW3uqHAIg1hsy5YtWrp0qX788Udt3LhRmZmZl53r4+OjiIgIjR8/Xj169CixHsPDw7VmzZpi1Xj22Wf13HPPWdMQAAAAAAAAAACATQzDkJ+fnxITE2Wapo4ePaq6devKw8PD7tYAADbJycnR0aNHZZqmJMnPz0+GYdjcVeHwbzGLLF68WI0bN1bbtm31/PPPa926dVcMgkgXdg755ptv1LNnT/Xv318nTpwooW4BAAAAAAAAAACQKzAw0Bn+SE1N1ZEjR5SdnW1zVwAAO2RnZ+vIkSNKTU2VJHl4eCgwMNDmrgqPMIhFNm3apJiYmMveNwxDgYGBqlChQr73ly5dqjZt2ujgwYNu6hAAAAAAAAAAAAD5qVChgurVq+cSCNm7d6+OHj2q5ORkgiEAUM5lZ2crOTlZR48e1d69e12CIPXq1bvs9/ylGcfEuEnlypU1cOBAde/eXV26dFHdunXl5XXhL/fhw4e1dOlSvfrqqzp06JDzmWPHjqlXr17atm2bKleuXGK9Pv7442ratGmhnmnbtq2bugEAAAAAAAAAACh5vr6+qlevng4fPqycnByZpqmUlBSlpKRIuvAHfz09PW3uEgBgtezsbOdxMBfLDYL4+vra0FXxEQaxWEhIiB5//HE98MADlw101KtXT2PHjtXgwYP10EMPacmSJc57+/bt04svvqiXXnqppFpW//79FR4eXmLrAQAAAAAAAAAAlEa+vr6qX7++zpw5o5SUFJcdQUzTVFZWlo3dAQBKgqenp/z8/K548kdZQBjEIvXq1dP777+vIUOGFDgV6ufnp88++0y33nqrfvvtN+f4W2+9pSlTppTZhBEAAAAAAAAAAEBZVaFCBdWqVUvBwcFKTU1VcnKyMjIylJ2dzXExAFAOeXp6ytPTU97e3vL391fFihVlGIbdbRVbqQ2DHDt2TElJSUpKSlJmZmaxanXp0sWiri5vzJgxRXrOx8dH//73v9W9e3fnWGpqqn744Qf169fPqvYAAAAAAAAAAABQCIZhqFKlSqpUqZLdrQAAUGilJgwSGxurefPmKTIyUtu3b9fZs2ctqWsYRqnfsqtr166qVq2aTp065RzbsWMHYRAAAAAAAAAAAAAAAFBotodBUlNTNWnSJM2YMcO5tZZpmjZ3VbI8PDx0/fXXu4RB4uLibOwIAAAAAAAAAAAAAACUVbaGQRISEtS1a1ft2bPHJQBi1fk7ZSlUkpGR4XJdHs4gAgAAAAAAAAAAAAAAJc+2MEhWVpZ69+6t6OhoSa7hh7IU4rBCTk6ODhw44DIWHBxsUzcAAAAAAAAAAAAAAKAssy0MMnPmTG3bti1PCKRChQrq06eP2rdvr0aNGikgIEAOh8OuNkvEypUrlZKS4jLWpk2bEu0hNjZWUVFRSkhIUFZWlqpWraoaNWqoVatW8vX1LdFeAAAAAAAAAAAAAABA0dkWBvnPf/7jDILk7gQyYsQIvfzyywoMDLSrLVu89957LteVKlVSt27dSmz9u+++W6dOncr3nsPhUNu2bfXQQw9p6NChBEMAAAAAAAAAAAAAACjlPOxYdM+ePTp06JCkC0EQwzA0adIkzZw585oLgvz444/65ptvXMaGDh0qHx+fEuvhckEQScrMzNT69es1ZswY1a9fX4sWLSqxvgAAAAAAAAAAAAAAQOHZEgbZunWry/X111+vqVOn2tGKrRITE/Xwww+7jPn5+enpp5+2qaMrS0hI0L333qvx48fb3QoAAAAAAAAAAAAAALgMW46JSUhIcL43DEN33XWXvLxsO7HGFqZpaujQoTp48KDL+Kuvvqrg4GC3r28Yhtq1a6fbbrtN7du3V4sWLVStWjVVqFBBZ86c0f79+7VmzRrNmTNH+/btc3n27bffVkBAgF544YVi9XD06NEr3o+NjS1WfQAAAAAAAAAAAAAArkW2JDDOnj0r6c8jYpo3b25HG7aaMmWKlixZ4jLWv39/PfLII25fe+jQoZo1a5aaNm2a7/2goCAFBQWpY8eO+sc//qE333xTkyZNUkZGhnPOtGnTFB4erh49ehS5j7p16xb5WQAAAAAAAAAAAAAAkD9bjokJCAhwua5cubIdbdhm1qxZmjZtmstYSEiI5s+fXyLrDx069LJBkEt5eHjo8ccf16JFi+Th4frLZdKkSe5oDwAAAAAAAAAAAAAAFIMtO4M0adJE0oWjSiTp5MmTdrRhiy+//FKjR492GatTp45WrlypwMBAm7q6ugEDBuixxx7T66+/7hz77bfftGnTJrVv375INY8cOXLF+7GxsUWuDQAAAAAAAAAAAADAtcqWMEjHjh3lcDiUlZUlSYqKirKjjRK3cuVKPfDAA8rJyXGOVa9eXd9//32ZODLlqaee0ttvv63MzEznWGRkZJEDG3Xq1LGqNQAAAAAAAAAAAAAA8P/ZckyMv7+/+vXrJ9M0ZZqmvvvuO5mmaUcrJebXX3/VwIEDlZGR4Rzz9/dXZGSkQkJCbOys4KpVq6abb77ZZWzTpk02dQMAAAAAAAAAAAAAAPJjSxhEkp555hl5enrKMAwdOXJE8+bNs6sVt9u+fbv69u2rc+fOOccqVqyob7/9VmFhYTZ2VngtWrRwuY6Pj7epEwAAAAAAAAAAAAAAkB/bwiCtWrXSpEmTnDuCTJw4Ub///rtd7bhNdHS0/vKXvygxMdE55u3trcWLF6tz5872NVZEVatWdbk+c+aMTZ0AAAAAAAAAAAAAAID82BYGkaQXXnhBDzzwgEzTVHJysrp166bvvvvOzpYsdfDgQfXs2VMJCQnOMU9PT33yySeKiIiwsbOiuzjUIkkBAQH2NAIAAAAAAAAAAAAAAPJlaxhEkj788ENNmjRJhmHo1KlT6t+/v7p3765PPvlEx48ft7u9Ijt+/Lh69OihY8eOOccMw9DcuXM1cOBAGzsrnr1797pcBwUF2dQJAAAAAAAAAAAAAADIj5ddCzds2NDl2uFwKDMzU6Zpas2aNVqzZo0kqUKFCqpataocDkeR1jEMQzExMcXutzBOnTqlXr16af/+/S7j77zzjgYPHlyivVjp7Nmz+vnnn13GQkNDbeoGAAAAQHmQkZGl5ZFbtSxyS557dw56WWGtG6l7eEvdFhEmb2/b/hMWAAAAAAAAKFNs+520gwcPyjAMmaYpwzCc47ljudLS0lx21yisi2uXhOTkZPXu3Vu7d+92GX/55Zc1ZsyYEu3Faq+99prOnz/vMta7d2+bugEAAABQlmVmZmnG7Ei9NytSCQlJ+c6J3nNM0XuO6eNP1yooKECjRkRo1IgIORyEQgAAAAAAAIArsf2YmPzCGoZhWPIqaWlpaerXr59+++03l/HJkyfrySeftHy9Bg0auHze8PDwK86/OGRTWGvXrtVLL73kMta4cWN16tSpyDUBAAAAXJui9xxV735TNfXFRZcNglwqPj5JU19cpN79pip6z1E3dwgAAAAAAACUbbaGQUzTdOurJGVmZuruu+/W2rVrXcbHjx+vadOmlWgvl3Po0CHdcsst+u6775STk1Pg5z799FPdfvvtSk9Pdxl/6aWX5OXFn8gDAAAAUHCbNu9VnwHTtDPqUJGe3xl1SH0GTNOmzXst7gwAAAAAAAAoP2z7Jn/IkCF2Le0WEyZM0LJly1zG6tatq5CQEM2YMaPQ9fz8/PTggw9a1Z7T+vXrdfvtt6tWrVq666671LVrV910001q0KCBS7Dj0KFDWrNmjWbOnKlff/01T51hw4bp7rvvtrw/AAAAAOVX9J6juu+h15SSklasOikpabrvode0/Jtn1KxpbYu6AwAAAAAAAMoP28Ig8+bNs2tpt9i9e3eesSNHjmjMmDFFqle/fn23hEFyxcbG6p133tE777zjHKtUqZIqVKigpKQkZWVlXfbZu+++W7NmzXJbbwAAAADKn8zMLI2dMKvYQZBcKSlpGjN+plYsnSKHgx0LAQAAAAAAgIvZekwMSpdz587p1KlTlw2CVK5cWe+9954+//xzjocBAAAAUCgzZkcW+WiYy9kZdUgzZkdaWhMAAAAAAAAoDwiDXENq1aqluXPnavDgwWrcuLEMw7jqMx4eHmrVqpX++9//6ujRoxo1alQJdAoAAACgPMnIyHJbaGPG7EhlZl5+Z0MAAAAAAADgWsT2DhZZvXp1ia958ODBQs338fHRsGHDNGzYMElSSkqK/ve//+nw4cOKi4vTuXPnlJmZKT8/PwUGBqpu3bpq27at/Pz83NA9AAAAgGvF8sitio9Pckvt+PgkLVuxVQP6tXdLfQAAAAAAAKAsIgxyDfPz81P79u3Vvj2/aQoAAADAfX5aHeXW+qvWRBEGAQAAAAAAAC7CMTEAAAAAALfasfNgma4PAAAAAAAAlDXsDAKUc+/NXKH3Zq2wvO7okb01+pHeltcFAABA+ROzP9a99WPi3FofAAAAAAAAKGsIgwDlXMrZNMXGnXFLXQAAAKAg0tOz3Fr/fHqmW+sDAAAAAAAAZY2lYZDDhw/nO16vXr0Cz3WH/NYHrhV+lX1VKzjwsvdzckydiE90GasZVEUeHsZV6wIAAAAF4ePjpfPn3RfYqODjcFttAAAAAAAAoCyyNAzSoEEDGYbrF8iGYSgrK++fAstvrjtcbn3gWjH6kSsf53LyVLKah45zGVv9wwuqXs3f3a0BAADgGtGoYS3t2u2+PxDQqFGw22oDAAAAAAAAZZGH1QVN08zzKsxcd7wAAAAAAPZpFdqgTNcHAAAAAAAAyhrLwyCGYThfhZnrjhcAAAAAwH7dw1u6tX63ru6tDwAAAAAAAJQ1lh4TI6lQO3GwawcAAAAAlH+3RYQpKChA8fFJltcOCgpQn95hltcFAAAAAAAAyjJLwyDz5s1zy1wAAAAAQNnl7e2lUSMiNPXFRZbXHjUiQg6H5X/OAQAAAAAAACjTLP0dsyFDhrhlLgAAAACgbBs1IkJff7NRO6MOWVazVWgDjR7Z27J6AAAAAAAAQHnhYXcDAAAAAIDyz+Hw0vQ3R8rPz9eSev7+FTX9zZHy8vK0pB4AAAAAAABQnhAGAQAAAACUiJBmdfTph08UOxDi719RnyyYqGZNa1vUGQAAAAAAAFC+EAYBAAAAAJSY9u2aaPk3zyi0Zf0iPR/asr6WLXla7ds1sbgzAAAAAAAAoPwgDAIAAAAAKFHNmtbWiqVTNGXyPQoKCijQM0FBAZoy+R6tWDqFHUEAAAAAAACAq/CyuwEAAAAAwLXH4fDSuDF9NWpEhJat2KrlkVv15VfrXeY0D6mjsNYN1a1rS/XpHSaHg/+EBQAAAAAAAAqC30kDAAAAANjG4fDSgH7t1emWkDxhkMWLnlT1av42dQYAAAAAAACUXRwTAwAAAAAAAAAAAAAAUI5YGga5//77dejQIStLuoVpmpo7d67mzJljdysAAAAAAAAAAAAAAACWsjQM8tlnnykkJERPPPGE4uPjrSxtmW+++UatWrXSiBEjdPz4cbvbAQAAAAAAAAAAAAAAsJTlx8RkZGTojTfeUIMGDfToo4+Wip1CsrOztXDhQoWGhurOO+/U77//bndLAAAAAAAAAAAAAAAAbmF5GCTX+fPn9d5776lx48YaMGCAli1bJtM03bVcvg4fPqxnnnlG9erV0+DBg/X777/LNE0ZhiFJzv8FAAAAAAAAAAAAAAAoLywNg0RGRqpJkyYugYvs7Gx9++236tevn+rUqaNx48ZpzZo1bguGHD16VG+++aa6dOmihg0b6l//+pdiY2NdevLw8NCjjz6qCRMmuKUHAAAAAAAAAAAAAAAAu3hZWaxXr16KiorSa6+9ppdeekkpKSnOAIZpmoqNjdW7776rd999V/7+/rr11lsVHh6utm3bKjQ0VIGBgYVaLzs7W9HR0dqxY4d+/vlnrVq1Snv37nXezw2cGIYh0zRlmqa6dOmit956S6GhodZ9cAAAAAAAAAAAAAAAgFLC0jCIJDkcDk2aNEkjR47Uv/71L7377rs6f/68SyhEkpKSkrRs2TItW7bM+WxwcLDq16+v2rVrKzg4WJUqVZKvr688PT11/vx5paWl6fTp0zp69KiOHj2qAwcOKDMz0/n8xbuNGIbhEgIJCwvTtGnT1Lt3b6s/MgAAAAAAAAAAAAAAQKlheRgkV9WqVfWf//xHTzzxhN544w3Nnj1biYmJzlCIpDxHxcTGxiouLq5A9fM7Zia/2l26dNETTzyhfv36FeVjAAAAAAAAAAAAAAAAlCke7l6gVq1aeuWVV3TkyBG9/fbbat26tXO3DunPHTxyX5Kc96/0uvS5i3cB8fPz0/Dhw7V582atXr2aIAgAAAAAAAAAAAAAALhmuG1nkEtVqlRJY8eO1dixY7V79259+umn+u6777R9+/Z8j3e5mkt3BqlataoiIiJ0xx13qH///vLx8bH8MwAAAAAAAAAAAAAAAJR2JRYGuViLFi00depUTZ06VSdOnNDatWu1efNm/fbbb/rjjz8UGxub7zEwufz8/HT99dcrNDRU7dq1U8eOHdW2bdsChUgAAAAAAAAAAAAAAADKM1vCIBerWbOmBg0apEGDBjnHMjMzdezYMSUnJys1NVXZ2dny9fVVpUqVFBQUpMDAQBs7BgAAAAAAAAAAAAAAKL1sD4Pkx+FwqEGDBna3AQAAAAAAAAAAAAAAUOaUyjAIAAAAAAAAAACAO7w3c4Xem7XisvdzcvIeYx/e8xl5eFz5qPrRI3tr9CO9i90fAACAFQiDAAAAAAAAAACAa0bK2TTFxp0p1DMn4hMLVBcAgLLkagHJoiIgWToQBgGuURkZWVoeuVXLIrfkuXfnoJcV1rqRuoe31G0RYfL25h8VAAAAAAAAAMoHv8q+qhUc6Ja6AACUJUUJSBa0LuzHN7zANSYzM0szZkfqvVmRSkhIyndO9J5jit5zTB9/ulZBQQEaNSJCo0ZEyOHgHxkAAAAAAAAAyrbRj/CnlQEAkK4ekMzJMfPsjlUzqMpVj04jIFk68M0ucA2J3nNUYyfM0s6oQwV+Jj4+SVNfXKSvv9mo6W+OVEizOm7sEAAAAAAAAAAAAEBJuFpA8uSpZDUPHecytvqHF1S9mr+7W4MFPOxuAEDJ2LR5r/oMmFaoIMjFdkYdUp8B07Rp816LOwMAAAAAAAAAAAAAWIkwCHANiN5zVPc99JpSUop3PldKSprue+g17fnjmEWdAQAAAAAAAAAAAACsRhgEKOcyM7M0dsKsYgdBcqWkpGnM+JnKzMyypB4AAAAAAAAAAAAAwFqEQYBybsbsyCIfDXM5O6MOacbsSEtrAgAAAAAAAAAAAACsQRgEKMcyMrLcFtqYMTuS3UEAAAAAAAAAAAAAoBQiDAKUY8sjtyo+PskttePjk7RsxVa31AYAAAAAAAAAAAAAFB1hEKAc+2l1lFvrr1rj3voAAAAAAAAAAAAAgMIjDAKUYzt2HizT9QEAAAAAAAAAAAAAhUcYBCjHYvbHurd+TJxb6wMAAAAAAAAAAAAACo8wCFCOpadnubX++fRMt9YHAAAAAAAAAAAAABQeYRCgHPPx8XJr/Qo+DrfWBwAAAAAAAAAAAAAUHmEQoBxr1LCWe+s3CnZrfQAAAAAAAAAAAABA4REGAcqxVqENynR9AAAAAAAAAAAAAEDhEQYByrHu4S3dWr9bV/fWBwAAAAAAAAAAAAAUHmEQoBy7LSJMQUEBbqkdFBSgPr3D3FIbAAAAAAAAAAAAAFB0hEGAcszb20ujRkS4pfaoERFyOLzcUhsAAAAAAAAAAAAAUHSlLgxy8uRJffjhhxo+fLjCwsJUr149VapUSZ6envLy4otnoLBGjYhQaMv6ltZsFdpAo0f2trQmAAAAAAAAAAAAAMAapSYMcvz4cT366KOqX7++hg4dqvnz52v79u06evSo0tLSZJqmTNO8Yo0HH3xQ/v7+ztf//d//lVD3QOnlcHhp+psj5efna0k9f/+Kmv7mSHl5eVpSDwAAAAAAAAAAAABgrVIRBlm+fLlCQ0P13nvvuQQ/DMNwvgpi7NixOnv2rPM1f/585eTkuLl7oPQLaVZHn374RLEDIf7+FfXJgolq1rS2RZ0BAAAAAAAAAAAAAKxmexhk3rx56tevn06fPu0SAJFUoN1ALnbLLbeoQ4cOzufj4+P1/fffu6VvoKxp366Jln/zTJGPjAltWV/Lljyt9u2aWNwZAAAAAAAAAAAAAMBKtoZB1q5dq1GjRiknJ8cZAjFNU5UrV1b//v01YcIE1axZs1A177//fmeoRJJWrFjhjtaBMqlZ09pasXSKpky+R0FBAQV6JigoQFMm36MVS6ewIwgAAAAAAAAAAAAAlAFedi2clZWlYcOGKTMz0xkCcTgcevbZZzVx4kRVqFBBkrR69WrFx8cXuO5dd92lxx9/XNKFnUV++OEHt/QPlFUOh5fGjemrUSMitGzFVi2P3Kovv1rvMqd5SB2FtW6obl1bqk/vMDkctv2jAgAAAAAAAAAAAABQSLZ9wzt37lwdOHDAGQTx9vbW0qVL1atXr2LVrV27tpo0aaK9e/dKknbv3q3U1FRVrFjRiraBcsPh8NKAfu3V6ZaQPGGQxYueVPVq/jZ1BgAAAAAAAAAAAAAoDtuOiZkzZ44kOY90mTp1arGDILnatGkj0zSd19HR0ZbUBQAAAAAAAAAAAAAAKO1sCYOcOXNGW7dulWEYkqQaNWpowoQJltW/8cYbXa5zdwkBAAAAAAAAAAAAAAAo72wJg2zYsEE5OTmSJMMw1KdPH/n4+FhWv1q1ai7XZ86csaw2AAAAAAAAAAAAAABAaWZLGOTEiROS5DzKpV27dpbWr1KliiQ5dx5JSUmxtD4AAAAAAAAAAAAAAEBpZUsYJCEhweW6evXqltbP3XXkctcAAAAAAAAAAAAAAADllS1hEA8P12WzsrIsrX/q1ClJf+48UrVqVUvrAwAAAAAAAAAAAAAAlFa2hEGCgoJcrk+fPm1p/b1797pcV6tWzdL6AAAAAAAAAAAAAAAApZUtYZAaNWpIkgzDkCTt3LnT0vpr1qxx1pak+vXrW1ofAAAAAAAAAAAAAACgtLIlDBIWFuYMa5imqVWrVllWOyoqSjt27HBe+/n5qXXr1pbVBwAAAAAAAAAAAAAAKM1sOybmpptucl7HxMTop59+sqT2888/73xvGIZuvfVWeXjY8jEBAAAAAAAAAAAAAABKnG0pif79+8s0TRmGIdM09dhjjykrK6tYNWfNmqXFixc7a0rSX//6VyvaBQAAAAAAAAAAAAAAKBNsC4NMmDBBVapUcV7v2rVL9913n7Kzs4tU780339S4ceOcx89IUsOGDXXvvfcWt1UAAAAAAAAAAAAAAIAyw7YwSJUqVfTPf/7TZXeQr776Su3bt9e6desKVMM0TUVGRio8PFwTJ05UZmamc9wwDE2dOtUlHAIAAAAAAAAAAAAAAFDeedm5+D//+U/9/PPPWr58uTMQsm3bNnXt2lVNmjTRLbfcori4OOeRL5L01FNP6fTp0zp06JB+/fVXnT17VtKfARBJMgxDf/vb33T//ffb8rkAAAAAAAAAAAAAAADsYmsYxMPDQ5999pm6du2qbdu2OcMcpmnqjz/+0N69e13mm6apV155xeU618XPdunSRdOnTy+BTwAAAAAAAAAAAAAAAFC62HZMTK7KlStr3bp1Gjx4sDPcYRiGc6eQiwMfkpxjuTuBXDp32LBh+v777+Xt7W3HxwEAAAAAAAAAAAAAALCV7WEQSfL19dX8+fP16aefqkWLFvmGPfJ7SX+GQxo3bqyFCxfq/fffl8PhsPkTAQAAAAAAAAAAAAAA2KNUhEFy3XPPPYqKitLSpUs1ZMgQ1a9f32UnkEtfgYGBGjRokD766CP973//0/3332/3RwAAAAAAAAAAAAAAALCVl90N5Kdv377q27evJCk2NlZHjx7VqVOndObMGfn6+qp69eqqWbOmGjdu7NwhBAAAAAAAAAAAAAAAAKU0DHKxWrVqqVatWna3AQAAAAAAAAAAAAAAUCaUqmNiAAAAAAAAAAAAAAAAUDyEQQAAAAAAAAAAAAAAAMoR246J+dvf/uZ8X69ePT333HOW1X7uued0+PBhSZJhGHr//fctqw0AAAAAAAAAAAAAAFCa2RYGmT9/vgzDkCS1atXK0jDIkiVLtHPnTpmmSRgEAAAAAAAAAAAAAABcU2w/JsY0zTJVFwAAAAAAAAAAAAAAoDSzPQziLrm7jgAAAAAAAAAAAAAAAFxLym0YBAAAAAAAAAAAAAAA4FpULsMgWVlZzvcOh8PGTgAAAAAAAAAAAAAAAEqWl90NuMPp06ed7ytXrmxjJ4D93pu5Qu/NWnHZ+zk5Zp6x8J7PyMPjykctjR7ZW6Mf6V3s/gAAAHBt4OdSAAAAAAAAoOSUuzBIQkKCYmNjZRgXfsOwatWqNncE2CvlbJpi484U6pkT8YkFqgsAAAAUFD+XAgAAAAAAACWn3IVB/vvf/zrfG4ah5s2b29gNYD+/yr6qFRzolroAAABAQfFzKQAAAAAAAFBy3BYGWbt2bYHnnj17tlDzL5adna2zZ89q//79WrZsmX744QcZhiHTNGUYhtq2bVukukB5MfoRts0GAACA/fi5FAAAAAAAACg5bguDhIeHO49quRzTvHAmdExMjLp162bJurkhkFz33XefJXUBAAAAAAAAAAAAAADKArcfE5Mb+CjunILKDYIYhqEHHnhATZo0saw2AAAAAAAAAAAAAABAaef2MMjldge5OABytR1ECiO3bo8ePTR9+nTL6gIAAKDsem/mCr03a4XldUeP5NgLAAAAFA4/mwIAAAAoCW4NgxR0xw+rdgYJCAjQzTffrL/97W+66667LA2ZAAAAoOxKOZum2LgzbqkLAAAAFAY/mwIAAAAoCW4Lg6xateqy90zTVPfu3WUYhkzTVOPGjTV79uwirePl5SU/Pz8FBgaqbt26RW0XAAAA5ZhfZV/VCg687P2cHFMn4hNdxmoGVZGHx5XDxX6Vfa1oDwAAANcQfjYFAAAAUBIM06ptOQrJw8PDuXNHq1attHXrVjvaQCl29OhRZ8DnyJEjqlOnjs0dAQCA8urkqWQ1Dx3nMva/nW+rejV/mzoCAADAtYqfTQEAAFBa8LNpyXHHd+NuPSbmamzKoQAAAAAAAAAAAAAAAJRbtoVBnn32Wef74OBgu9oAAAAAAAAAAAAAAAAoV0pFGAQAAAAAAAAAAAAAAADW8LC7AQAAAAAAAAAAAAAAAFiHMAgAAAAAAAAAAAAAAEA5QhgEAAAAAAAAAAAAAACgHCEMAgAAAAAAAAAAAAAAUI542d1Afvbt26cNGzbo8OHDSkxMVFJSkjIzM4tUyzAMvf/++xZ3CAAAAAAAAAAAAAAAUDqVmjBIbGyspk+frvfff1/x8fGW1DRNkzAIAAAAAAAAAAAAAAC4ppSKMMiMGTM0ceJEpaenyzRNS2oahmFJHQAAAAAAAAAAAAAAgLLE9jDI2LFjNWPGDGcIpLghDqvCJAAAAAAAAAAAAAAAAGWRrWGQd999V++9956kP0MguUe7BAUF6fTp08rKynKO1atXT2lpaTpz5owyMzOddS4OkFSqVEnVq1cv2Q8CAAAAAAAAAAAAAABQSnjYtfCpU6f0z3/+U4ZhyDAMmaYpPz8/vfPOOzpz5oxiY2PVokULl2cOHDiguLg4paen6/Dhw/rss880cOBAeXh4yDRNmaapjIwMPfzwwzpw4IDzBQAAAAAAAAAAAAAAcK2wLQzy1ltvKTU1VdKF3UACAgL0888/a8yYMfL397/q83Xq1NGgQYP0xRdfKDo6Wp07d5YkZWVlacqUKRo6dKg72wcAAAAAAAAAAAAAACiVbAuDfPzxx84dQQzD0LRp09SyZcsi1WrUqJFWr16t4cOHO3cI+fDDDzVlyhSLuwYAAAAAAAAAAAAAACjdbAmDnDhxQjExMc7rgIAAjRw5slg1DcPQrFmz1LNnT0kXdht5+eWXFRUVVay6AAAAAAAAAAAAAAAAZYktYZDffvvN+d4wDEVERMjhcBS7rmEYevvtt+Xl5SXDMJSdna1XX3212HUBAAAAAAAAAAAAAADKClvCIPHx8S7XN910U4GeO3/+/FXnNGvWTJ07d3YeF/PVV18pMzOzKG0CAAAAAAAAAAAAAACUObaEQc6cOSPpwlEuknTdddflO+/S3ULS09MLVL9Xr17O96mpqdq8eXNR2gQAAAAAAAAAAAAAAChzbAmDXBrqqFy5cr7z/P39nYERSUpISChQ/dq1a7tc79mzp5AdAgAAAAAAAAAAAAAAlE22hEH8/PxcrtPS0go078iRIwWqX6FCBUmSYRiSpJMnTxa2RQAAAAAAAAAAAAAAgDLJljBItWrVXK5TUlLynVenTh2X66ioqALVj4uLk/TnMTRZWVmFbREAAAAAAAAAAAAAAKBMsiUM0rRpU0l/7txx9OjRfOe1bNnSZd7atWsLVH/dunUu14GBgUXqEwAAAAAAAAAAAAAAoKyxJQwSEhLiDHhI0u7du/Od16ZNG+d70zT17bff6sSJE1esffjwYS1ZssSlfr169YrZMQAAAAAAAAAAAAAAQNlgSxikUqVKatmypUzTlGma2rZtW77z2rRpo/r16zuvMzMzNXz4cGVnZ+c7/+zZs7rvvvuUkZHhHPPw8NCtt95q7QcAAAAAAAAAAAAAAAAopWwJg0hSeHi48/2hQ4cUExOT77y//vWvMk1ThmHINE0tX75cHTt21FdffaWEhARlZ2frxIkT+vDDD9WmTRtt3LjROdcwDEVERMjf37+EPhUAAAAAAAAAAAAAAIC9bAuD9O3bV5Kcx7ksX74833n/+Mc/VLNmTedc0zS1ZcsW3X333QoODpa3t7euu+46DR06VHv37pVpms5nDcPQ008/7eZPAgAAAAAAAAAAAAAAUHrYFgbp3r27qlev7jwqZs6cOfnO8/f314wZM+ThcaHV3PBI7nMXvwzDcN43DEOTJ09Wx44dS+YDAQAAAAAAAAAAAABQxmVkZGnJ0k2a/OzCPPfuHPSyJjzxvpYs3aSMjCwbukNBedm1sKenp6ZPn67du3c7x1JSUuTn55dn7oABA/TBBx9o+PDhSk9PdwY+8pO7M8ikSZP0/PPPW984AAAAAAAAAAAAAADlTGZmlmbMjtR7syKVkJCU75zoPccUveeYPv50rYKCAjRqRIRGjYiQw2Fb9ACXYevfkUGDBhV47gMPPKCOHTvqySef1Lfffqv09PR859166616/vnn1a1bN6vaBAAAAAAAAAAAAACg3Irec1RjJ8zSzqhDBX4mPj5JU19cpK+/2ajpb45USLM6buwQhVWm4jkNGzbU559/rtTUVK1du1ZHjhzRyZMnValSJdWqVUudO3dWcHCw3W0CAAAAAAAAAAAAAFAmbNq8V/c99JpSUtKK9PzOqEPqM2CaPv3wCbVv18Ti7lBUZSoMkqtixYrq3bu33W0AAAAAAAAAAAAAAFBmRe85WqwgSK6UlDTd99BrWv7NM2rWtLZF3aE4POxuAAAAAAAAAAAAAAAAlKzMzCyNnTCr2EGQXCkpaRozfqYyM7MsqYfiIQwCAAAAAAAAAAAAAMA1ZsbsSO2MOmRpzZ1RhzRjdqSlNVE0th0Ts3btWuf7ypUrKywszLLaW7du1dmzZ53XXbp0saw2AAAAAAAAAAAAAABlWUZGlttCGzNmR2rUiAg5HLbFESAbwyDh4eEyDEOS1KpVK23dutWy2sOHD9fOnTslSYZhKCuLbWgAAAAAAAAAAAAAAJCk5ZFbFR+f5Jba8fFJWrZiqwb0a++W+igYW4+JMU1Tpmm6tba76gMAAAAAAAAAAAAAUBb9tDrKrfVXrXFvfVydrWEQwzCcu4O4ozYAAAAAAAAAAAAAAHC1Y+fBMl0fV2drGEQSO3cAAAAAAAAAAAAAAFCCYvbHurd+TJxb6+PqbA+DuMPFARMPj3L5EQEAAAAAAAAAAAAAKJL09Cy31j+fnunW+ri6cpmUOHfunPN9xYoVbewEAAAAAAAAAAAAAIDSxcfHy631K/g43FofV1fuwiBZWVk6cuSI89rf39/GbgAAAAAAAAAAAAAAKF0aNazl3vqNgt1aH1dX7sIgy5YtU0ZGhiTJMAw1bNjQ5o4AAAAAAAAAAAAAACg9WoU2KNP1cXXlJgySlJSkTz75RKNGjZJhGDJNU5IUGhpqc2cAAAAAAAAAAAAAAJQe3cNburV+t67urY+rc9tBQIXZkWP37t1F3sEjOztbZ8+eVWJioiTJNE0ZhuG8f/vttxepLgAAAAAAAAAAAAAA5dFtEWEKCgpQfHyS5bWDggLUp3eY5XVROG4Lgxw8eNBlh4785N7LyMjQwYMHLVk3NwhiGIYaN26sv/zlL5bULYr09HRFR0dr9+7dSkhIUEpKiipVqqSqVauqadOmCgsLk7e3t239XSohIUHr16/X/v37dfbsWVWsWFH169dX+/btVbduXbvbAwAAAAAAAAAAAABYwNvbS6NGRGjqi4ssrz1qRIQcDrdFEVBAbv87cPEuHRe7OCRyuTlFZZqmKlWqpAULFlhe+2q2bNmipUuX6scff9TGjRuVmZl52bk+Pj6KiIjQ+PHj1aNHjxLs0tXatWs1bdo0/fjjj8rJycl3TseOHTVp0iQNGDCghLsDAAAAAAAAAAAAAFht1IgIff3NRu2MOmRZzVahDTR6ZG/L6qHoPNxZ3DTNy74KOq+wL8Mw1KdPH23atEkdOnRw58dzsXjxYjVu3Fht27bV888/r3Xr1l0xCCJd2Dnkm2++Uc+ePdW/f3+dOHGihLq9ICsrS+PHj1fXrl31/fffXzYIIkkbNmzQHXfcoXvvvVfnzp0rwS4BAAAAAAAAAAAAAFZzOLw0/c2R8vPztaSev39FTX9zpLy8PC2ph+Jx284gQ4YMueL9Dz74wHmMTNWqVdWvX78irePl5SU/Pz8FBgaqZcuW6tixo4KDg4tUqzg2bdqkmJiYy943DENVqlRRWlqazp8/n+f+0qVL1aZNG61bt04NGjRwY6cX5OTk6MEHH9SiRflv+xMQEKCkpLznQy1atEhxcXGKjIxUhQoV3N0mAAAAAAAAAAAAAMBNQprV0acfPqH7HnpNKSlpRa7j719RnyyYqGZNa1vYHYrDbWGQefPmXfH+Bx984Hxfr169q84vaypXrqyBAweqe/fu6tKli+rWrSsvrwt/uQ8fPqylS5fq1Vdf1aFDf265c+zYMfXq1Uvbtm1T5cqV3drfSy+9lCcI0rJlSz3zzDO67bbbVLlyZaWlpWn16tV68cUX9csvvzjnrV27VuPHj9esWbPc2iMAAAAAAAAAAAAAwL3at2ui5d88ozHjZxbpyJjQlvX17luPEAQpZdx6TExBGIZhdwuWCgkJ0cyZMxUbG6sPPvhAQ4YM0fXXX+8MgkgXwi9jx45VVFSUBgwY4PL8vn379OKLL7q1xyNHjuiFF15wGfvLX/6iDRs2aNCgQc4giq+vr2677TatXr1agwcPdpk/e/Zsbd682a19AgAAAAAAAAAAAADcr1nT2lqxdIqmTL5HQUEBBXomKChAUybfoxVLpxAEKYVsC4PUq1fP+bruuuvsasMy9erV0/vvv6/ff/9dI0eOLNDOHn5+fvrss8/Utm1bl/G33npLaWlF34Lnal544QWlp6c7r2vVqqXPPvtMFStWzHe+l5eX5syZoxtvvNFl/Omnn3ZbjwAAAAAAAAAAAACAkuNweGncmL7avul1zZkxVnfdeXOeOc1D6ujB+7tozoyx2r7pdY0b01cOh9sOJEEx2PZ35eDBg3Yt7RZjxowp0nM+Pj7697//re7duzvHUlNT9cMPP6hfv35WteeUkJCQ50ieadOmqUqVKld8zuFw6I033lDPnj2dYytXrtT27dt10003Wd4nAAAAAAAAAAAAAKDkORxeGtCvvTrdEqIvv1rvcm/xoidVvZq/TZ2hMGw/JgZS165dVa1aNZexHTt2uGWtpUuXKisry3kdEBCg++67r0DPdu/eXY0bN3YZ++qrryztDwAAAAAAAAAAAAAAFA9hkFLAw8ND119/vctYXFycW9ZasmSJy/Xtt99+2eNhLmUYhu65554r1gMAAAAAAAAAAAAAAPYq04f3ZGZmKiYmRklJSapRo4bq168vT09Pu9sqkoyMDJdrwzDcss6qVatcrjt16lSo52+55RaX6x07dujUqVN5djYBAAAAAAAAAAAAAAD2KJM7g+zbt0/333+/qlatqhtuuEG33HKLmjRpoqCgII0ZM0bx8fF2t1goOTk5OnDggMtYcHCw5escOXJEKSkpLmMdOnQoVI2OHTvmGfvf//5XrL4AAADskpGRpSVLN2nyswvz3Ltz0Mua8MT7WrJ0kzIysvJ5GgAAAAAAAACA0sm2nUGOHTumQYMGOa99fHy0fPlyVahQ4YrPrVy5UnfffbfOnTsn0zRd7p05c0YzZ87UF198oa+++qrQu17YZeXKlXlCGm3atLF8nejo6DxjDRs2LFSNatWqyd/fX8nJyS51b7311mL3BwAAUFIyM7M0Y3ak3psVqYSEpHznRO85pug9x/Txp2sVFBSgUSMiNGpEhByOMr25HgAAAAAAAADgGmDbziBffPGFNmzYoI0bN2rjxo2qXbv2VYMgBw8e1D333KOzZ8/KNE0ZhpHnZZqmTp48qf79+2vPnj0l9GmK57333nO5rlSpkrp162b5On/88YfLtZ+fn6pUqVLoOnXr1nW5Lit/nQEAACQpes9R9e43VVNfXHTZIMil4uOTNPXFRerdb6qi9xx1c4cAAAAAAAAAABSPbWGQ7777TpKcu3sMGzbsqs/84x//UHJysjP4kft87kuSc/zMmTN65JFH3NG6pX788Ud98803LmNDhw6Vj4+P5WudPn3a5bqoR9HUqlXL5frMmTNF7gkAAKAkbdq8V30GTNPOqENFen5n1CH1GTBNmzbvtbgzAAAAAAAAAACsY8se16ZpatOmTc6dPCpVqqQuXbpc8Zk//vhDixcvdgmB+Pn5afjw4QoJCVFsbKzmz5+vQ4cOOev+/PPPWrZsmfr06VMSH6vQEhMT9fDDD7uM+fn56emnn3bLemfPnnW5rlixYpHq+Pr6XrFuQR09euU/VRsbG1ukugAAAPmJ3nNU9z30mlJS0opVJyUlTfc99JqWf/OMmjWtbVF3AAAAAAAAAABYx5YwSExMjMsOHzfffLMcDscVn1m4cKHzaBjTNBUYGKj169eradOmzjmPP/64evbsqS1btjjHPvjgg1IZBjFNU0OHDtXBgwddxl999dUi79hxNefOnXO5vtqxPJdzaRjk0roFdelxMwAAAO6SmZmlsRNmFTsIkislJU1jxs/UiqVT5HDY8iM1AAAAypmMjCwtj9yqZZFb8ty7c9DLCmvdSN3DW+q2iDB5e/MzKAAAAIArs+W/Gg4cOOByfeONN171mS+++MIZBDEMQ//3f//nEgSRJH9/f82bN0+hoaHOud99951ycnLk4WHbiTj5mjJlipYsWeIy1r9/f7cebZOW5vrlh7e3d5HqXHqEzaV1AQAASpsZsyOLfDTM5eyMOqQZsyM1bkxfS+sCAADg2pKZmaUZsyP13qxIJSQk5Tsnes8xRe85po8/XaugoACNGhGhUSMiCCYDAAAAuCxbEhJHjhyRdGF3DElq3LjxFefHx8frf//7n/Pay8tLw4cPz3fuDTfcoE6dOjlrp6WlKTo62oq2LTNr1ixNmzbNZSwkJETz589367qX7gSSkZFRpDrp6elXrFtQR44cueJr06ZNRaoLAABwsYyMC7+57g4zZkcqMzPLLbUBAABQ/kXvOare/aZq6ouLLhsEuVR8fJKmvrhIvftNVfSeKx/DDAAAAODaZUsYJDk52eXa39//ivPXrl3rfG8Yhm699VYFBgZedn7nzp1drnft2lWELt3jyy+/1OjRo13G6tSpo5UrV17xM1mhcuXKLtfnz58vUp1LdwK5tG5B1alT54qvWrVqFakuAADAxZZHblV8fMF+Y72w4uOTtGzFVrfUBgAAQPm2afNe9Rkwrcg72O2MOqQ+A6Zp0+a9FncGAAAAoDywJQySmprqcl2xYsUrzt+4caOkP3cSiYiIuOL8S3caOXnyZGFbdIuVK1fqgQceUE5OjnOsevXq+v7771W3bl23r39paOPSvw8FZVUYBAAAoCT8tDrKrfVXrXFvfQAAAJQ/0XuO6r6HXlNKSvGOX05JSdN9D72mPX8cs6gzAAAAAOWFLWEQT09Pl+ur7VCxYcMGl+tbb731ivNzdxoxDEOSlJKSUtgWLffrr79q4MCBLkez+Pv7KzIyUiEhISXSw6U7j5w4caJIdWJjY69YFwAAoDTZsfNgma4PAACA8iUzM0tjJ8wqdhAkV0pKmsaMn8nxhQAAAABc2BIGufRYmCuFEs6fP6/Nmzc7gx3e3t5q167dFetnZbn+h8/FO3HYYfv27erbt6/OnTvnHKtYsaK+/fZbhYWFlVgfTZs2dblOTk5WYmJioescOXLkinUBAABKk5j9sVefVJz6MXFurQ8AAIDyZcbsyCIfDXM5O6MOacbsSEtrAgAAACjbbAmD1KhRQ9KfO3fs3r37snN/+ukn524ahmHopptuksPhuGL93IBD7rEylSpVKm7LRRYdHa2//OUvLqELb29vLV68WJ07dy7RXvLbgWT//v2FqnH69GklJydftS4AAEBpkZ7u3j8heT490631AQAAUH5kZGS5LbQxY3Yku4MAAAAAcLIlDNKyZUvne9M0tXLlysvOXbRokXOeJHXp0uWq9S/daaRq1apFabPYDh48qJ49eyohIcE55unpqU8++UQREREl3k/dunVVuXJll7GNGzcWqsalR/ZIUvPmzYvVFwAAgDv5+Hi5tX4FnysHlQEAAIBcyyO3Kj4+yS214+OTtGzFVrfUBgAAAFD22BIGadKkiQICApzXR44c0YIFC/LMO3r0qBYtWuTcQUSSevbsedX6O3bscLlu0KBB0ZstouPHj6tHjx46duyYc8wwDM2dO1cDBw4s8X5y1+/WrZvL2C+//FKoGpfODw0NVfXq1YvdGwAAgLs0aljLvfUbBbu1PgAAAMqPn1ZHubX+qjXurQ8AAACg7LAlDOLh4aG77rpLpmnKMAyZpqmxY8fqo48+Uk5OjqQLx5cMHDhQ58+fdz5XvXp19ejR46r1t23b5hIgady4sfUf4gpOnTqlXr165TmC5Z133tHgwYNLtJdLDRgwwOX622+/VWpqaoGfz92p5XL1AAAASptWoQ3KdH0AAACUHzt2HizT9QEAAACUHbaEQSRpzJgx8vC4sLxhGDp37pyGDBkif39/1a5dW02bNtWWLVucYRHDMDRixAjnM5ezZ88eHTx40Hldu3Zt1axZ050fxUVycrJ69+6t3bt3u4y//PLLGjNmTIn1cTn9+vWTl9efW6UnJSXp008/LdCzP/30k/bt2+cydscdd1jZHgAAgOW6h7e8+qRi6NbVvfUBAABQfsTsj3Vv/Zg4t9YHAAAAUHbYFgYJCwvT8OHDZZqmJDlDH6mpqYqNjVVOTo7znnRhV5C///3vV627ePFi53vDMHTzzTdb3/xlpKWlqV+/fvrtt99cxidPnqwnn3zS8vUaNGggwzCcr/Dw8Ks+ExQUpCFDhriMPf3000pMTLzic5mZmXrsscdcxnr27KmwsLBCdg0AAFCybosIU1BQwNUnFkFQUID69ObnIQAAABRMenqWW+ufT890a30AAAAAZYdtYRBJevvtt9W9e3eXQMilL9M05ePjo08++URVqlS5as2PP/7Y+ZwkdevWzZ0fwSkzM1N333231q5d6zI+fvx4TZs2rUR6KKgpU6bI29vbeR0bG6v77rvvssfFZGVlacSIEYqKcj1ztLR9LgAAgPx4e3tp1IgIt9QeNSJCDofX1ScCAAAAknx83PuzYwUfh1vrAwAAACg7bP2da29vby1fvlz/+te/9Nprr+ns2bN55rRu3VrvvvuuOnTocNV6P/zwg3bt2iXDMJxjffv2tbTny5kwYYKWLVvmMla3bl2FhIRoxowZha7n5+enBx980Kr2XNSrV0+TJ0/Ws88+6xyLjIxUx44dNWXKFN12222qVKmS0tLStHbtWr3wwgv65ZdfXGr87W9/K9DfEwAAgNJg1IgIff3NRu2MOmRZzVahDTR6ZG/L6gEAAKD8a9SwlnbtPuy++o2C3VYbAAAAQNli+x9jdDgcevbZZzVp0iT9+OOP2r9/v1JSUlStWjV16NBBrVq1KnCt33//XQMGDHBeBwcHq27duu5oO4/du3fnGTty5IjGjBlTpHr169d3WxhEunA0TFRUlL744gvnWFRUlAYNGiRJCggIUHJysstRPbluvfVWvfPOO27rDQAAwGoOh5emvzlSfQZMU0pKWrHr+ftX1PQ3R8rLy9OC7gAAAHCtaBXawK1hkFahDdxWGwAAAEDZYnsYJJePj4/69OlTrBqPPfaYHnvsMWsaKuc8PDz08ccfKygoSO+++26e+0lJSfk+d9ddd2n+/Pny9fV1d4sAAACWCmlWR59++ITue+i1YgVC/P0r6pMFE9WsaW0LuwMAAMC1oHt4S3386dqrTyyibl1buq02AAAAgLLFw+4GYB+Hw6Hp06dr1apV6tGjh8vxOpdq3769Fi9erC+++EKVK1cuwS4BAACs075dEy3/5hmFtqxfpOdDW9bXsiVPq327JhZ3BgAAgGvBbRFhCgoKcEvtoKAA9ekd5pbaAAAAAMqeUrMzSFm3evXqEl/z4MGDltQJDw9XeHi4Tpw4oQ0bNmj//v06d+6cfH19Va9ePXXo0EH16tWzZC0AAAC7NWtaWyuWTtGM2ZGaMTtS8fH574h2saCgAI0aEaFRIyLkcPAjNAAAAIrG29tLo0ZEaOqLiyyvzc+qAAAAAC7Gfx3AqWbNmhowYIDdbQAAALidw+GlcWP6atSICC1bsVXLI7fqy6/Wu8xpHlJHYa0bqlvXlurTO4zfWAcAAIAlRo2I0NffbNTOqEOW1WwV2kCjR/a2rB4AAACAso/f0QYAAMA1y+Hw0oB+7dXplpA8YZDFi55U9Wr+NnUGAACA8srh8NL0N0eqz4BpSklJK3Y9f/+Kmv7mSHl5eVrQHQAAAIDywsPuBgAAAAAAAADgWhLSrI4+/fAJ+fn5FquOv39FfbJgopo1rW1RZwAAAADKC8IgAAAAAAAAAFDC2rdrouXfPKPQlvWL9Hxoy/patuRptW/XxOLOAAAAAJQHhEEAAAAAAAAAwAbNmtbWiqVTNGXyPQoKCijQM0FBAZoy+R6tWDqFHUEAAAAAXJaX3Q0AAAAAAAAAwLXK4fDSuDF9NWpEhJat2KrlkVv15VfrXeY0D6mjsNYN1a1rS/XpHSaHg9/WBQAAAHBl/FcDAAAAAAAAANjM4fDSgH7t1emWkDxhkMWLnlT1av42dQYAAACgLOKYGAAAAAAAAAAAAAAAgHKEMAgAAAAAAAAAAAAAAEA5QhgEAAAAAAAAAAAAAACgHCEMAgAAAAAAAAAAAAAAUI4QBgEAAAAAAAAAAAAAAChHCIMAAAAAAAAAAAAAAACUI4RBAAAAAAAAAAAAAAAAyhHCIAAAAAAAAAAAAAAAAOUIYRAAAAAAAAAAAAAAAIByhDAIAAAAAAAAAAAAAABAOUIYBAAAAAAAAAAAAAAAoBwhDAIAAAAAAAAAAAAAAFCOeFlZbO3atVaWs0yXLl3sbgEAAAAAAAAAAAAAAKBEWBoGCQ8Pl2EYVpYsNsMwlJWVZXcbAAAAAAAAAAAAAAAAJcLSMEgu0zTdURYAAAAAAAAAAAAAAABX4ZYwSGnZHYRQCgAAAAAAAAAAAAAAuNZYHgYpbgDj4iBJQWoVdj4AAAAAAAAAAAAAAEB5ZmkYZNWqVUV6btOmTXruued0/vx5SRdCHd7e3goPD1ebNm0UEhKigIAAVapUSefOnVNSUpKio6O1ZcsWrV69WhkZGc5QSMWKFfXss8+qffv2ln0uAAAAAAAAAAAAAACAssLSMEjXrl0L/czMmTM1efJkZWdnyzRNValSRc8884yGDh2qwMDAqz6fmJio+fPn64UXXtCZM2eUmpqqyZMn65133tHIkSOL8jEAAAAAAAAAAAAAAADKLA87F1+wYIHGjBmjrKwsmaapm2++WdHR0Xr88ccLFASRpCpVquixxx5TdHS0OnXqJEnKysrS6NGj9cEHH7izfQAAAAAAAAAAAAAAgFLHtjDIwYMHNWbMGJmmKcMw1LZtW/3www8KCgoqUr0aNWpo5cqVatu2rQzDkGmaGjt2rA4cOGBx5wAAAAAAAAAAAAAAAKWXbWGQF198UampqZIkT09PzZ07V76+vsWq6evrq7lz58rDw0OGYSgtLU3Tpk2zol0AAAAAAAAAAAAAAIAywZYwSHp6uj799FMZhiHDMNSlSxfdeOONltS+8cYbFR4eLtM0ZZqmPvvsM6Wnp1tSGwAAAAAAAAAAAAAAoLSzJQyyadMmnTt3znkdERFhaf2//OUvzvdpaWnauHGjpfUBAAAAAAAAAAAAAABKK1vCINHR0ZIk0zQlSXXq1LG0fu3atfNdDwAAAAAAAAAAAAAAoLyzJQxy+vRpl+usrCxL6+fk5EiSDMPIdz0AAAAAAAAAAAAAAIDyypYwiMPhcLk+cuSIpfVz6+XuPOLt7W1pfQAAAAAAAAAAAAAAgNLKljDIddddJ+nPnTuWLVtmaf1L69WqVcvS+gAAAAAAAAAAAAAAAKWVLWGQJk2aON+bpqkNGzZo48aNltTeuHGjfv31V2fQRJKaNm1qSW0AAAAAAAAAAAAAAIDSzpYwSJs2bVSvXj1JF3YHycnJ0bBhw3T69Oli1T19+rSGDRvmPB5GkurWras2bdoUqy4AAAAAAAAAAAAAAEBZYUsYRJL++te/uoQ2oqOj1bVrV/3xxx9Fqrd3716Fh4crOjpahmHINE0ZhqHBgwdb1TIAAAAAAAAAAAAAAECpZ1sY5KmnnnLZHcQwDO3atUuhoaH6xz/+oT179hSozh9//KF//OMfCg0N1a5du5zjhmGobt26mjRpklv6BwAAAAAAAAAAAAAAKI287Fq4YsWKev/999W3b19lZmY6xzMyMvT666/r9ddfV0hIiNq0aaNmzZopICBAlSpV0rlz55SUlKQ9e/Zoy5Ytio6OliTnLiO5u4L4+Pho7ty5qlixoi2fDwAAAAAAAAAAAAAAwA62hUEkqUePHvriiy909913KzMzU4ZhSPoz2PG///3PGfbIz8XHzFz8rLe3t7744gt1797djd0DAAAAAAAAAAAAAACUPrYdE5Pr9ttv16pVq9S0aVOX3T1yX6ZpXvZ18TzpQhCkWbNmWr16tfr27WvnxwIAAAAAAAAAAAAAALCF7WEQSbr55pu1fft2Pffcc6pZs6Yz7CG5BkMufUlyzg0KCtLzzz+v7du3q2PHjnZ+HAAAAAAAAAAAAAAAANvYekzMxXx8fDRlyhQ99dRT+vrrr7V8+XJt2LBB0dHRLsfB5DIMQyEhIerYsaNuu+023XHHHfLyKjUfBwAAAAAAAAAAAAAAwBalLj3h5eWlu+++W3fffbckKS0tTQkJCUpMTFRKSor8/PxUpUoV1ahRQ76+vjZ3CwAAAAAAAAAAAAAAULqUujDIpXx9fVWvXj3Vq1fP7lYAAAAAAAAAAAAAAABKPQ+7GwAAAAAAAAAAAAAAAIB1CIMAAAAAAAAAAAAAAACUI4RBAAAAAAAAAAAAAAAAyhHCIAAAAAAAAAAAAAAAAOUIYRAAAAAAAAAAAAAAAIByxMvuBi52/vx5rV+/Xlu2bNGePXuUlJSkpKQkZWZmFrmmYRj68ccfLewSAAAAAAAAAAAAAACg9CoVYZDDhw/r5Zdf1ieffKLk5GTL6pqmKcMwLKsHAAAAAAAAAAAAAABQ2tkeBnn//fc1ceJEnT17VqZp5rlPmAMAAAAAAAAAAAAAAKDgbA2DzJw5U2PGjHGGQPILfuQXEAEAAAAAAAAAAAAAAED+bAuDREdH69FHH5XkGgLJDX9UqlRJDRo0UEBAgBwOhy09AgAAAAAAAAAAAAAAlDW2hUEmT56s7OxsZxDENE35+vpq3Lhx+utf/6obbriBI2IAAAAAAAAAAAAAAAAKyZYwSGpqqr777juXIMj111+v77//Xg0bNrSjJQAAAAAAAAAAAAAAgHLBljDIunXrlJGRIcMwZJqmvLy8tGTJEoIgAAAAcIv3Zq7Qe7NWXPZ+To6ZZyy85zPy8LjyTnWjR/bW6Ed6F7s/AAAAAAAAAACsZEsY5MiRI873hmGob9++uvHGG+1oBQAAANeAlLNpio07U6hnTsQnFqguAAAAAAAAAACljS1hkJMnT0q6cDyMYRjq1q2bHW0AAADgGuFX2Ve1ggPdUhcAAAAAAAAAgNLGljCIp6eny3WtWrXsaAMAAADXiNGPcJwLAAAAAAAAAFyM47XLN1vCIMHBwS7X58+ft6MNAAAAAAAAAAAAAACuSRyvXb7ZEgZp3bq1JMkwLiSGjh07ZkcbAAAAAAAAAAAAAABckzheu3yzJQxyww03qEGDBjp06JAkadWqVZo0aZIdrQAAAAAAAAAAAAAAcM3heO3yzcOuhceNGyfTNGWaplavXq39+/fb1QoAAAAAAAAAAAAAAEC5YVsYZOzYsWrWrJkMw1BWVpYmTJhgVysAAAAAAAAAAAAAAADlhm1hEG9vb3355Zfy8/OTJC1btkxjxoxRTk6OXS0BAAAAAAAAAAAAAACUeV52Lt6iRQt9//336tu3r06ePKmZM2dq+/bteuWVV9S5c2c7WwMAAAAAAAAAy703c4Xem7Xisvdzcsw8Y+E9n5GHh3HFuqNHct47AAAAgD/ZFgZZsGCB8/2ECRP04osv6vz589qwYYPCw8PVpEkTdenSRU2aNFHVqlXlcDiKvNbgwYOtaBkAAAAAAAAAiiXlbJpi484U6pkT8YkFqgsAAAAAuWwLgwwdOlSG4ZpmNwxDpmnKNE398ccf2rt3ryVrEQYBAAAAAAAAUBr4VfZVreBAt9QFAAAAgFy2HhMjSabpuu3hxQGRS+8VxaWBEwAAAAAAAACwy+hHOM4FAAAAgPvZHga5UlijuEEOK8IkAAAAAAAAAAAAAAAAZYmtYRDCGgAAAAAAAAAAAAAAANayLQxy4MABu5YGAAAAAAAAAAAAAAAot2wLg9SvX9+upQEAAAAAAAAAAAAAAMotD7sbAAAAAAAAAAAAAAAAgHUIgwAAAAAAAAAAAAAAAJQjhEEAAAAAAAAAAAAAAADKEcIgAAAAAAAAAAAAAAAA5QhhEAAAAAAAAAAAAAAAgHKEMAgAAAAAAAAAAAAAAEA5QhgEAAAAAAAAAAAAAACgHPGya+GGDRuWyDqGYSgmJqZE1gIAAAAAAAAAAAAAALCbbWGQgwcPyjAMmabp1nUMw3BrfQAAAAAAAAAAAAAAgNLEtjBILneGNdwdNAEAAAAAAAAAAAAAAChtbA2DFDeskV+QhAAIAAAAAAAAAAAAAAC4ltkWBhkyZEiRn83MzNSpU6e0b98+xcTESJLzyBlfX1/ddddd8vT0tKpVAAAAAAAAAAAAAACAMsO2MMi8efMsszbExQAA9vlJREFUqXP8+HHNnDlTb7/9thITE3X+/HkdOnRIX331lapWrWrJGgAAAAAAAAAAAAAAAGWFh90NFNd1112n559/Xtu3b1fbtm1lmqbWrVunrl27KjEx0e72AAAAAAAAAAAAAAAASlSZD4PkqlevnlauXKlmzZrJNE3t3r1b999/v91tAQAAAAAAAAAAAAAAlKhyEwaRpCpVqujdd9+VJJmmqZUrV+rTTz+1uSsAAAAAAAAAAAAAAICSU67CIJLUrVs3tW7dWtKFQMi///1vmzsCAAAAAAAAAAAAAAAoOeUuDCJJERERzvc7duzQoUP/j707j66qPPcH/pyQEAYBwyQoKIIjCkVQGapWsQ7YqmgV22odb63W4Yq31f5qe9X2dlArqLdXrbVq9WqdinO1ojgjguIsTgwCykyYIQSyf394c8phkCHnZCfh81nrrObdw7OfTdu1IPnmfT5LsRsAAAAAAAAAgNrTIMMgu+yyS8567NixKXUCAAAAAAAAAFC7GmQYpGXLlhERkclkIiJi2rRpabYDAAAAAAAAAFBrGmQYpLy8PGddUVGRUicAAAAAAAAAALWrQYZBxo0bFxERSZJERERZWVma7QAAAAAAAAAA1JoGFwYpLy+PBx98MDsiJiKiY8eOKXYEAAAAAAAAAFB7GlQYZPXq1XHaaafFggULsscymUwccMAB6TUFAAAAAAAAAFCLGkwY5Nlnn41+/frFE088EZlMJpIkiUwmE/379482bdqk3R4AAAAAAAAAQK0oTuvBv/rVr2p0f2VlZSxatCgmTZoUr7/+esyePTsiIhsCqXbllVfW6DkAAAAAAAAAAPVJamGQK664Iie0URNJkmS/XrPmD3/4wxg4cGBengEAAAAAAAAAUB+kFgaptmaQY0utGQCprnfGGWfETTfdVOPaAAAAAAAAAAD1SVHaDWQymRp/kiTJfvbcc8946KGH4i9/+Uvedh4BAAAAAAAAAKgvUt0ZpCa7ghQXF0fLli1j2223jd133z369OkTgwYNiv79++exQwAAAAAAAACA+iW1MEhVVVVajwYAAAAAAAAAaLBSHxMDAAAAAAAAAED+CIMAAAAAAAAAADQgwiAAAAAAAAAAAA2IMAgAAAAAAAAAQAMiDAIAAAAAAAAA0IAIgwAAAAAAAAAANCDFaTewPnPmzInnn38+XnnllRg/fnzMnTs35s+fH4sXL44WLVpE69ato23bttGnT58YMGBAHHLIIdG2bdu02wYAAAAAAAAASF2dCoOMHz8+hg0bFg8++GBUVlZmjydJkv16+fLlMXv27MhkMvHKK6/EDTfcECUlJXHSSSfFRRddFPvss08arQMAAAAAAAAA1Al1YkxMZWVl/Md//Efsv//+8be//S1WrlwZSZJkP5lMZp3PmudXrlwZ//u//xv77bdf/PSnP80JkgAAAAAAAAAAbE1SD4MsWLAgBgwYENddd11UVVWtN/wRETnhj4hYbzikqqoqhg0bFl//+tdj4cKFab4WAAAAAAAAAEAqUh0Ts3Llyjj22GPjjTfeiIjIBj8i/jUapqioKDp37hxlZWXRvHnzWLp0aSxYsCCmTp0aVVVV2fvWDI288cYbceyxx8bTTz8djRs3ruW3AgAAAAAAAABIT6phkEsuuSReeumldUIgZWVl8b3vfS+GDBkSffr0iebNm69z77Jly+KNN96I+++/P/72t7/F/Pnzc3YJeemll+LSSy+N4cOH1+YrAQAAAAAAAACkKpNUb8FRyyZNmhR77rlnrFq1KiL+tRPIOeecE7/73e+iVatWm1xr0aJF8fOf/zxuuumm7LEkSaJx48YxYcKE2HnnnfPbPLVi+vTp0blz54iImDZtWnTq1CnljgAAAAAAAAAgvwrxs/GiGlfYQldddVVUVlZGxJfBjUaNGsWf/vSnuPHGGzcrCBIR0bJly/jjH/8Yf/7zn3N2GamsrIyrr746r30DAAAAAAAAANRlqYVBnnjiiexIl0wmEz/5yU/ihz/8YY1qnnnmmfHTn/40WzNJknjsscfy1DEAAAAAAAAAQN2XShjkvffeiy+++CK7btOmTVxxxRV5qX3FFVdE27Zts+sZM2bEe++9l5faAAAAAAAAAAB1XSphkI8//jj7dSaTieOOOy5KS0vzUru0tDSOO+64SJJkvc8DAAAAAAAAAGjIUgmDzJkzJyIiG9j42te+ltf6vXr1ylnPnj07r/UBAAAAAAAAAOqqVMIg8+fPz1m3b98+r/Wrx8RkMpmIiFiwYEFe6wMAAAAAAAAA1FWphEFatWqVs147HFJT1eGP6p1HWrZsmdf6AAAAAAAAAAB1VSphkHbt2kXEv3bumDBhQl7rr12v+nkAAAAAAAAAAA1dKmGQnXfeOft1kiQxYsSIvNWurlcdNImI6NKlS97qAwAAAAAAAADUZamEQXr37h1lZWXZ9fTp0+OGG27IS+0bb7wxpk6dml2XlZXFvvvum5faAAAAAAAAAAB1XSphkKKiojj88MMjSZLIZDKRJEn8/Oc/j+eff75GdV966aX42c9+lq2ZyWTi8MMPz9klBAAAAAAAAACgIUslDBIR8ZOf/CQb0shkMrFs2bL41re+FTfeeOMW1bv55ptj0KBBsXTp0uyxTCYTP/nJT/LSLwAAAAAAAABAfZBaGKRPnz5x4oknRpIkEfFlcGP58uVxwQUXRK9eveLmm2+O2bNnf2WNOXPmxE033RT77LNPnHfeebFs2bKcXUFOPPHE6N27d228DgAAAAAAAABAnZBJqtMYKZg3b170798/Jk6cmD22ZjgkIqJTp06x5557xrbbbhvNmzePpUuXxoIFC2LChAkxffr09d4TEbHLLrvE6NGjo02bNrX1OuTZ9OnTo3PnzhERMW3atOjUqVPKHQEAAAAAAABAfhXiZ+PFNa5QA23atImnnnoqDjjggJg5c2ZkMpnszh7VAY9p06ZlQx9rWjvDUh0ESZIkOnbsGE899ZQgCAAAAAAAAACw1UltTEy1rl27xttvvx1HHnlkzg4fa36qwyFrfjZ0zVFHHRVvvfVW7Lzzzim/GQAAAAAAAABA7Us9DBIR0a5du/jHP/4R//u//xu9e/fOCX1ErBsOWXMXkOrPvvvuG/fcc088/vjj0a5duzRfBwAAAAAAAAAgNamOiVnb97///fj+978fr732WowcOTJeeeWVGD9+fMybNy+qqqqy1xUVFUXbtm2jd+/eMWDAgDjiiCNiv/32S7FzAAAAAAAAAIC6oU6FQar17ds3+vbtm3Ns0aJFsXjx4mjRokW0bNkypc4AAAAAAAAAAOq2VMIgK1asiNmzZ+cc69SpUxQVbXhqTcuWLYVAAAAAAAAAAAA2IpUwyL333htnnXVWdt2hQ4eYPn16Gq0AAAAAAAAAADQoG96Ko4BmzZoVSZJEkiQREXHiiSdGJpNJoxUAAAAAAAAAgAYllTDI6tWrIyKyAZDddtstjTYAAAAAAAAAABqcVMIgLVq0iIjI7gzSvn37NNoAAAAAAAAAAGhwUgmD7LTTTjnr8vLyNNoouCRJ4pNPPom77747LrroohgwYEA0bdo0MplMzicNXbp0WaePzf3ccccdqfQOAAAAAAAAAGxYcRoP3WeffSLiX2NiJk6cmEYbBbFkyZL43e9+F+PGjYtx48bFggUL0m4JAAAAAAAAANiKpLIzSOfOnaNHjx4R8eXuGU8++WQabRTE3Llz47e//W2MHDlSEAQAAAAAAAAAqHWp7AwSEXHOOefEeeedFxER7733Xjz11FNx5JFHptXOVu+//uu/ok2bNpt1T//+/QvUDQAAAAAAAACwpVILg/zwhz+MG2+8MT744INIkiTOO++8GD16dGy33XZptVQQzZs3j969e8d+++0X++23X3z66afxy1/+Mu221nHyySdHly5d0m4DAAAAAAAAAKih1MIgxcXFMWLEiOjfv3/Mnz8/Jk+eHAMHDoy//e1v0bNnz7TaqrFmzZrFOeeckw1/dO/ePRo1apQ9f8cdd6TXHAAAAAAAAADQ4BWl+fBdd901Xnnlldh1110jImLChAmx3377xQ9/+MN49dVXI0mSNNvbIu3bt4+bbropzjzzzOjRo0dOEAQAAAAAAAAAoNBS2xnkzDPPzH7dq1evmDRpUlRVVUVlZWXcdtttcdttt0XTpk2jZ8+e0b59+2jZsmUUF29+u5lMJv7yl7/ks3UAAAAAAAAAgDortTDIHXfcEZlMZp3jmUwmuyPIsmXL4rXXXtviZyRJIgwCAAAAAAAAAGxVUguDVKsOfqwZDFk7JLIl42LWFzQBAAAAAAAAAGjoUg+DbEpoQ7ADAAAAAAAAAGDTpBYG2XHHHYU86pgpU6bEhAkTYs6cOZHJZKJNmzax3XbbRc+ePaOkpCTt9gAAAAAAAACATZBaGGTKlClpPZr12HfffWPevHnrPde0adPo379/nHXWWTFkyJAoLk59QxkAAAAAAAAAYAP8VJ+IiA0GQSIili9fHqNGjYpRo0bFZZddFrfddlsccsghNX7m9OnTv/L8jBkzavwMAAAAAAAAANjaCIOwWaZMmRLf/OY343e/+11ccsklNarVuXPnPHUFAAAAAAAAAFQTBtmKNWrUKL7+9a/HoEGDok+fPrHnnntGWVlZlJSUxPz58+PDDz+M5557Lv785z/n7NJRVVUVl156abRp0ybOOuusFN8AAAAAAAAAAFibMMhW6pJLLoljjz02dthhh/We79ChQ3To0CEOPvjguOyyy+KXv/xlXHPNNZEkSfaac845Jw444IDYfffdt6iHadOmfeX5GTNmxP77779FtQEAAAAAAABgayUMspX68Y9/vMnXNm7cOK666qro3LlzXHDBBdnjq1atissuuywefPDBLeqhU6dOW3QfAAAAAAAAALBhRWk3QP1x/vnnx/HHH59zbMSIETFr1qyUOgIAAAAAAAAA1iYMwma5/PLLc9ZJksTTTz+dUjcAAAAAAAAAwNpSGxMzderUgtVu1KhRtGzZMlq0aFGwZ2ytevbsGTvuuGPOf39jx46NH/zgByl2BQAAAAAAAABUSy0M0qVLl8hkMgV9RiaTiW233Tb23nvv2H///eOggw6Ko446KoqKbIhSE927d88Jg8yePTvFbgAAAAAAAACANaWaikiSpKCfqqqqmD9/frz00ktx7bXXxrHHHhtdunSJ3//+97Fy5co0X71ea926dc66vLw8pU4AAAAAAAAAgLWlGgbJZDK18on4V/Bk+vTpcdlll0Xfvn1jwoQJab5+vbVgwYKcdatWrdJpBAAAAAAAAABYR53bGWRj57f02jXDIUmSxNtvvx0HHHBAfPLJJ7X5yg3C2n9m7du3T6kTAAAAAAAAAGBtxWk9+Pbbb89+PWXKlLj66qtjxYoVEfFlsKOoqCh69+4d++yzT+y8887RqlWrKC0tjUWLFsW8efPinXfeiXHjxsWsWbMiIrI7gPTv3z/+7d/+LVavXh3l5eUxc+bMGDNmTLz++uuxcuXKnEBIeXl5HHPMMTFu3LjYZpttav8PoR769NNP1wmD9OzZM6VuAAAAAAAAAIC1pRYGOe200yIi4oknnogLL7wwVqxYEUmSRIsWLeLSSy+N008/PbbffvuvrJEkSYwcOTKuueaaePbZZyOTycSrr74abdq0ib/97W/RrFmz7LWzZ8+O6667Lq699tpYtWpVNhDy8ccfx/XXXx+XXXZZQd+3ofjNb36zzrEjjzwyhU4AAAAAAAAAgPVJdUzM008/Hccff3wsXrw4kiSJAQMGxIcffhg///nPNxoEifhyN5DDDz88Ro4cGbfddlsUF3+ZbXn88cfjmGOOiVWrVmWvbd++ffz2t7+N5557Llq2bJm9P0mSuP7662P58uWFeckCW3P8TSaTidNPP/0rr197vM7muPfee+Ovf/1rzrGDDz44dtpppy2uCQAAAAAAAADkV2phkLlz58Ypp5wSlZWVkclkYt99942nn346OnbsuEX1Tj/99LjrrrsiSZJIkiSee+65+PWvf73OdQMGDIi//vWvOaGIefPmxTPPPLPF71KfvPjii3HUUUfFSy+9tFn3XX/99XHqqafm/LllMpm4+uqr890iAAAAAAAAAFADqY2Jufrqq2Pu3LkREVFUVBS33nprzliXLTFkyJB44IEH4u9//3skSRLXXHNNnH/++dGuXbuc64455pg45JBD4rnnnssee/HFF+Poo4+u0fOrvf766/H666+v99yrr766zrGbb755g7VOPvnkaNGiRV76ivhyZ5Ann3wynnzyyejatWuccMIJ8fWvfz169eoVnTp1iqKioux1n3zySYwaNSr+53/+J9577711al1++eWx33775a03AAAAAAAAAKDmUgmDVFVVxW233RaZTCYiIg444IDo2bNnXmpfcMEF8fe//z0ymUxUVFTEXXfdFRdffPE6151zzjnx3HPPZXsYM2ZMXp4f8eWYmiuvvHKTrz/33HM3eO7II4/MaxhkTZMmTcrZ2SOTycQ222wTJSUlsWDBgqiqqtrgvRdddFFcfvnlBekLAAAAAAAAANhyqYyJef3112P+/PnZ9RFHHJG32gcccEA0bdo0u97Q+JeDDjoo+3WSJDFz5sy89VBfJUkSixcvjvnz528wCNKuXbsYMWJEDB8+vJa7AwAAAAAAAAA2RSphkPfffz8ivgwfRER06tQpb7WLioqiY8eO2frVz1rbdtttF61bt86uy8vL89ZDXdarV6+48cYbY8iQIdG5c+dNuqekpCT69+8ft956a3z22Wdx3HHHFbhLAAAAAAAAAGBLpTImZu7cublNFOe3jUaNGm3wWWtq3bp1NgSyaNGivD3/iiuuiCuuuCJv9b5KdaBmU2277bZx7rnnZkfTzJ8/Pz788MOYNm1azJo1K5YuXRpVVVXRsmXLKCsri5133jn69OkTTZo0KUT7AAAAAAAAAECepRIGWdsXX3yR13prjnzJZDIbvK60tDT7dUlJSV57qC9at24dAwYMSLsNAAAAAAAAACBPUhkTUz3GpTqo8dxzz+Wt9vjx42Px4sXZdYcOHTZ47Zq7gTRv3jxvPQAAAAAAAAAApCWVMMhOO+2U/TpJknjmmWdi2rRpeal96623Zr/OZDI5z1pTVVVVzJ49O7v+qtAIAAAAAAAAAEB9kUoYpH///lFWVpZdr1y5Ms4555xIkqRGdUePHh233HJLZDKZbK2jjjpqvdd+/PHHUVFRERFfhka6dOlSo2cDAAAAAAAAANQFqYRBiouLY/DgwZEkSTa48dRTT8X3v//9bEBjc7388svx7W9/OydQUlRUFCeccMJ6r3/11Vdz1j169Nii5wIAAAAAAAAA1CWphEEiIq644opo3rx5REQ2EHL//ffHXnvtFQ888EBUVlZuUp3JkyfHj3/84zjkkENiwYIFERHZkMm55567wTExjz76aPbaiC93KwEAAAAAAAAAqO8ySU1ns9TADTfcEBdddFFkMpmI+FcwI5PJRFlZWRx66KHRu3fv6NKlS7Rq1SoaN24cixcvjnnz5sW7774bY8aMibFjx2bvXbNOly5d4u23344WLVqs89x58+ZF586do6KiIpIkidLS0pg9e/Z6ryU906dPj86dO0dExLRp06JTp04pdwQAAAAAAAAA+VWIn40X17hCDVx44YUxa9as+N3vfheZTCYnzDF//vx48MEH48EHH/zKGmsGSKrXnTt3jmeffXaD4Y6bb745VqxYkV0feuihgiAAAAAAAAAAQIOQahgkIuI3v/lNtGvXLn7+85/HihUr1gmFbEz1tdXX9+/fP+6+++7o0qXLBu8577zz4t/+7d+y62222WbLXwAAAAAAAAAAoA4pSruBiIiLLroo3nrrrTjiiCMi4stQR/XYl419qq9t3759DBs2LF5++eWvDIJERGy77bax3XbbZT/NmzevhbcEAAAAAAAAACi81HcGqbbbbrvFk08+GRMnTow///nPMWrUqHj77bejsrJyg/d06NAh+vXrFyeddFIcf/zxUVJSUosdAwAAAAAAAADUPXUmDFKtW7du8fvf/z4iIioqKuLDDz+MefPmRXl5eVRUVESrVq2irKwsOnfuHJ07d065WwAAAAAAAACAuqXOhUHWVFpaGl/72tfSbgMAAAAAAAAAoN4oSrsBAAAAAAAAAADyRxgEAAAAAAAAAKABEQYBAAAAAAAAAGhAhEEAAAAAAAAAABoQYRAAAAAAAAAAgAZEGAQAAAAAAAAAoAERBgEAAAAAAAAAaECEQQAAAAAAAAAAGhBhEAAAAAAAAACABkQYBAAAAAAAAACgAREGAQAAAAAAAABoQIRBAAAAAAAAAAAaEGEQAAAAAAAAAIAGRBgEAAAAAAAAAKABEQYBAAAAAAAAAGhAhEEAAAAAAAAAABoQYRAAAAAAAAAAgAZEGAQAAAAAAAAAoAERBgEAAAAAAAAAaECK025gQyorK2PChAkxd+7cmDdvXixfvjwiIk499dSUOwMAAAAAAAAAqLvqVBhkxYoVceutt8ZDDz0UY8aMiRUrVqxzzVeFQZ599tlYuHBhdt2zZ8/YZZddCtIrAAAAAAAAAEBdVGfCIDfddFNcccUVMXfu3IiISJJknWsymcxX1nj++efjt7/9bXZ99NFHx8MPP5zXPgEAAAAAAAAA6rKitBtYvnx5fP/734/zzz8/5syZkw2BZDKZnM+muPDCC6O0tDQivgyTPPnkk9lwCQAAAAAAAADA1iDVMEiSJPG9730v7rvvvkiSJBv8SJIk57Op2rVrF9/5zney96xatcrOIAAAAAAAAADAViXVMMgVV1wRjz76aERENgRSUlISZ511VowYMSLefPPN2HPPPTer5oknnpitFxExcuTI/DYNAAAAAAAAAFCHFaf14M8//zyuvvrqbGgjSZLo2bNnPPTQQ7Hzzjtnr2vcuPFm1T3iiCOiadOmsWLFikiSJJ577rm89g0AAAAAAAAAUJeltjPI73//+6ioqIiIL4Mgu+yyS7z00ks5QZAtUVpaGr169cqOipk3b17MmDGjxv0CAAAAAAAAANQHqYVBHnrooexomEwmE7feemu0aNEiL7X79OmTs/7www/zUhcAAAAAAAAAoK5LJQwyYcKE+OKLL7Lr3r17x0EHHZS3+l27ds1ZT506NW+1AQAAAAAAAADqsuI0HvrBBx9kv85kMnHYYYfltf62226bs160aFFe6wMAAAAAAPXTsInvxLCJ7+S97sXdesbF3XrmvS4AwJZIJQwyZ86ciIjsiJhdd901r/Wrx81kMpmIiFiyZEle6wMAAAAAAPXTosqV8fmKpQWpCwBQV6QSBikvL89Zt2rVKq/1q8Mf1WGTJk2a5LU+AAAAAABQP7UsaRw7NGm+wfNVSRIzKpblHOtY2iyK/u8XUL+qLgBAXZFKGKRly5Y568WLF+e1fvXOI9XatGmT1/oAAAAAAED9tLFxLnMqlkf7f96Zc+ztg0+IdqVNC90aAEDeFKXx0Pbt20fEv8a4zJgxI6/133jjjZx127Zt81ofAAAAAAAAAKCuSiUMssMOO+Ssx40bl7faq1evjueffz4bNImI6NlzwwlfAAAAAAAAAICGJJUwyH777RfNm385jy9Jkhg5cmQsWbIkL7Xvu+++mDVrVna98847R6dOnfJSGwAAAAAAAACgrkslDFJSUhIHH3xwJEkSERFLly6Nm266qcZ1Fy1aFJdffnlkMplIkiQymUx885vfrHFdAAAAAAAAAID6IpUwSETEaaedFhGRDW5ceeWV8cEHH2xxvcrKyjjllFNi4sSJOcfPP//8GvUJAAAAAAAAAFCfpBYGOeGEE2KfffaJiC8DIcuWLYtDDz00xo0bt9m1Jk6cGAcddFA88cQTObuCfPvb34699947360DAAAAAAAAANRZqYVBIiKuu+66aNSoUUR8GQiZNWtWDBgwIP7t3/4txowZE6tWrdrgvbNmzYoHHnggvve978Wee+4ZY8eOzY6diYho0aJFXHvttQV/BwAAAAAAAACAuqQ4zYcfeOCB8cc//jHOOeecyGQykclkYvXq1XH77bfH7bffHiUlJREROSGP7bffPsrLy2PlypXZY9Xn19wV5Pbbb49ddtmldl8IAAAAAAAAAOqBYRPfiWET38l73Yu79YyLu/XMe102T6phkIiIs88+O+bPnx+/+MUvskGO6nDHmoGPiC9DHzNnzlynRiaTyZ4vLi6OG264IY477rjCNw8AAAAAAAAA9dCiypXx+YqlBalL+lIPg0RE/OxnP4v99tsvTjnllJg1a1Y23LE5kiSJtm3bxr333hsDBw4sQJcAAAAAAAAA0DC0LGkcOzRpvsHzVUkSMyqW5RzrWNosijby8/yWJY3z0h81UyfCIBERhx56aHzyySdx0003xfXXXx9ffPFF9tz6wiFrjo5p1apVDB06NIYOHRotWrSolX4BAAAAAAAAoL7a2DiXORXLo/0/78w59vbBJ0S70qaFbo08qDNhkIiIbbbZJn7605/GRRddFKNHj44XXnghXnnllZg+fXrMmzcvysvLo2nTptG2bdvYbrvtom/fvnHYYYfFN77xjWjWrFna7QMAAAAAAAAApK5OhUGqlZSUxDe+8Y34xje+kXYrAAAAAAAAAAD1SlHaDQAAAAAAAAAAkD/CIAAAAAAAAAAADYgwCAAAAAAAAABAAyIMAgAAAAAAAADQgAiDAAAAAAAAAAA0IMIgAAAAAAAAAAANSHFaDx44cGCtPCeTycSzzz5bK88CAAAAAAAAAEhbamGQ559/PjKZTEGfkSRJwZ8BAAAAAAAAAFCXpBYGyYckSdZ7XAAEAAAAAAAAANhapR4G2VCgY2Mymcx6Qx9JkmxxTQAAAAAAAACA+i61MMhBBx20xTt4VFZWxrx582Lq1KmxfPnyiPgyHJIkSTRt2jT233//fLYKAAAAAAAAAFBvpBYGef7552tcY9WqVTF27Nj405/+FPfee2+sWrUqVqxYEdtvv33cdtttUVpaWvNGAQAAAAAAAADqkaK0G6iJ4uLiGDBgQPz1r3+N0aNHx8477xxJksS9994bgwYNipUrV6bdIgAAAAAAAABArarXYZA19enTJ0aNGhUdO3aMJEnihRdeiLPPPjvttgAAAAAAAAAAalWDCYNEROy4447x3//93xERkSRJ3HXXXfH000+n3BUAAAAAAAAAQO1pUGGQiIjjjz8+dt9998hkMpEkSfz2t79NuyUAAAAAAAAAgFrT4MIgERFHHXVUJEkSEREvv/xyzJo1K+WOAAAAAAAAAABqR4MMg+yxxx7Zr5MkiTFjxqTYDQAAAAAAAABA7WmQYZCysrKIiMhkMhERMXny5DTbAQAAAAAAAACoNQ0yDLJ48eKc9bJly1LqBAAAAAAAAACgdjXIMMhbb70VEV+OiImI2HbbbdNrBgAAAAAAAACgFjW4MMjy5cvjwQcfzI6IiYho3759ih0BAAAAAAAAANSeBhcG+fd///eYMWNGzrH+/fun1A0AAAAAAAAAQO1qMGGQTz/9NAYPHhx/+ctfIpPJRJIkkclkomfPnrHDDjuk3R4AAAAAAAAAQK0oTuvBd955Z43ur6ysjEWLFsWkSZNi7Nix8frrr0dEZEMg1S677LIaPQcAAAAAAAAAoD5JLQxy+umn54Q2aiJJkuzX1TUzmUx8+9vfjhNOOCEvzwAAoP4aNvGdGDbxnbzXvbhbz7i4W8+81wUAAAAAgJpILQxSbc0gx5ZaO1SSJEkceuihcf/999e4NgAA9d+iypXx+YqlBakLAAAAAAB1TephkHzvDlJWVhaXX355XHDBBXmrDQBA/daypHHs0KT5Bs9XJUnMqFiWc6xjabMo2sjfJ1uWNM5LfwAAAAAAkE+phkHysStIo0aNYrfddos+ffrEoEGD4vjjj4/S0tI8dAcAQEOxsXEucyqWR/t/3plz7O2DT4h2pU0L3RoAAAAAAORdamGQyZMn1+j+kpKSaNmyZWyzzTZ56ggAAAAAAAAAoP5LLQyy0047pfVoAAAAAAAAAIAGqyjtBgAAAAAAAAAAyB9hEAAAAAAAAACABiSVMTEffPBBPPjgg9l1JpOJSy+9NBo3bpxGOwAAAAAAAAAADUYqYZDnnnsurrjiishkMhER0a9fv/jlL3+ZRisAAAAAAAAAAA1KKmNiFi5cGBERSZJERMSgQYPSaAMAAAAAAAAAoMFJJQxSXJy7IUmnTp3SaAMAAAAAAAAAoMFJJQzSunXrnHXTpk3TaAMAAAAAAAAAoMFJJQyy6667RkREJpOJiIjZs2en0QYAAAAAAAAAQIOTShhk//33j9LS0ux63LhxabQBAAAAAAAAANDgpBIGadq0aQwaNCiSJIkkSeLJJ5+M5cuXp9EKAAAAAAAAAECDkkoYJCLipz/9aWQymchkMjF//vy4+uqr02oFAAAAAAAAAKDBSC0M0r9//zj33HMjSZKIiPjNb34TI0aMSKsdAAAAAAAAAIAGIbUwSETEddddF0cffXQkSRKrVq2Kk046KS699NJYtmxZmm0BAAAAAAAAANRbxak+vLg4HnroofjP//zPuOqqq2L16tXxhz/8If70pz/FSSedFIccckj07t072rdvHy1btoyiolSzKwAAAAAANTJs4jsxbOI7ea97cbeecXG3nnmvCwAA1E+phUEaNWq0zrFMJhNJksSiRYvi1ltvjVtvvbXGz8lkMrFq1aoa1wEAAAAAqKlFlSvj8xVLC1IXAACgWmphkCRJ1jmWyWQik8ls8DwAAAAAQH3WsqRx7NCk+QbPVyVJzKjIHaPdsbRZFP3f902/qi4AAEC1VMfEZL7iHzBfdW5TCZQAAAAAAHXJxsa5zKlYHu3/eWfOsbcPPiHalTYtdGsAAEADkmoYRFgDAAAAAAAAACC/UguDXH755Wk9GgAAAAAAAACgwRIGAQAAAAAAAABoQIrSbgAAAAAAAAAAgPwRBgEAAAAAAAAAaECEQQAAAAAAAAAAGhBhEAAAAAAAAACABqQ4rQcPHDgw+/Uuu+wSt9xyS95qn3322fHpp59GREQmk4lnn302b7UBAAAAAAAAAOqy1MIgzz//fGQymYiIWLBgQV5rjxs3Lt55551IkiT7DAAAAAAAAACArUHqY2KSJEm7BQAAAAAAAACABiP1MAgAAAAAAAAAAPkjDAIAAAAAAAAA0IA0yDBIZWVl9uvGjRun2AkAAAAAAAAAQO1qkGGQOXPmZL9u0aJFip0AAAAAAAAAANSuBhcGmTp1ak4YpG3btil2AwAAAAAAAABQuxpcGOTKK6/Mfp3JZGKvvfZKsRsAAAAAAAAAgNpVXKjCd9555yZfO3/+/M26fk2rV6+OJUuWxKRJk+Kf//xnfPTRR5HJZCJJkshkMtGvX78tqgsAAAAAAAAAUB8VLAxy+umnRyaT+cprkiSJiIhp06bFGWecUeNnVterfm5RUVF897vfrXFdAAAAAAAAAID6omBhkGrVAY2aXrMp1gyfZDKZuOCCC2KHHXbIS20AAAAAAAAAgPqg4GGQDe0OsmYAZGM7iGyO6rqnn356XHXVVXmrCwAAAAAAAABQHxQ0DLKpO37kY2eQ4uLi6N69ewwYMCDOPPPM2HfffWtcEwAAAAAAAACgvilYGGTy5MkbPJckSXTt2jUymUwkSRLdu3ePJ554YoueU1xcHC1atIgWLVrkdYcRAAAAAABg67GyanU8MnNKPDxjyjrnDhn9WPQtax9Htu8cx3boEo2LGtV+gwAAm6FgYZCddtppk67LZDLRuHHjTb4eAAAAAAAgXyqrVsfwie/GsEnvxKyK5eu95v3F5fH+4vK4bepH0aG0WQzt2iOGdusRJUIhAEAdVdAxMRuTj/EwAAAAAAAAW+L9RfPj1Defi/EL527yPTMrlsWlE16L+76YGHfuc0js1bJ1ATsEANgyqYVBbr/99uzXrVv7ixIAAAAAAFB7Rs+fGYPGPBmLVq3covvHL5wbA15+JJ7sNygGtO6Q5+4AAGomtTDIaaedltajAQAAAACArdj7i+bXKAhSbdGqlTFozJPx6oGDo3uLsjx1BwBQc0VpNwAAAAAAAFBbKqtWx6lvPlfjIEi1RatWxg/Gj4rKqtV5qQcAkA/CIAAAAAAAwFZj+MR3Y/zCuXmtOX7h3Bg+8d281gQAqAlhEAAAAAAAYKuwsmp1DJ9UmNDG8Env2h0EAKgzhEEAAAAAAICtwiMzp8TMimUFqT2zYlk8PHNKQWoDAGwuYRAAAAAAAGCr8NTsaQWt/8/Z0wtaHwBgUwmDAAAAAAAAW4U3FswtcP05Ba0PALCpitNuAAAAgIZv2MR3YtjEd/Je9+JuPePibj3zXhcAgIbpoyULClt/6cKC1gcA2FTCIAAAABTcosqV8fmKpQWpCwAAm6qianVB669Yvaqg9QEANpUwCDmmTZsWr732Wnz22WexfPny2GabbaJr167Rv3//aNeuXdrtAQAA9VTLksaxQ5PmGzxflSQxo2JZzrGOpc2iKJPZaF0AANhUpUWNYkUBAyFNGvmxCwBQN/hbSQElSRKffvppjB07NsaNGxdjx46NN998M1asWLHOdWl75JFH4ve//32MGTNmveeLiori0EMPjV/84hdx0EEH1XJ3AABAfbexcS5zKpZH+3/emXPs7YNPiHalTQvdGgAAW5Hdt9k23l40r3D1m7cqWG0AgM0hDJJnS5Ysid/97ncxbty4GDduXCxYsCDtlr7S0qVL44wzzogHHnjgK6+rqqqKkSNHxsiRI+PCCy+Ma6+9NoqL/c8HAAAAAID6o8+2bQsaBumzrR22AYC6wU/z82zu3Lnx29/+Nu02Nsny5cvjqKOOihdffHGdc5lMJlq2bBkLFy5c59wNN9wQs2bNir/97W+R2ciWzQAAAAAAUFcc2b5z3Db1o4LVP6J9p4LVBgDYHEVpN0B6LrzwwnWCIAcccEA89dRTsXTp0liwYEEsWrQo7rvvvth7771zrrvvvvvid7/7XW22CwAAAAAANXJshy7RobRZQWp3KG0Wgzt0KUhtAIDNJQxSYM2bN48DDzwwLr744vjb3/4Wv/71r9NuKSIixo0bF7feemvOsdNPPz2ef/75OOKII6Jp0y/ncrdo0SKGDBkSY8aMicMOOyzn+l/96lcxffr0WusZAAAAAABqonFRoxjatUdBag/t2iNKihoVpDYAwOYyJibPmjVrFuecc07st99+sd9++0X37t2jUaN//eXvjjvuSK+5NVx22WU56x49esQtt9yS0+uamjdvHvfdd1907949Zs6cGRERFRUV8etf/zr+9Kc/FbxfAAAAAADIh6HdesR9X0yM8Qvn5q1mn1Zt4+JuPfNWDwCgpuwMkmft27ePm266Kc4888zo0aPHBsMVaXrzzTdj5MiROceuu+66KCkp+cr7ysrK4r/+679yjt12220xZ86cvPcIAAAAAACFUFLUKO7c55BoWdw4L/VaFTeOO3sPjOIiP3IBAOoOfzPZCj300EM561133TUGDhy4Sfd+97vfjRYtWmTXq1atiscffzyv/QEAAAAAQCHt1bJ1PNlvUI0DIa2KG8c/+g2K7i3K8tQZAEB+CINshR555JGc9ZAhQzb53ubNm8fRRx/9lfUAAOqLlVWr44EvJsZF741e59whox+Ls956Ph74YmKsrFqdQncAAAAU0oDWHeLVAwdH71Ztt+j+3q3axugDB8eA1h3y3BkAQM0Vp93A+kybNi2ef/75ePPNN2Pu3Lkxb968WL58eWQymXj22WfTbq9emzt3brzzzjs5x77+9a9vVo0BAwbEPffck12PGjUqL70BANSWyqrVMXziuzFs0jsxq2L5eq95f3F5vL+4PG6b+lF0KG0WQ7v2iKHdekRJUd0bAwgAAMCW6d6iLMYcODiGT3w3hk96N2ZWLNvoPf6NCADUB3UqDPLggw/G73//+3jzzTfXOZckSWQyma+8/xe/+EVO0OGkk06Kk08+Oe991mcTJkxY51jfvn03q0a/fv1y1osXL47p06dHp06datQbAEBteH/R/Dj1zedi/MK5m3zPzIplcemE1+K+LybGnfscEnu1bF3ADgEAAKhNJUWN4pJde8XQbj3i4ZlT4pEZU+Luzz/NuWbvFmXRt2y7OKJ9pxjcoYsQCABQ59WJMMjnn38eJ5xwQowdOzYivgx+rGljIZBqe++9d/z2t7/NXj9p0iRhkLV8+OGHOetWrVpF69ab98OMrl27rreuMAgAUNeNnj8zBo15MhatWrlF949fODcGvPxIPNlvkG2AAQAAGpiSokZx4vbd4uA2268TBhk14OhoV9o0pc4AoHatrFodj8ycEg/PmLLOuUNGPxZ9y9rHke07x7EdukRjAck6qyjtBl5//fXo3bt3jB07NhsCyWQyOZ9NNWTIkOjSpUtEfBkomTBhQowfP74QbddbH3/8cc56xx133OwaZWVl0bx585xjH330UY36AgAotPcXza9REKTaolUrY9CYJ+ODxeV56gwAAAAAIH2VVavj6k/eih1H3h1DXn8m7lkrHBkR2dHaQ15/JnYaeU9c/clbUVm1OoVu2ZhUwyCff/55HHPMMTFnzpzsGJgkSSJJkmjVqlX07NkzmjVrtsn1ioqK4uSTT87ZWeTxxx8vROv11vz583PWHTps2W+0duzYMWddXu6HIQBA3VVZtTpOffO5GgdBqi1atTJ+MH6Uf+QAAAAAAA3C+4vmR7+XHo5LJ7wWsyqWb9I91eO1+730cLy/aP7Gb6BWpRoGOeWUU2LmzJnZHUCSJInDDjssXnrppZg3b168+eabscsuu2xWzRNPPDEi/jVa5plnnsl73/XZkiVLctabE7ZZU9OmudvhrV13U0yfPv0rPzNmzNii3gAA1jZ84rsxfuHcvNYcv3BuDJ/4bl5rAgAAAADUttHzZ8aAlx/Z4u+hVo/XHj1/Zp47oyaK03rwyJEj44UXXsiGQDKZTFxxxRXxn//5nzWq27Nnz+jYsWPMnDkzkiSJsWPHxurVq6NRI7OKIiKWLl2as27SpMkW1Vk7DLJ23U3RuXPnLXo2AMDmWFm1OoZPKkxoY/ikd2Notx5RYi4mAAAAAFAP5Xu89qsHDo7uLcry1B01kdrOIMOGDYuIyAZBTjnllBoHQar16dMnOyqmsrIyPvnkk7zUbQiWL8/d0qdx48ZbVKe0tPQr6wIA1BWPzJwSMyuWFaT2zIpl8fDMKQWpDQAAAABQSMZrN2yphEEqKiqyu4JEfBksuOaaa/JWv1evXjnrjz76KG+167u1dwJZuXLL/o9dUVHxlXU3xbRp077yM3bs2C3qDQBgTU/NnlbQ+v+cPb2g9QEA2DqsrFodD3wxMS56b/Q65w4Z/Vic9dbz8cAXE2Olb6wDAJAnxms3bKmMiXnttddixYoVkclkIpPJxKBBg6J9+/Z5q9+hQ4ec9ezZs/NWu77bZpttctYrVqzYojpr7wSydt1N0alTpy16NgDA5nhjQX7/MbNu/TkFrQ8AQMNWWbU6hk98N4ZNeidmVax/9933F5fH+4vL47apH0WH0mYxtGsP4woBAKgR47UbvlR2Bpk2Lfe3MwcMGJDX+ttuu21ERHbnkcWLF+e1fn22dmhj2bIt2zI9H2EQAIDa8NGSBYWtv3RhQesDANBwvb9ofvR76eG4dMJrGwyCrG1mxbK4dMJr0e+lh+P9RfML3CEAAA2V8doNXyphkDlzvvztySRJIiKiY8eOea3fuHHjnPWW7n7REJWVleWsZ86cuUV11r5v7boAAHVFRYG30V6xelVB6wMA0DCNnj8zBrz8yBZvyz1+4dwY8PIjMXr+ln1/DwCArZvx2g1fKmGQioqKnPXa4Y2amj//y0R8ddikeqcQInbbbbec9dSpUze7Rnl5eSxZsuQr6wIA1BWlBd6KsEmjVCYvAgBQj72/aH4MGvNkLFq1skZ1Fq1aGYPGPBkfLC7PU2cAAGwtjNdu+FIJg7Rt2zZnXV6e33+sTJ+emzJq06ZNXuvXZ3vssUfOeuHChdnwzKaaPHnyRusCANQVu2+zbWHrN29V0PoAADQslVWr49Q3n6txEKTaolUr4wfjR0VlgXfEAwCgYTFeu+FLJQzSvn37iIjIZDIREfHRRx/ltf5LL72Us873GJr6rHv37usce+211zarxpgxY3LW22yzTXTq1KlGfQEAFEqfbdtu/KIa1W9X0PoAADQswye+u8WjYTZk/MK5MXziu3mtCQBAw2a8dsOXShhk9913z1m/8soreas9a9asePXVV7NBk+Li4thvv/3yVr++a9u2bfTo0SPn2Ob++a99/cCBA7N/3gAAdc2R7TsXtP4R7YViAQDYNCurVsfwSYUJbQyf9K7dQQAA2GTGazd8qYRBdtttt9hpp50iIiJJkhg7dmx8/PHHeak9fPjwWLnyyy0WM5lM7LffftG0adO81G4ojj322Jz1/fffv8n3Llu2LB5//PGvrAcAUJcc26FLdChtVpDaHUqbxeAOXQpSGwCAhueRmVNiZsWygtSeWbEsHp45pSC1AQBoeIzXbvhSCYNERBx55JGRJEl2R4lLLrmkxjVfffXVGD58eGQymUiSJCIEFdbnuOOOy1l/8sknMWrUqE269957741FixZl18XFxfHtb387r/0BAORT46JGMbRrj41fuAWGdu0RJQVO0AMA0HA8NXtaQev/c/b0gtYHAKDhMF674UstDHLxxRdHo0ZffuM8SZJ47LHH4tprr93ieuPGjYvjjz8+Kisrs8datWoV55xzTo17rcsymUzO5/TTT9/oPb17945DDz0059hFF12U82e3PgsWLIjLLrss59jpp58e7du33+y+AQBq09BuPaJ3q/z+46ZPq7Zxcbeeea0JAEDD9saCuQWuP6eg9QEAaDiM1274UguD7LrrrnHaaadldwdJkiQuueSSuPDCC2Pp0qWbXKe8vDyuuOKKOOigg2LWrFnZWplMJi688MJo0aJFAd+i/vrNb36Ts3733Xfj7LPPjtWr1z9XdOnSpXHSSSfFzJkzs8dKS0vjP//zPwvaJwBAPpQUNYo79zkkWhY3zku9VsWN487eA6O4KLW/TgMAUA99tGRBYesvXVjQ+gAANBzGazd8xWk+/Oqrr44XXnghJk2alA1x/M///E/cddddcdJJJ8WAAQNiyZIl2ZEvEREjR46MefPmxWeffRYvvvhivPjii7Fs2bKckTOZTCb69u0bv/jFL1J5r9dffz1ef/319Z579dVX1zl28803b7DWySefXJBAS9++feOMM86I22+/PXvsjjvuiE8//TR++ctfxkEHHRRNmjSJJUuWxJNPPhm/+tWv4r333supcdlll0XnzoVNjAEA5MteLVvHk/0GxaAxT8aiVSu3uE6r4sbxj36DonuLsjx2BwDA1qCiav2/iJUvK1avKmh9AAAajurx2pdOeC3vtY3XrhtSDYO0bt06nnjiiejfv38sWLAgGwhZuHBh/PnPf44///nPOdcnSRJHHnnkOsciIhsESZIkOnToEA888EAUF6fzeo8//nhceeWVm3z9ueeeu8FzRx55ZMF2N/njH/8YH3/8cbzyyivZYy+//HIcccQRkclkomXLlrFw4fp/m+CEE05YZ2QMAEBdN6B1h3j1wMHxg/GjYvzCzd+iu3ertnFX74GCIAAAbJHSokaxooCBkCaNUv12LwAA9czQbj3ivi8mbtH3SjfEeO26I/V9rXfbbbd46aWXYo899sju7lEdCqn+rGnN42teX32uR48e8eqrr8YOO+yQxuvUK82aNYunnnoqjj/++HXOVYdy1ue8886Le+65J4psiw4A1EPdW5TFmAMHx1V79t3kbRA7lDaLq/bsG2MOHCwIAgDAFtt9m20LW795q4LWBwCgYTFeu2GrE/8tdO/ePcaNGxfnnHNOlJSU5IQ8NvaJ+DK40KhRo/jhD38Yo0ePjp122inlN6o/ttlmm/j73/8eI0aMiP3333+D12UymTj00EPj+eefjz/+8Y9RUlJSi10CAORXSVGjuGTXXjH1sO/H/ft+M07eYZd1rtm7RVmcteMecf++34yph30/Ltm1l60NAQCokT7bti1w/XYFrQ8AQMNTPV67poEQ47Xrnkyy9tYbKfviiy9i2LBh8fe//z0+++yzjV7fvn37OOaYY+JnP/tZdO3atRY6bNimTp0aY8aMialTp8aKFSuiefPm0bVr1+jfv3+0b9++VnuZPn16dO7cOSIipk2bFp06darV5wMAW485Fcuj/T/vzDk2+4hTo11p05Q6gq2P/x8CsDV44IuJMeT1ZwpW//59vxknbt+tYPVha+HvpgBsjT5YXG68dooK8bPxOjdEcvvtt48//OEP8Yc//CGmTp0ar7zySkyfPj3mzZsX5eXl0bRp02jbtm1st9120bdv3+jZ07yhfNpxxx1jxx13TLsNAAAAAGhwju3QJTqUNouZFcvyXrtDabMY3KFL3usCALB1qB6vPXziuzF80rub9HfWDqXNYmjXHjG0Ww+7KtdBdS4MsibBBAAAAACgoWhc1CiGdu0Rl054Le+1h3b1DXgAAGqmerz20G494uGZU+KRGVPi7s8/zblm7xZl0bdsuziifacY3KGLv4PWYXU6DAIAAAAA0JAM7dYj7vti4hZtv70hfVq1jYu72UEZAID8KClqFCdu3y0ObrP9OmGQUQOONjqtnihKuwEAAAAAgK1FSVGjuHOfQ6JlceO81GtV3Dju7D0wiot8qxcAAPiX1HYGqaqqiiL/QIGCGzbxnRg28Z281724W0+/cQIAAACwBfZq2Tqe7DcoBo15MhatWrnFdVoVN45/9BsU3VuU5bE7AACgIUgtDNK5c+c47bTT4vTTT4/ddtstrTagwVtUuTI+X7G0IHUBAAAA2DIDWneIVw8cHD8YP2qLRsb0btU27uo9UBAEAABYr9TCIDNmzIirrroqrrrqqujXr1+cddZZMWTIkNhmm23SagkapJYljWOHJs03eL4qSWJGxbKcYx1Lm0VRJrPRugAAAABsue4tymLMgYNj+MR3Y/ikd2PmWt+jWZ8Opc1iaNceMbRbjygpalQLXQIAAPVRamGQakmSxJgxY2LMmDFx4YUXxgknnBBnnHFGfOMb30i7NWgQNjbOZU7F8mj/zztzjr198AnRrrRpoVsDAAAA2OqVFDWKS3btFUO79YiHZ06JR2ZMibs//zTnmr1blEXfsu3iiPadYnCHLkIgAADARqUeBslkMpEkSURELFu2LO6666646667okuXLnHGGWfEaaedFp07d065SwAAAACAwikpahQnbt8tDm6z/TphkFEDjvaLOwAAwGYpSuvBu+++eyRJEkmSRCaTyX6qj02ePDkuv/zy2HnnnePwww+Pe++9NyoqKtJqFwAAAAAAAACgXkgtDDJhwoQYPXp0/Nu//Vu0bNlyg8GQqqqqePbZZ+Pkk0+Ojh07xnnnnRfjxo1Lq20AAAAAAAAAgDottTBIRES/fv3illtuiRkzZsRdd90V3/zmN3PGxqy9W8iCBQvi5ptvjn79+kWPHj1i+PDhMWfOnDRfAQAAAAAAAACgTkk1DFKtSZMmcfLJJ8fTTz8dkydPjiuvvDK6du36lWNk3n///fjJT34SnTp1iuOOOy4effTRWL16ddqvAgAAAAAAAACQqjoRBllT586d45e//GV88skn8cILL8Tpp58ezZs332AwpLKyMh599NE47rjjolOnTnHJJZfEBx98kPZrAAAAAAAAAACkos6FQdZ04IEHxm233RYzZ86M22+/Pb7xjW9ERGxwjMysWbPi2muvjR49ekTfvn3jlltuiUWLFqX5CgAAAAAAAAAAtapOh0GqNWvWLE477bR47rnn4tNPP41f/vKXseOOO37lGJnXX389zj333Nh+++3Tbh8AAAAAAAAAoNbUizDImnbeeee48sorY/LkyfHss8/GySefHE2bNl0nGBLx5Q4iy5cvT7ljAAAAAAAAAIDaU+/CIGs65JBD4q677oqZM2fGLbfcEgMGDMiOkAEAAAAAAAAA2BoVp91APmyzzTbxgx/8IJo2bRrl5eUxYcKE7O4gAAAAAAAAAABbk3ofBhkzZkzccccdcd9998WiRYvSbgcAAAAAAAAAIFX1MgwyY8aMuPPOO+Ovf/1rfPTRRxEROeNh7AoCAAAAAAAAAGyt6k0YpLKyMh5++OG4/fbbY+TIkVFVVbXBAEj18R49esQZZ5xR670CAAAAAAAAAKSlzodB3njjjbj99tvj3nvvjfLy8oj4V9hjfQGQsrKy+N73vhdnnnlm9O7du/YbBgAAAAAAAABIUZ0Mg8yePTv+93//N+644454//33I2LDY2CSJImioqI47LDD4swzz4zBgwdH48aNa71nAAAAAAAAAIC6oM6EQVavXh2PPfZY3H777fHUU0/FqlWrNjoGplu3bnHGGWfEqaeeGp06dar1ngEAAAAAAAAA6prUwyBvv/123HHHHXHPPffE3LlzI+Krx8A0b948TjzxxDjjjDPiwAMPrP2GAQAAAAAAAADqsNTCIDfccEPccccd8fbbb0fEV4+BiYg44IAD4owzzoghQ4ZE8+bNa7dZAAAAAAAAAIB6IrUwyEUXXRSZTOYrdwHZYYcd4tRTT40zzjgjdtlll1T6BAAAAAAAAACoT1IfE1MdAqkOgJSWlsYxxxwTZ5xxRhx++OFRVFSUZnsAAAAAAAAAAPVK6mGQ6hDIPvvsE2eccUacfPLJUVZWlnJXAAAAAAAAAAD1U6phkNatW8fJJ58cZ555ZvTs2TPNVgAAAAAAAAAAGoTUwiAPPvhgHH300VFSUpJWCwAAAKRsZdXqeGTmlHh4xpR1zh0y+rHoW9Y+jmzfOY7t0CUaFzWq/QYBAAAAoB5KLQxy/PHHp/VoAAAAUlZZtTqGT3w3hk16J2ZVLF/vNe8vLo/3F5fHbVM/ig6lzWJo1x4xtFuPKBEKAQAAAICvVJR2AwAAAGxd3l80P/q99HBcOuG1DQZB1jazYllcOuG16PfSw/H+ovkF7hAAAAAA6jdhEAAAAGrN6PkzY8DLj8T4hXO36P7xC+fGgJcfidHzZ+a5MwAAAABoOFIbE7OpKisro7y8PObPnx+LFy+OFi1aROvWraN169ZRXFzn2wcAAOD/vL9ofgwa82QsWrWyRnUWrVoZg8Y8Ga8eODi6tyjLU3cAAAAA0HDUuTRFkiTxyCOPxMiRI+OVV16J999/P6qqqta5rqioKPbee+8YMGBAHH744XHMMcdEJpNJoWMAAAA2prJqdZz65nM1DoJUW7RqZfxg/KgYc+DgKClqlJeaAAAAANBQ1JkxMVVVVTF8+PDo2rVrfOc734mbb7453nnnnVi9enUkSbLOZ/Xq1fH222/HzTffHMcff3x069YtbrjhhvUGRwAAAEjX8InvbvFomA0Zv3BuDJ/4bl5rAgAAAEBDUCfCIJMnT46vf/3r8ZOf/CQ+++yzbOAjIiKTyWzwExHZa6dMmRJDhw6NAw44ICZPnpzm6wAAALCGlVWrY/ikwoQ2hk96NyqrVhekNgAAAADUV6mHQd59993o06dPjB07NpIkWSfwsb5dQao/67t2zJgxse+++8Z7772X9qsBAAAQEY/MnBIzK5YVpPbMimXx8MwpBakNAAAAAPVVcZoPnzZtWgwaNCgWLFiwzm4fERGlpaXRs2fP6N69e5SVlUXz5s1j6dKlsWDBgvjggw/inXfeiRUrVkRE5ARCysvL46ijjorRo0dHp06dUns/AAAAIp6aPa2g9f85e3qcuH23gj4DAAAAAOqTVMMg5557bnzxxRfZEEjEl0GQgw8+OH784x/HscceGyUlJRu8v7KyMh599NG46aabYtSoUTmBkM8//zzOOeecePzxx2vjVQAAANiANxbMLXD9OQWtDwAAAAD1TWpjYl544YX4xz/+kbMbSIsWLeLee++NUaNGxQknnPCVQZCIiJKSkvjOd74TzzzzTNx///3RsmXLiIhsIOTJJ5+MF198seDvAgAAwIZ9tGRBYesvXVjQ+gAAAABQ36QWBrn++uuzXydJEmVlZfHss8/GkCFDtqjeCSecEKNGjYptt912g88BAACg9lVUrS5o/RWrVxW0PgAAAADUN6mEQVatWhXPPvtsdgePTCYTw4YNiz59+tSo7j777BPDhw/P1kySJJ555plYtco3BmFtK6tWxwNfTIyL3hu9zrlDRj8WZ731fDzwxcRYWeBv3AMA0PCVFjUqaP0mjVKdgAoAAAAAdU4qYZCxY8fG4sWLs+tddtklTjvttLzUPvXUU2PXXXfNrpcsWRJjx47NS21oCCqrVsfVn7wVO468O4a8/kzc8/mn61zz/uLyuG3qRzHk9Wdip5H3xNWfvBWVQiEAAGyh3bfZtrD1m7cqaH0AAAAAqG9SCYNMmzYt+3Umk4njjjsur/WPP/74SJIku546dWpe60N99f6i+dHvpYfj0gmvxayK5Zt0z8yKZXHphNei30sPx/uL5he4QwAAGqI+27YtcP12Ba0PAAAAAPVNKmGQ2bNnR0RkAxtr7uSRD7vsskvOes6cOXmtD/XR6PkzY8DLj8T4hXO36P7xC+fGgJcfidHzZ+a5MwAAGroj23cuaP0j2ncqaH0AAAAAqG9SCYMsXbo0Z92yZcu81q+ul8lk1vs82Nq8v2h+DBrzZCxatbJGdRatWhmDxjwZHywuz1NnAABsDY7t0CU6lDYrSO0Opc1icIcuBakNAAAAAPVVKmGQNm3a5KxnzszvTgOzZs2KiH/tPLL282BrUlm1Ok5987kaB0GqLVq1Mn4wflRUVq3OSz0AABq+xkWNYmjXHgWpPbRrjygpalSQ2gAAAABQX6USBmnfvn1E/GvnjrFjx+a1/rhx43LW7dqZH83Wa/jEd7d4NMyGjF84N4ZPfDevNQEAaNiGdusRvVu1zWvNPq3axsXdeua1JgAAAAA0BKmEQbp37579OkmSeOyxx2Lx4sV5qb148eJ49NFHs0GTiIi99torL7WhvllZtTqGTypMaGP4pHftDgIAwCYrKWoUd+5zSLQsbpyXeq2KG8edvQdGcVEq/6wFAAAAgDotle+a7brrrtGlS5fsevHixXHJJZfkpfb/+3//LxYuXJhdd+nSJXbddde81Ib65pGZU2JmxbKC1J5ZsSwenjmlILUBAGiY9mrZOp7sN6jGgZBWxY3jH/0GRfcWZXnqDAAAAAAaltR+heqYY46JJEkik8lEkiRxyy23xO9///sa1fzDH/4QN954Y7ZmJpOJY445Jk8dQ/3z1OxpBa3/z9nTC1ofAICGZ0DrDvHqgYO3eGRM71ZtY/SBg2NA6w557gwAAAAAGo7UwiCXXnppNGvWLCIiG9647LLLYsiQITFjxozNqjVz5sz47ne/G5deemnO8aZNm+ZtxxGoj95YMLfA9ecUtD4AAA1T9xZlMebAwXHVnn2jQ2mzTbqnQ2mzuGrPvjHmwMF2BAEAAACAjUgtDNKxY8e4+OKLI0mSiPhXIOTvf/97dO3aNU466aR44IEHYvLkyeu9f/LkyfHAAw/ESSedFF27do0HHnggZ6eRTCYT//Ef/xEdO3aszdeCOuWjJQsKW3/pwo1fBAAA61FS1Cgu2bVXTD3s+3H/vt+Mk3fYZZ1r9m5RFmftuEfcv+83Y+ph349Ldu0VJUWNUugWAAAAAOqX4jQffsUVV8Rbb70Vjz/+eGQymWyQo6KiIh588MF48MEHIyKicePG0apVq2jevHksXbo0Fi5cGCtXrszWWTNQUv2f3/72t+OKK66o9XeCuqSianVB669Yvaqg9QEAaPhKihrFidt3i4PbbB93f/5pzrlRA46OdqVNU+oMAAAAAOqv1HYGiYgoKiqK++67Lw499NCcQEd1KKT6U1FREbNnz47JkyfH7Nmzo6KiIud89T0RXwZDDj300Ljvvvuyx2BrVVrg35ps0ijVPBkAAAAAAAAA65FqGCQiomnTpvH000/Hb3/72yguLl4nFLIpn4gvQyDFxcVx1VVXxT//+c9o0qRJmq8FdcLu22xb2PrNWxW0PgAAAAAAAACbL/UwSMSXwY+f/exn8fHHH8fFF18crVq1ytn5o/oTEes93qpVq/jJT34Sn3zySfz0pz+1Iwj8nz7bti1w/XYFrQ8AAAAAAADA5qtTMx522mmn+MMf/hC/+c1vYty4cfHKK6/E+PHjY+7cuVFeXh6LFy+OFi1aRFlZWbRr1y569+4dAwYMiP333z8aN26cdvtQ5xzZvnPcNvWjgtU/on2ngtUGAAAAACiEYRPfiWET39ng+ar/++XUNX3t+QejaCO/iHpxt55xcbeeNe4PACAf6lQYpFppaWkccMABccABB6TdCtRrx3boEh1Km8XMimV5r92htFkM7tAl73UBAAAAGjI/hIb0LapcGZ+vWLpZ98zYhO+xLqpcuaUtAQDkXZ0MgwD50bioUQzt2iMunfBa3msP7dojSooa5b0uABSCb7gDAFBX+CE0pK9lSePYoUnzgtQFAKgrhEGggRvarUfc98XEGL9wbt5q9mnV1g++AKhXfMMdAIC6wg+hIX2C/QDA1kAYBBq4kqJGcec+h8SAlx+JRatq/gOrVsWN487eA6O4qCgP3QFA7fANdwAA6go/hAYAAGqDMAhsBfZq2Tqe7DcoBo15skaBkFbFjeMf/QZF9xZleewOAArPN9wBAAAAANia1NkwyOrVq+Ott96KN954I2bPnh0LFiyIxYsXR4sWLWLbbbeN9u3bR58+faJXr17RqFGjtNuFOm9A6w7x6oGD4wfjR23RyJjerdrGXb0HCoIAAAAAAAAA1HF1Lgzyj3/8I26++eZ49tlnY8WKFRu9vkmTJnHooYfGueeeG4MGDaqFDqH+6t6iLMYcODiGT3w3hk96N2ZWLNvoPR1Km8XQrj1iaLceUVIkeAUAAAAAAABQ19WZMMiLL74YZ599dnzyyScREZEkySbdt3z58njiiSfiiSeeiF133TVuueWWOOiggwrZKtRrJUWN4pJde8XQbj3i4ZlT4pEZU+Luzz/NuWbvFmXRt2y7OKJ9pxjcoYsQCAAAAAAAAEA9UpR2AxERQ4cOjYEDB8bHH38cSZJEkiSRyWQ2+VN9z8cffxwDBw6Miy++OO1XgjqvpKhRnLh9txi+94B1zo0acHTc2usbceL23QRBAAAAAAAAAOqZVHcGSZIkzjjjjLjrrruyAZC1z29MdSCkWlVVVVx//fUxf/78uP3229epCQAAAAAAAADQkKUaBvnFL34Rd9555zqBjiRJolOnTnHsscdG7969Y4899ohWrVpF8+bNY+nSpbFw4cL46KOP4o033ohHHnkkpk+fnr2/eqeQu+66K3bYYYf4zW9+k9brAQAAAAAAAADUutTCIO+++25cc80164RAdtttt7j22mvjqKOO+spdPfr37x+nn3563HDDDfGPf/wjfvrTn8aHH36YMzrmD3/4Q3z3u9+NHj161MYrAQAAAAAAAACkriitB//qV7+KVatWRcS/xsF873vfi3fffTe+9a1vbfJ4l0wmE9/61rfinXfeiVNOOSVntMyqVavi17/+df6bBwAAAAAAAACoo1IJgyxdujT+8Y9/ZHfwyGQy8e1vfzvuvvvuKCkp2aKaxcXFceedd8YxxxyTrZkkSTzxxBOxdOnSPL8BAAAAAAAAAEDdlEoY5JVXXonly5dn102aNIk//elPeal98803R9OmTbPrFStWxCuvvJKX2gAAAAAAAAAAdV0qYZDp06dnv85kMnHUUUdFhw4d8lK7Q4cO8a1vfStnXMyazwMAAAAAAAAAaMhSCYPMnj07IiIb2DjwwAPzWv+AAw5Y7/MAAAAAAAAAABq6VMIgjRs3zlnna1eQtetlMpmIiCgpKclrfQAAAAAAAACAuiqVMEjHjh1z1kuWLMlr/ep61TuPbL/99nmtDwAAAAAAAABQV6USBunVq1dE/GvnjokTJ+a1/tr1vva1r+W1PgAAAAAAAABAXZVKGGTPPfeMnXfeOSK+3L1jxIgRea3/0EMPZYMmO+64Y3Tv3j2v9QEAAAAAAAAA6qpUwiAREeeff352jMvHH38c//u//5uXunfffXd8+OGHEfHlziPnn39+XuoCAAAAAAAAANQHqYZBunfvHplMJpIkiX//93+P8ePH16jmm2++GRdeeGF2V5A999wzLrzwwny0CwAAAAAAAABQL6QWBikpKYlHHnkk2rVrFxER5eXlMXDgwC3eIeTuu++OgQMHxoIFCyJJkmjfvn08/PDDUVJSks+2AQAAAAAAAADqtNTCIBER3bp1izFjxkSvXr0iImLRokVx2mmnRd++fePWW2+NOXPmfOX9c+fOjVtvvTX69esXp556aixcuDCSJIlevXrFmDFjYpdddqmFtwAAAAAAAAAAqDuK81nszDPP3KL7unfvHh9++GFUVFREkiQxbty4eP311+NHP/pR7LDDDrH77rtHq1atonnz5rF06dJYuHBhfPzxxzF9+vSIiEiSJFuradOmsddee8WVV14ZERGZTCb+8pe/1PzlAAAAAAAAAADqgbyGQe64447IZDI1qpHJZCJJkmzAY/r06fH555+vc92aAZDq+yIiVqxYEffcc0/2GmEQAAAAAAAAAGBrktcwSLW1gxqbYs0QydqBkvXV+6rQyZY8HwAAAAAAAACgIShIGKSmu4PUtF719UIhAAAAAAAAAMDWJq9hkB133DHvQRAAAAAAAAAAADZdXsMgU6ZMyWc5AAAAAAAAAAA2U1HaDQAAAAAAAAAAkD/CIAAAAAAAAAAADYgwCAAAAAAAAABAAyIMAgAAAAAAAADQgAiDAAAAAAAAAAA0IMIgAAAAAAAAAAANiDAIAAAAAAAAAEADUpx2AxuzbNmyWLhwYVRWVm5xjR133DGPHQEAAAAAAABA/TZs4jsxbOI7GzxflSTrHPva8w9GUSbzlXUv7tYzLu7Ws8b9UTN1KgyycOHC+Nvf/hYvv/xyjBkzJqZNmxarVq2qUc1MJlPjGgAAAAAAAADQkCyqXBmfr1i6WffMqFi2SXVJX50IgyxZsiR+/vOfxx133BFLl375P7ZkPSkjAAAAAAAAAKDmWpY0jh2aNC9IXdKXehjk3XffjRNOOCE+/fTTbAAkk8lEZiNby2wKgRIAAAAAAACoW27601Nx0y1P5b3uuWcfGef+6Mi814WGyjiXhi3VMMjnn38ehx9+eMyaNSsiIhsA2dQQx9qBEeEPAAAAAAAAqNsWL1keM2aWF6QuAF9KNQxy0kknxaxZs3JCIJ07d44TTzwxdt111/jtb38b06dPjyRJIpPJxG233RbLly+P+fPnx6RJk+LVV1+NCRMmRMS/giGtWrWKX/ziF9G2bdvU3gsAAAAAAABYvxbbNI2OHco2eL6qKolZsxfkHNuu/bZRVPTVkwVabNM0H+0BNAiphUFGjhwZo0ePjkwmkw17nHnmmfE///M/UVpaGhERN998c0yfPj17z2mnnbZOnffeey+uvfbauPPOOyOTycTChQvj2muvjSeeeCL22WefWnsfAAAAAAAAYOPO/dFXj3OZO29R7Nnzgpxjzz/z62jbpmWhWwNoMFILg1x33XXZrzOZTBx22GFx6623bnadvffeO26//fY4+eST4/vf/37MmzcvZs6cGYceemiMHj069thjjzx2DfXPsInvxLCJ72zwfNV6xit97fkHoyjz1elaM8QAAAAAAAAA6qZUwiCrV6+OF154IWdXkOHDh9eo5je/+c146qmnYuDAgbF48eJYsGBBfOc734m33347iotTnYYDqVpUuTI+X7F0s+6ZUbFsk+oCAAAAAAAAUPekkpIYP358LFu2LDL/t/NAnz59Ys8996xx3d69e8dvfvObuOCCCyKTycSHH34Yt9xyS/z4xz+ucW2or1qWNI4dmjQvSF0AAAAAAAAA6p5UwiATJ07Mfp3JZOKAAw7YpPtWrVq10V0+zj333Pjd734XM2bMiCRJ4sYbbxQGYatmnAsAAAAAAADA1qUojYeWl5dHRESSJBERsccee6z3uuqdQ6qtWLFio7WLiori2GOPzdaeMGFCTJ06tSbtAgAAAAAAAADUG6mEQRYsWJCzbtWq1Xqva968eTbUERGxdOnSTaq/995756zfeuutzeoPAAAAAAAAAKC+SiUM0rhx45z1hka/tGjRImc9ffr0Tarfrl27nPVnn322Gd0BAAAAAAAAANRfqYRBWrZsmbNevHjxeq8rKyvLWU+ZMmWT6i9fvjwi/jVmZkP1AQAAAAAAAAAamlTCIDvuuGNE/CusUV5evt7r9txzz5zrXn311U2q/8EHH0REZEfMNG3adMubBQAAAAAAAACoR1IJg+yxxx45648++mi91/Xo0SP7dZIk8fjjj29S/YceeigbIImIaNu27RZ0CQAAAAAAAABQ/6QSBtlpp51yRsBU7+SxtgMPPDBKSkqy608++STuvffer6x90003xccff5xzrFevXlveLAAAAAAAAABAPZJKGCTiy6BHkiSRJEm8/vrrUVFRsc41rVu3jsMPPzySJIlMJhNJksSPfvSjeOSRR9Zb8+abb45///d/z9kVpEOHDjk7jAAAAAAAAAAANGTFaT340EMPjUcffTQiIioqKuLFF1+Mww47bJ3rLrroonjiiSciIiKTycTixYvj+OOPj7322isOPPDAaN26dcydOzeeeeaZmDRpUk5wJJPJxAUXXFCr7wUAAAAAAAAAkKbUwiDHH398XHTRRdn1vffeu94wyKGHHhonnnhiPPDAA5HJZLJBj/feey/ef//97HVJkkREZHcFyWQysfvuu8eFF15Y2BcBAAAAAAAAAKhDUhsTs8MOO8SAAQOyo2Luv//+WLx48XqvvfXWW6Nv3745gY/qUEj1p/pYxJfBkPbt28eIESOiWbNmtfZOAAAAAAAAAABpSy0MEhHx0ksvRVVVVVRVVcXixYujRYsW672uRYsW8fTTT8eZZ54ZEbFOAGTNEEiSJHHQQQfF2LFjY4899qi1dwEAAAAAAAAAqAtSGxOzuVq0aBG33nprXHTRRXHffffFyJEjY9q0aTF37txo3rx5dOzYMQ488MAYMmRIDBw4MO12AQAAWMOwie/EsInvbPB81f/tBLmmrz3/YBT9X/h/Qy7u1jMu7tazxv0BAAAAQENSb8Ig1fbee+/Ye++949e//nXarQAAALCJFlWujM9XLN2se2ZULNukugAAAABArnoXBgEAAKD+aVnSOHZo0rwgdQEAAACAXMIgAAAAFJxxLgAAAABQe4RBAAAAALYSN/3pqbjplqfyXvfcs4+Mc390ZN7rAgAAAFtGGAQAAABgK7F4yfKYMbO8IHUBAACAukMYBAAAAGAr0WKbptGxQ9kGz1dVJTFr9oKcY9u13zaKijIbrQsAAADUHcIgAAAAAFuJc3/01eNc5s5bFHv2vCDn2PPP/DratmlZ6NYAAACAPCpKuwEAAAAAAAAAAPJHGAQAAAAAAAAAoAERBgEAAAAAAAAAaECEQQAAAAAAAAAAGhBhEAAAAAAAAACABkQYBAAAAAAAAACgAREGAQAAAAAAAABoQIRBAAAAAAAAAAAaEGEQAAAAAAAAAIAGRBgEAAAAAAAAAKABEQYBAAAAAAAAAGhAitNuYGtRVVUVb7zxRrz77rsxe/bsSJIk2rRpE927d4++fftGSUlJ2i0CAAAAAAAAAA2AMEiBLVmyJK655pq4+eabY/bs2eu9plWrVnH66afHZZddFu3atauVvrp06RKfffZZjWrcfvvtcfrpp+enIQAAAAAAAAAgL1IbE/Pf//3fsWjRorQeXytef/312GuvveJXv/rVBoMgERELFy6M66+/PvbYY4946qmnarFDAAAAAAAAAKChSS0M8u///u+xww47xNlnnx3jx49Pq42Cee211+KQQw6JqVOnrnOutLQ0mjZtus7x+fPnx9FHHx2PPvpobbQIAAAAAAAAADRAqY6JWbZsWfzlL3+Jv/zlL7HvvvvGj3/84zjppJOiSZMmabZVY3PmzInjjjsulixZkj1WXFwc559/fpx77rmxyy67RCaTialTp8Zf/vKXGDZsWCxdujQiIlatWhUnn3xyvPHGG7HbbrvVWs//9V//FW3atNmse/r371+gbgAAAAAAAACALZVqGCQiIkmSiIgYN25cnHnmmXHxxRfHaaedFj/60Y9i9913T7m7LXPFFVfEjBkzsuvS0tJ48MEH49vf/nbOdTvttFP86le/im9961sxaNCgKC8vj4iIJUuWxMUXXxyPP/54rfV88sknR5cuXWrteQAAAAAAAABAYaQ2JqZaJpOJTCYTEV8GQ8rLy+P666+P7t27x6GHHhp///vfY/Xq1Sl3uemmTJkSt956a86xK6+8cp0gyJr69u0b//M//5Nz7IknnohXX321ID0CAAAAAAAAAA1XamGQESNGxGGHHRYRX4ZAqkMhmUwmkiSJJEni+eefjyFDhkTnzp3j8ssvj+nTp6fV7iYbPnx4rFy5Mrveeeed4z/+4z82et/3vve9OOCAA3KOXXXVVXnvDwAAAAAAAABo2FILgwwePDieeuqp+Pjjj+M//uM/ok2bNtkQyNqhkJkzZ8Z//dd/xc477xyDBw+Of/7zn2m1vVEPP/xwzvqss86K4uJNm8Zz9tln56yffvrpWLZsWb5aAwAAAAAAAAC2AqmPienWrVtcc801MX369LjzzjtjwIAB64RCqoMhq1evjsceeyyOOuqo7H1z585N+xWy3nzzzZg6dWrOsZNOOmmT7//Od76TExxZvnx5PP3003nrDwAAAAAAAABo+FIPg1Rr3LhxnHLKKfHyyy/H22+/Heecc05ss802G9wtZPLkyfGzn/0sOnfuHD/4wQ/ilVdeSfsVYtSoUTnr7bbbLnbZZZdNvr9Zs2bRq1evnGPPPvtsPloDAAAAAAAAALYSdSYMsqYePXrEjTfeGF988UXceOON8bWvfW2Du4VUVFTEPffcEwcddFD07NkzbrrppliyZEkqfX/wwQc56/3333+za/Tr1y9nPWHChBr1BAAAAAAAAABsXepkGKRa8+bN45xzzok333wzRo8eHaecckqUlpZGkiQREevsFvLee+/F+eefH9tvv32ce+658fbbb9dqvx9++GHOumvXrptdY+171q5ZSFOmTIknn3wy7rzzzrjrrrviH//4R7zxxhtRWVlZaz0AAAAAAAAAADVTnHYDm6pfv37Rr1+/uO666+K2226LW265JT799NOI+DIUEhHZUMiSJUvilltuiVtuuSX69u0bP/7xj2PIkCHRuHHjgvb48ccf56x33HHHza7RuXPnnPXnn38eS5cujebNm9eot43Zd999Y968ees917Rp0+jfv3+cddZZMWTIkCgurjf/swEAAAAAAACArU6d3hlkfVq3bh0/+clP4uOPP45//vOfMXjw4GjUqNF6R8gkSRKvvfZanHbaabH99tvHpZdeGlOnTi1Yb+Xl5TnrDh06bHaNjh07brRuIWwoCBIRsXz58hg1alScfPLJseuuu8Zzzz1X8H4AAAAAAAAAgC1T78IgazrssMNixIgR8dlnn8V3vvOd7PiYiHVHyMyfPz/+8Ic/RLdu3eK73/1ufPTRR3ntZfny5bF69eqcY82aNdvsOk2bNl3n2JIlS7a4r3ybMmVKfPOb34yrr7467VYAAAAAAAAAgPWo1/M+Kisr4/7774+bb745Ro8enQ1/VI+NiYicr5MkidWrV8cDDzwQI0aMiHPPPTd+//vfrzeAsbmWLl26zrEmTZpsdp319bK+2vnQqFGj+PrXvx6DBg2KPn36xJ577hllZWVRUlIS8+fPjw8//DCee+65+POf/xwzZszI3ldVVRWXXnpptGnTJs4666wtfv706dO/8vyazwQAAAAAAAAANk29DINMmjQp/vSnP8Xtt9+eHW+y5piY6nVERElJSVRWVkZE5JxbtWpV/PGPf4xRo0bFyJEjt2iky5qWL1++zrHGjRtvdp3S0tJNql1Tl1xySRx77LGxww47rPd8hw4dokOHDnHwwQfHZZddFr/85S/jmmuuydl95ZxzzokDDjggdt999y3qoXPnzlt0HwAAAAAAAACwYfVmTEySJPHII4/EkUceGbvttlv84Q9/iLlz52bDCWsGPYqLi+O73/1uvPzyyzF//vy4+eabo3fv3tmRMWuOkHn//ffjmGOOiaqqqhr1t75dQFauXLnZdSoqKjapdk39+Mc/3mAQZG2NGzeOq666Km644Yac46tWrYrLLrss770BAAAAAAAAAFuuzodBZsyYEb/61a9ip512iuOPPz5GjhwZVVVV64Q6kiSJjh07xpVXXhlTp06Ne+65JwYMGBDNmzePs88+O15//fV4+eWXY9CgQesESN5444249957a9TnNttss86xFStWbHad9e0Csr7aaTj//PPj+OOPzzk2YsSImDVr1hbVmzZt2ld+xo4dm4+2AQAAAAAAAGCrUmfHxDz77LNx0003xWOPPRarVq3KGU+y9iiYAw88MBtUaNSo0QZrDhgwIJ544ol47LHH4pRTToklS5Zkz913333x/e9/f4v7bdq0aTRq1ChWr16dPbZs2bLNrlOXwyAREZdffnmMGDEiu06SJJ5++un4wQ9+sNm1OnXqlM/WAAAAAAAAAICoYzuDlJeXx7Bhw2L33XePww8/PB566KGorKzM2QWkeieQpk2bxg9/+MN4++2344UXXogTTzzxK4Mgazr66KPjmmuuydZNkiTGjx9f4/633XbbnPXMmTM3u8aMGTM2WjdNPXv2jB133DHnmB08AAAAAAAAAKDuqBNhkDFjxsTpp58enTp1ip/+9KfxySefZEe/rD0Kplu3bjFs2LD4/PPP409/+lP06NFji5555plnRklJSXY9d+7cGr/HbrvtlrOeOnXqZteYNm1aznr77bevUzuDRER07949Zz179uyUOgEAAAAAAAAA1pbamJilS5fG3XffHTfddFO88847EfGvsS/VY2CqjxUVFcWgQYPi/PPPjyOPPDIvzy8uLo4dd9wxJk2aFBERK1eurHHNPfbYI1599dXsurr25pg8efI6Neua1q1b56zLy8tT6gQAAAAAAAAAWFtqYZCOHTvG0qVLswGQiH+FQKqPlZWVxZlnnhk//vGPY+edd857D/necWPtHTO2ZHzKmDFjctZ77rlnjXoqhAULFuSsW7VqlU4jAAAAAAAAAMA6UguDLFmyJDsCplp1CKRXr15x3nnnxcknnxxNmjQpaB9rhlFqauDAgTnrWbNmxaeffhq77LLLJt2/bNmyeOutt3KOHXrooflqL28++eSTnHX79u1T6gQAAAAAAAAAWFtqYZA1JUkSJSUl8Z3vfCfOO++8+PrXv14rzz3nnHNi5syZeavXu3fv6Ny5c0ybNi177L777ovLLrtsk+4fMWJEVFZWZtdNmjSJww8/PG/95cOnn366ThikZ8+eKXUDAAAAAAAAAKwt1TBIkiTRsWPH+NGPfhQ/+tGPYrvttqvV5//oRz/Ke83BgwfHf//3f2fXf/nLX+LSSy+N4uKN/1HfcsstOevDDjssmjdvnvcea+I3v/nNOseOPPLIFDoBAAAAAAAAANanKK0HH3jggXHvvffGZ599Fv/5n/9Z60GQQhk6dGiUlJRk15MnT45rr712o/fde++98dJLL+Ucu/TSSzd6X/WonerP6aef/pXX12Qszr333ht//etfc44dfPDBsdNOO21xTQAAAAAAAAAgv1ILg7zwwgsxZMiQTdoxoz7Zeeed46yzzso5dsUVV8QTTzyxwXvGjh0b5513Xs6xQYMGFWRczosvvhhHHXXUOsGTjbn++uvj1FNPzQmTZDKZuPrqq/PdIgAAAAAAAABQA6mFQRqyK6+8Mjp06JBdr1ixIgYPHhxDhw6NTz75JBuomDp1alx++eUxcODAmD9/fvb65s2bx7BhwwrSW5Ik8eSTT8ZBBx0U3bp1i0svvTQeffTRmDp1alRVVeVc9/HHH8fNN98cPXr0iIsuuigqKytzal1++eWx3377FaRPAAAAAAAAAGDLNKxtOeqI9u3bx4gRI+Kwww6LpUuXRkTEqlWr4rrrrovrrrsuSktLo6ioKJYvX77OvY0aNYq77ror9thjj4L3OWnSpJydPTKZTGyzzTZRUlISCxYsyAmHrO2iiy6Kyy+/vOA9AgAAAAAAAACbx84gBdK/f/8YNWpUdOrUaZ1zFRUV6w2ClJWVxSOPPBLHHXdcbbS4jiRJYvHixTF//vwNBkHatWsXI0aMiOHDh9dydwAAAAAAAADAphAGKaD9998/Pvjgg/jFL34R7dq12+B1LVu2jAsuuCA+/PDD+Na3vlXQnnr16hU33nhjDBkyJDp37rxJ95SUlET//v3j1ltvjc8++yy1sAoAAAAAAAAAsHHGxBRYixYt4te//nVcccUV8cYbb8Q777wTc+bMiSRJok2bNtG9e/fo27dvNG7ceIvqJ0myWddvu+22ce6558a5554bERHz58+PDz/8MKZNmxazZs2KpUuXRlVVVbRs2TLKyspi5513jj59+kSTJk22qD8AAAAAAAAAoHalFgZp1KhRwWoXFRVFy5Yto1WrVtG6devYe++9Y//994+DDjoo9t5774I996s0atQo9t9//9h///1Tef6GtG7dOgYMGJB2GwAAAAAAAABAnqQWBtncHS02x+rVq6O8vDzKy8tjypQp8eabb8Zdd90VERF9+/aNCy+8ML773e8W7Pn/n737Do+iXPs4/tt0ShJqCL2D0qWLdERAQAEFGyDKsVc8HrtgQUU91qPHBoKIBVEURIqFJiIdAelFem+ppM/7hy97mOwm2TKbLfl+riuXzLPz3HNvdu/JY/bODAAAAAAAAAAAAAAAgL/49TYxNputWI5zYePJihUrtHLlSk2dOlVTpkxRQkJCseQAAAAAAAAQqLKycjRvwTrNXbDW4bHBQyeo9SX11bN7c/Xr01pRUdx1GAAAAACAQOfX/3t3dnWQ/A0ihV1B5MJ93dnPMAzNnz9f7du318qVK1WlShV30gYAAAAAAAgJ2dk5ev+jBXrvwwU6cSLJ6T7bth/Stu2H9PmXS5WQEK87b+ujO2/ro8hImkIAAAAAAAhUfvu/9nHjxtn/nZSUpA8++EAZGRmS/tfYUbFiRV1yySWqW7eu4uPjFR0dreTkZJ06dUobN27Utm3blJOTI5vNZm/46Nixo6644grl5OTozJkzOnr0qFauXKlDhw5J+l9jiGEY2r9/vwYPHqwlS5YoMjKyOJ8+AAAAAACAX23bflD3PPChNm7a5/Kc48eT9NwLX+m72Sv17lu366LGNXyYIQAAAAAA8JTNKOySGsVg7dq1GjRokA4fPizDMBQeHq5bbrlFo0ePVocOHQqdm5ycrC+//FJvv/22tmzZYm/0uOeee/Tmm28qLCzMvu+GDRv08ssv68svvzQ1hNhsNr399tu65557fPck4ZGDBw+qZs2akqQDBw6oRg1+wQQAAAAAgBVWrd6p60e8ppSUcx7HiI0tpS8//afat2toYWYAAAAoyS68feHMb1eYHruocXVuXwggZPnis3G/NoOsW7dO3bt3V1pamgzDUKNGjTR9+nS1bNnSrTg5OTkaP368nnvuOXujxw033KBp06Y57DtjxgyNHDlSWVlZkv5uCKlVq5Z2796t8PBw758ULEMzCAAAAAAA1tu2/aCuvHq8V40g58XGltK82U+rcaPqFmQGAACAksqV2xdeiNsXAgg1IdUMkp6erqZNm2rfvr8vRdqgQQP9+uuvqlKliscx33jjDf3zn/+U9PftYN58803dd999Dvt99NFHuuOOO2Sz2exXB5k/f7569+7t8bFhPZpBAAAAAACwVnZ2jvoOfM6tW8MUpUXz2pr//Vh+CQ8AAACXvb57o17fvVGSlHcoVTkf/SljX4rbcWy1YxVxWzOFVS8rSXqofgs9VL+FpbkCQHHwxWfjYUXv4huvv/66vRHEZrNp4sSJXjWCSNKYMWPUo0cPSX9f8WPs2LFKSXH8wXHbbbepTZs2urAPZunSpV4dGwAAAAAAINC9/9ECSxtBJGnjpn16/6MFlsYEAABAaEvOztKhjDQd23xEmeNXedQIIknGvhRljl+lY5uP6FBGmpKzsyzOFACCl9+aQd5//33ZbDbZbDa1bdtWXbt2tSTuww8/LOnvBpPk5GR9/vnnTve755577PtJ0vLlyy05PgAAAAAAQCDKysrxWdPG+x8tUHZ2jk9iAwAAIPTERUap6ilD5d7dprCMXK9ihWXkqty721T1lKG4yCiLMgSA4OeXZpANGzbo8OHD9u3+/ftbFvvyyy9XdHS0fXvevHlO9+vZs6f934Zh6ODBg5blAAAAAAAAEGjmLVin48eLvv+6J44fT9Lc+et8EhsAAACh575aTXTx9MPSOYsais/l6OLph3VfrSbWxAOAEOCXZpBNmzZJkv02LbVr17YsdmRkpBITE+3xzx8rv1q1aik+Pt6+febMGctyAAAAAAAACDQLFzv/HYlVFi3xbXwAAACEDm5fCAC+55dmkKNHj5q2S5UqZWn8C+MdO3aswP0qVqxo/3dSkm/+MgYAAAAAACAQbNi4N6jjAwAAIDRw+0IAKB5+aQbJzTXf+yt/c4i3LoyX/1gXKl26tP3f4eHhluYAAAAAAAAQSHbvOeLb+Lut/f0OAAAAQhO3LwSA4uGXZpDzt3Gx2WySpOXLl1sWe/v27Tp79qx9u0qVKgXum5KSYv93mTJlLMsBAAAAAAAg0GRm+vYvJDMys30aHwAAAKGB2xcCQPHwSzNIjRo17P82DENz587V6dOnLYn9ySef2P9ts9lMx8rvxIkT9n9XrlzZkuMDAAAAAAAEoujoCJ/Gj4mO9Gl8AAAAhAZuXwgAxcMvzSCXXXaZ6UocaWlpGjNmjNdxt2/frjfeeEM2m02GYUiSrrjiCqf77tmzR+np6ZL+bhqpU6eO18cHAAAAAAAIVPXrVfVt/PqJPo0PAACA0MDtCwGgePilGSQmJkb9+vWTYRj2xo1p06bpkUce8Tjmzp07dcUVVygzM9M0PnToUKf7r1q1yrTdpEkTj48NAAAAAAAQ6Fq2qBPU8QEAABAauH0hABQPvzSDSNIzzzyjiIi/L096viHktddeU5cuXbR69WqX46SlpemVV15R69atdeDAAXssm82m6667ThdffLHTed9//70k2a8gcumll3r5jAAAAAAAAAJXz+7NfRq/RzffxgcAAEBo4PaFAFA8fHu2LUSTJk308MMPa8KECbLZbPYmjt9++00dO3ZUkyZNdOWVV6p169aqU6eO4uPjFRUVpZSUFJ06dUqbNm3SihUrNGfOHKWnp9sbQM4rX7683njjDafHTk1N1Zw5c+zHDAsLU/fu3YvpmQMAAAAAABS/fn1aKyEhXsePJ1keOyEhXlf2bW15XAAAAISe+vWqavOW/b6Lz+0LAUCSH5tBJOmFF17QwYMHNW3aNFNDiGEY2rx5s7Zs2VJkjPNX9jjfCGIYhsqVK6f58+erSpUqTudMnjxZKSkp9u0uXbqoYsWKFjwjAAAAAACAwBQVFaE7b+uj5174yvLYd97WR5GRfv01EwAAAIJEyxZ1fNoMwu0LAeBvfv2/dJvNpilTpqhChQr6z3/+Yx8773yjR1ExLty/Xr16mj59utq0aVPgnD59+uj333+3b1erVs2T9AEAAAAAAILKnbf10XezV2rjpn2WxWzZoo7uur2vZfEAAAAQ2np2b67Pv1zqs/jcvhAA/hbm9wTCwvTmm29q4cKFaty4sf3KIJLsVwsp7Ov8/pGRkbr//vu1cePGQhtBJKlRo0bq0KGD/atmzZrF8VQBAAAAAAD8KjIyQu++dbtiY0tZEi8urrTefet2RUSEWxIPAAAAoe/87Qt9gdsXAsD/+L0Z5Lxu3bppy5Yt+vnnnzVs2DBVrFjR3uhR0FdYWJhatWqll156SQcPHtSbb76p0qVL+/upAAAAAAAABKyLGtfQl5/+0+uGkLi40vpi6kNq3Ki6RZkBAACgJDh/+0Jf4PaFAPA/NsOVe7H4yZ49e7Rp0yadOnVKZ86cUWZmpuLj41W+fHnVrFlTbdq0ofkjhB08eNB+1ZYDBw6oRo0afs4IAAAAAIDQsX3HId19/wce3TKmRfPa+u/bd9AIAgAAAI9kZ+eo78DnLL994fzvx3LVOgBByRefjQd0MwhKNppBAAAAAADwrezsHL3/0QK9/9ECHT+eVOT+CQnxuvO2PvzFJQAAALy2bftBXXn1eKWknPM6Vlxcac2d9RTNygCCVsg0g2zZskVff/31/5Kw2fToo48qKiqquFNBAKMZBAAAAACA4pGdnaO589dp3oJ1+ubb302PXXxRDbW+pJ56dGuuK/u2pgkEAAAAllm1eqeuH/GaVw0h529f2L5dQwszA4DiFTLNIO+++67uu+8+2Ww2SVLHjh3122+/FXcaCHA0gwAAAAAAULxOnkrWxS3uM41t3fgfVaoY56eMAAAAEOq4fSEA+Oaz8TCvI3ggKenvy46e70Pp16+fP9IAAAAAAAAAAAAA4EeNG1XX/O/HauyTw5SQEO/SnISEeI19cpjmfz+WRhAAKIBfrusZEWE+LFd8AAAAAAAAAAAAAEqmyMgI3Xd3f915Wx/Nnb9O385brVlrNyv82DkpJ0+KCFOjeolq37oBty8EABf55SxZoUIF03apUqX8kQYAAAAAAAAAAACAABEZGaGrB7ZX43Z19Mkq88eYH7cfrIsSE/yUGQAEH7/cJqZhw4aSJJvNJkk6fvy4P9IAAAAAAAAAAAAAAAAIOX5pBmnfvr2io6Pt26tXr/ZHGgAAAAAAAAAAAAAAACHHL80gpUqVUr9+/WQYhgzD0Lx583Tu3Dl/pAIAAAAAAAAAAAAAABBS/NIMIkn/+te/ZLPZZLPZdPr0ab3yyiv+SgUAAAAAAAAAAAAAACBk+K0Z5NJLL9Vdd90lwzAkSS+88IJmzpzpr3QAAAAAAAAAAAAAAABCgt+aQSTpzTff1MCBA2UYhnJycnTdddfp0UcfVXp6uj/TAgAAAAAAAAAAAAAACFp+bQaJiIjQt99+qyeeeELh4eHKzc3Vv//9b1WrVk133HGHvvzyS+3YsUNnz55VXl6eP1MFAAAAAAAAAAAAAAAIChH+OnB4eLjDmM1mk2EYSk5O1sSJEzVx4kSvj2Oz2ZSTk+N1HAAAAAAAAAAAAAAAgGDgt2YQwzAcxmw2m2w2W4GPAwAAAAAAwHOv796o13dvLPDxvLw8nX6xjWmsxervFBZW+MVlH6rfQg/Vb2FJjgAAAAAAwHt+awaRZG/8cPcxV9FQAgAAAAAA8D/J2Vk6lJFW+E7lo02bR7LOuRQXAAAAAAAEDr82g9CsAQAAAAAAUHziIqNUPaZMgY/n5ObqWHaGaaxKZIwinNzuN39cAAAAAAAQOPzWDDJu3Dh/HRoAAAAAAKBEKup2LtuOHtfFq741jS2+pJ8uSkzwdWoAAAAAAMBCNIMAAOBj730wX+99ON9h3DAMZWRmKzMzW9nZucrJybU/FhERrsjIcEVHRyomOtLp7dPuur2v7rqjr09zBwAAAAAAAAAAQPDx621iAAAoCVJSz+nI0TNuzcnJ+bs55Ny5gu+9npJa9L3bAQAAAAAAAAAAUPLQDAIAgI/Fli2lqonlJUnZ2bk6m5RmugqIqyIiwlUuvowiI8PtcQEAAAAAAAAAAID8aAYBAMDH7rrj79u5rFq9U9ePeM2jRhDp76uFZGZl65NJ96t9u4YWZwkAAAAAAAAAAIBQEebvBAAAKAm2bT+o60e8ppQU727tkpJyTtePeE3bdxyyKDMAAAAAAAAAAACEGppBAADwsezsHN3zwIdeN4Kcl5JyTnff/4Gys3MsiQcAAAAAAAAAAIDQErC3icnOztbWrVt18uRJnTp1SufO/f0B2siRI/2cGQAA7nn/owXauGmfpTE3btqn9z9aoPvu7m9pXAAAAAAAAAAAAAS/gGoGycjI0MSJE/Xtt99qxYoVysjIcNinsGaQX375RUlJSfbtFi1aqEGDBj7JFQAAV2Rl5ej9jxb4JPb7Hy3Qnbf1UWRkQP04BwAAAAAAAAAAgJ8FzKdH7733np555hmdPHlSkmQYhsM+Nput0BiLFy/Wiy++aN8eOHCgvvvuO0vzBADAHfMWrNPx40lF7+iB48eTNHf+Ol09sL1P4gMAAAAAAAAAACA4hfk7gXPnzunGG2/UvffeqxMnTtibQGw2m+nLFffff7+io6Ml/d1MMm/ePHtzCQAA/rBw8Safxl+0xLfxAQAAAAAAAAAAEHz82gxiGIZuuOEGTZ8+XYZh2Bs/DMMwfbmqcuXKuuaaa+xzcnJyuDIIAMCvNmzcG9TxAQAAAAAAAAAAEHz82gzyzDPPaPbs2ZJkbwKJjIzU6NGjNXPmTK1fv14XX3yxWzGHDh1qjydJP/30k7VJAwDght17jvg2/u6jPo0PAAAAAAAAAACA4BPhrwMfOnRIr7zyir1pwzAMtWjRQt9++63q1q1r3y8qKsqtuH369FGpUqWUkZEhwzC0aNEiS/MGAMAdmZk5Po2fkZnt0/gAAAAAAAAAAAAIPn67MsiECROUmZkp6e9GkAYNGujXX381NYJ4Ijo6Wq1atbLfKubUqVM6csS3f5UNAEBBoqN923cZEx3p0/gAAAAAAAAAAAAIPn5rBvn222/tt4ax2WyaOHGiYmNjLYndpk0b0/a2bdssiQsAgLvq16vq2/j1E30aHwAAAAAAAAAAAMHHL80gW7du1eHDh+3brVu3VteuXS2LX69ePdP2/v37LYsNAIA7WraoE9TxAQAAAAAAAAAAEHz80gyyZcsW+79tNpt69+5tafxy5cqZtpOTky2NDwCAq3p2b+7T+D26+TY+AAAAAAAAAAAAgo9fmkFOnDghSTIMQ5LUsGFDS+Ofv92MzWaTJKWmploaHwAAV/Xr01oJCfE+iZ2QEK8r+7b2SWwAAAAAAAAAAAAEL780g5w5c8a0HR9v7Ydk55s/zjebxMTEWBofAABXRUVF6M7b+vgk9p239VFkZIRPYgMAAAAAAAAAACB4+aUZJC4uzrSdkpJiafzzVx45r2LFipbGBwDAHXfe1kctmte2NGbLFnV01+19LY0JAAAAAAAAAACA0OCXZpCEhARJ/7uNy5EjRyyNv3btWtN2pUqVLI0PAIA7IiMj9O5btys2tpQl8eLiSuvdt25XRES4JfEAAAAAAAAAAAAQWvzSDFK9enXT9urVqy2LnZubq8WLF9sbTSSpRYsWlsUHAMATFzWuoS8//afXDSFxcaX1xdSH1LhR9aJ3BgAAAAAAAAAAQInkl2aQdu3aqUyZMpIkwzD0008/KTU11ZLY06dP17Fjx+zbdevWVY0aNSyJDQCAN9q3a6h5s5/2+JYxLZrX1txZT6l9u4YWZwYAAAAAAAAAAIBQEuGPg0ZGRqp79+764YcfJElpaWl677339K9//curuMnJyRo3bpxsNpsMw5DNZtPll19uRcoAAHjsvQ/m670P59u3DcNQbNlSSkvPUF6eUeT8sDCbypSO0fHjSRp6w6v28btu76u77ujrk5wBAAAAAAAAAAAQvPzSDCJJN998s3744Qd748azzz6r/v37q0mTJh7Fy87O1vDhw7V7927TLWLuvfdeq1IGAMAjKanndOToGY/n5+UZSkk9p5TUcw5xAQAAAAAAAAAAgPz81gxy7bXX6pJLLtEff/whm82m9PR09erVS7Nnz1a7du3cirV7924NHz5cq1atMl0VZMCAAWrWrJmPngEAAK6JLVtKVRPL+yQuAAAAAAAAAAAAkJ/fmkEk6c0331SvXr2Um5srm82mY8eOqVOnTrr55pv1j3/8Q23bti1w7rFjx7R06VLNnDlT33zzjXJzc+1NIJIUGxur1157rbieCgAABbrrDm7nAgAAAAAAAAAAgOLj12aQLl266J133tGdd94pm80mm82m3NxcTZ48WZMnT1ZkZKQkyTAM+5xq1arpzJkzysrKso+df/zCq4JMnjxZDRo0KN4nBAAAAAAAAAAAAAAA4Gdh/k7g9ttv14svvmi/osf5hg7DMJSVleXQ9HH06FFlZmba9znf/HF+XkREhN59910NHjzYX08JAAAAAAAAAAAAAADAb/zeDCJJjz32mBYsWKCEhARTc4erX9LfjSKVKlXS/Pnzdeedd/r5GQEAAAAAAAAAAAAAAPhHQDSDSFKvXr20c+dOvfzyy6patarpyh/OXPh4XFycnnnmGe3evVs9e/Ys5swBAAAAAAAAAAAAAAACR4S/E7hQ2bJl9a9//UsPPvigli9friVLlui3337TwYMHderUKZ05c0alSpVSpUqVVKVKFXXo0EG9e/dWt27dVLp0aX+nDwAAAAAAAAAAAAAA4HcB1QxyXmRkpLp166Zu3br5OxUAAAAAAAAAAAAAAICgEpDNIAAAAAAAALDeex/M13sfzi/w8ayYMOnRxqaxQddMUFRGXqFx77q9r+66o68lOQIAAAAAAO/RDAIAAAAAAFBCpKSe05GjZwp8PK+s46+KTpxMUlhqTpFxAQAAAABA4KAZBAAAAAAAoISILVtKVRPLF/h4Tulwnc43ViWhnCLK5hYZFwAAAAAABA6aQQAAAAAAAEqIu+4o/HYuJzLPKWHBVNPYkp/Hq3I0zR4AAAAAAASTMH8nAAAAAAAAAAAAAAAAAOvQDAIAAAAAAAAAAAAAABBCAuo2McuXL9eCBQu0du1abd++XUlJSUpKSlJOTo7HMW02m1fzAQAAAAAAAAAAAAAAgklANIPMnDlTTz/9tLZt22YfMwzDjxkBAAAAAAAAAAAAAAAEJ782g+Tm5uqWW27RZ599JsncAGKz2byOT0MJAAAAAAAAAAAAAAAoafzaDPKPf/xD06ZNs29f2ABCIwcAAAAAAAAAAAAAAID7/NYMMn/+fH3yySdOG0AqV66sNm3aqH79+oqPj1dkZKS/0gQAAAAAAAAAAAAAAAgqfmsGeeaZZ+z/Pt8E0qxZM73yyiu64oorFBYW5qfMAAAAAAAAAAAAAAAAgpdfmkGOHz+u1atXy2azyTAM2Ww29enTR999952ioqL8kRIAAAAAAAAAAAAAAEBI8MvlN3777Tf71UAkKT4+Xp9++imNIAAAAAAAAAAAAAAAAF7ySzPIsWPH7P+22WwaMmSIKlas6I9UAAAAAAAAAAAAAAAAQopfmkFOnz4tSfarg3To0MEfaQAAAAAAAAAAAAAAAIQcvzSDlC5d2rRdoUIFf6QBAAAAAAAAAAAAAAAQciL8cdDatWubts+ePeuPNAAAAAAAACApKy9Xs47u1XdH9jo81mP59+pQPkF9E2rq6sQ6igoLL/4EAQAAAACAW/zSDNKuXTtJks1mkyTt2bPHH2kAAAAAAACUaNl5uXpj9ya9vmejjmWec7rP5pQz2pxyRh/v367E6NIaU6+5xtRvrkiaQgAAAAAACFh+uU1MjRo11LFjRxmGIUlasGCBP9IAAAAAAAAosTYnn1bHX7/To1tXFtgIkt/RzHQ9unWlOv76nTYnn/ZxhgAAAAAAwFN+aQaRpH/961+SJMMwtH79ei1ZssRfqQAAAAAAAJQoy08fVadls7Qu6aRH89clnVSnZbO0/PRRizMDAAAAAABW8FszyODBgzVgwAD79l133aWzZ8/6Kx0AAAAAAIASYXPyafVbMU/JOVlexUnOyVK/FfO0JeWMRZkBAAAAAACr+K0ZRJKmTZumpk2byjAMbd++Xf369dOhQ4f8mRIAAAAAAEDIys7L1cj1i7xuBDkvOSdLI9YtVHZeriXxAAAAAACANfzaDBIXF6clS5aoc+fOMgxDq1atUosWLfT888/ryJEj/kwNAAAAAAAg5Lyxe5PHt4YpyLqkk3pj9yZLYwIAAKBkysrL1YzDu/XknnUOjw3+c6FG/7FYMw7vVhbNyABQJJthGIY/Dnzrrbfa/52dna1vvvlGmZmZMgxDNptNklS/fn01bNhQFSpUUGRkpEfHsdlsmjRpkiU5o3gdPHhQNWvWlCQdOHBANWrU8HNGAAAAAAAEr6y8XNX+6XMdzUy3PHZidGnt732jIsPCLY8NAACA0Jedl6s3dm/S63s26ljmuSL3T4wurTH1mmtM/easQQGEBF98Nu63ZpCwsDB700d+F6ZU0D6uON9YkptLd2AwohkEAAAAAADrzDi8W8PW/Oyz+F+1vVxDq9X3WXwAAACEps3JpzVy/SKPrmDXOr6Spl7SQ03jKvggMwAoPr74bNyvt4mR/m7YyN+PYrPZ7F/nH3f3CwAAAAAAAP8z//gBn8ZfcPygT+MDAAAg9Cw/fVSdls3y+FaG65JOqtOyWVp++qjFmQFA8PN7M8j5po+iHnf3CwAAAAAAAP+z9qxnv2B3Pf4Jn8YHAABAaNmcfFr9VsxTck6WV3GSc7LUb8U8bUk5Y1FmABAaIvx14Fq1atG0AQAAAAAAUEy2p571bfy0JJ/GBwAAQOjIzsvVyPWLvG4EOS85J0sj1i3Uii6DFBkWbklMAAh2fmsG2bt3r78ODQAAAAAAUOJk5uX6NH5Gbo5P4wMAACB0vLF7k8e3hinIuqSTemP3Jj3SsJWlcQEgWPn9NjEAAAAAAADwvWgf/4VkTLjf/uYIAAAAQSQrL1dv7Nnkk9hv7NmkbB83QQNAsKAZBAAAAAAAoARoXLacb+OXifdpfAAAAISGWUf36mhmuk9iH81M13dH9/okNgAEG5pBAAAAAAAASoA25Sr5OH5ln8YHAABAaJh//IBP4y84ftCn8QEgWNAMAgAAAAAAUAL0Tajp0/h9Emr4ND4AAABCw9qzJ30c/4RP4wNAsKAZBAAAAAAAoAS4OrGOEqNL+yR2YnRpDUqs45PYAAAACC3bU8/6Nn5akk/jA0CwoBkEAAAAAACgBIgKC9eYes19EntMveaKDAv3SWwAAACElsy8XJ/Gz8jN8Wl8AAgWEf5OwBfmzJmj06dP27dHjhzpx2wAAAAAAAACw5j6zTX98G6tS7Lu0txt4ivpofotLIsHAACA0BYdFq4MHzaExISH5MefAOA2n5wNK1SoYP93ixYttHjxYpfn7ty5U+fOnTPNd9fTTz+tjRs32rdpBgEAAAAAAJAiw8I19ZIe6rRslpJzsryOFx8RpamteyoijIvPAgAAwDWNy5bThuRTvotfJt5nsQEgmPikGeTs2bP2fycnJ7s1d9iwYfZGDpvNppwczy7lZBiGPQYAAAAAAAD+1jSuguZ17Kd+K+Z51RASHxGluR37qUlseQuzAwAAQKhrU66ST5tB2pSr7LPYABBMfPZnG940YRiGYf/yx/EBAAAAAABCWacKifq9yyC1jq/k0fzW8ZW0vMsgdaqQaHFmAAAACHV9E2r6NH6fhBo+jQ8AwSIgb5pls9m8agQBACCQvL57o17fvdFh3DAMZeTlKiMvV9l5eco28uyPRdrCFBkWppiwcMWEhTttcnyofgvuzQ4AAACPNYktrxVdBumN3Zv0xp5NOpqZXuScxOjSGlOvucbUb67IsPBiyBIAAACh5urEOkqMLu3S+tNdidGlNSixjuVxASAYBWQzCAAAoSQ5O0uHMtLcmpNt5Ck7N0/puQXfLi052/t7vAMAAKBkiwwL1yMNW2lM/eb67uhezTqyV58d2mXap1lseXUoX0V9EmpoUGIdmkAAAADglaiwcI2p11yPbl1peewx9WhaBoDzaAYBAMDH4iKjVD2mjCQpOy9PZ7IzTVcBcVWkLUzlI6MVGRZmjwsAAABYITIsXEOr1Vf3itUcmkEWdhqoytGl/JQZAAAAQtGY+s01/fBurUs6aVnMNvGVuJIyAFyAZhAAAHzs/O1clp8+qn4r5nnUCCL9fbWQjLxcfdv+Cu7NDgAAAAAAACBoRYaFa+olPdRp2Swl53h/BeT4iChNbd1TEf//h3QAAIkzIgAAxWBz8mn1WzHP6/+xSc7JUr8V87Ql5YxFmQEAAAAAAABA8WsaV0HzOvZTXIR3V0COj4jS3I791CS2vEWZAUBooBkEAAAfy87L1cj1iyzpcJf+bggZsW6hsvNyLYkHAAAAAAAAAP7QqUKifu8ySK3jK3k0v3V8JS3vMogrKQOAEzSDAADgY2/s3mTpvS8laV3SSb2xe5OlMQEAAAAAAACguDWJLa8VXQbp5Ys7KDG6tEtzEqNL6+WLO2hFl0FcEQQAChDh7wQAAAhlWXm5emOPb5o23tizSWPqN1dkWLhP4gMAAAAAAABAcYgMC9cjDVtpTP3m+u7oXs06slefHdpl2qdZbHl1KF9FfRJqaFBiHX4vCgBFoBkEAAAfmnV0r45mpvsk9tHMdH13dK+GVqvvk/gAAAAAAAAAUJwiw8I1tFp9da9YzaEZZGGngaocXcpPmQFA8OE2MQAA+ND84wd8Gn/B8YM+jQ8AAAAAAAAAAIDgQzMIAAA+tPbsSR/HP+HT+AAAAAAAAAAAAAg+NIMAAOBD21PP+jZ+WpJP4wMAAAAAAAAAACD40AwCAIAPZebl+jR+Rm6OT+MDAAAAAAAAAAAg+NAMAgCAD0WHhfs0fkx4hE/jAwAAAAAAAAAAIPjQDAIAgA81LlvOt/HLxPs0PgAAAAAAAAAAAIKPz/+ceNeuXerZs6db+1/InbkFxQAAwF/alKukDcmnfBi/ss9iAwAAAAAAAAAAIDj5vBkkLS1NS5YscWuOYRj2/7o7FwCAQNI3oaY+3r/dZ/H7JNTwWWwAAAAAAAAAAAAEJ583g5xv7Cju+TabzavjAgBghasT6ygxurSOZqZbHjsxurQGJdaxPC4AAAAAAAAAAACCW5gvg9tsNr99AQAQCKLCwjWmXnOfxB5Tr7kiw8J9EhsAAAAAAAAAAADBy2fNIIZh+P0LAIBAMKZ+c7WOr2RpzDbxlfRQ/RaWxgQAAAAAAAAAAEBo8MltYv766y9fhAUAIChFhoVr6iU91GnZLCXnZHkdLz4iSlNb91REmE8v8AUAAAAAAAAAAIAg5ZNmkNq1a/siLAAAQatpXAXN69hP/VbM86ohJD4iSnM79lOT2PIWZgcAAAAAAAAAAIBQwp8UAwBQTDpVSNTvXQZ5fMuY1vGVtLzLIHWqkGhxZgAAAAAAAAAAAAglPrkyCAAA+J/Xd2/U67s32rcNw1BcRKRSc3KUJ6PI+WGyqWxEhI5mpOuK33+wjz9Uv4Ueqt/CJzkDAAAAAAAAAAAgeNEMAgCAjyVnZ+lQRprH8/NkKDknW8k52Q5xAQAAAAAAAAAAgPxoBgEAwMfiIqNUPaaMT+ICAAAAAAAAAAAA+dEMUkzy8vK0du1abdq0ScePH5dhGKpYsaKaNGmiDh06KDIy0t8pSpIOHDiglStXat++fTp37pzKli2revXq6dJLL1XlypX9nR4ABCVu5wIAAAAAAAAAAIDiRDOIj6WmpurVV1/V+++/r+PHjzvdJz4+XqNGjdKTTz7pt4aLWbNmacKECVqxYoXTx8PCwtSrVy899dRT6tq1azFnBwAAAAAAAAAAAAAAXBXm7wRC2Zo1a9S0aVM999xzBTaCSFJSUpLeeustXXTRRZo/f34xZiilpaVp2LBhGjRoUIGNINLfVzb56aef1K1bNz3wwAPKyckpxiwBAAAAAAAAAAAAAICraAbxkZUrV6pHjx7av3+/w2PR0dEqVaqUw/jp06c1cOBAzZ49uzhS1Llz53TllVdqxowZDo/ZbDbFx8c7nff2229r+PDhMgzD1ykCAAAAAAAAAAAAAAA30QziAydOnNDgwYOVmppqH4uIiNCDDz6o7du3Kz09XWlpadq7d6+efvpplSlTxr5fTk6ObrrpJu3YscPned5///1aunSpaaxz586aP3++0tLSdPbsWSUnJ2v69Olq1qyZab/p06frpZde8nmOAAAAAAAAAAAAAADAPTSD+MAzzzyjI0eO2Lejo6P17bff6o033lCjRo0UFhYmm82m2rVr67nnntMvv/yi8uXL2/dPTU3VQw895NMcV69erYkTJ5rGRo0apcWLF6tPnz72K5fExsZq2LBhWrFihXr37m3a/7nnntPBgwd9micAAAAAAAAAAAAAAHAPzSAW27t3r0OTxbPPPqsBAwYUOKdDhw569913TWM//PCDfv/9d5/kKElPPvmkabt58+b68MMPFR4e7nT/MmXKaPr06UpMTLSPZWZm6vnnn/dZjgAAAAAAAAAAAAAAwH00g1jsjTfeUFZWln27bt26+uc//1nkvBtuuEGdO3c2jb388suW5ydJ69ev108//WQae/PNNxUZGVnovPLly2v8+PGmsY8//lgnTpywPEcAAAAAAAAAAAAAAOAZmkEs9t1335m2R48erYiICJfm3n777abtH3/8Uenp6ValZvftt9+aths2bKiePXu6NPf6669XbGysfTsnJ0dz5syxND8AAAAAAAAAAAAAAOA5mkEstH79eu3fv980dt1117k8/5prrjE1jpw7d04//vijZfmdN2vWLNP2sGHDXJ5bpkwZDRw4sNB4AAAAAAAAAAAAAADAf2gGsdDChQtN21WqVFGDBg1cnl+6dGm1atXKNPbLL79YkZrdyZMntXHjRtPYZZdd5laMTp06mbbzP28AAAAAAAAAAAAAAOA/NINYaMuWLabt9u3bux2jY8eOpu2tW7d6lVN+zuJ16NDBrRj5c0xJSdHBgwe9ygsAAAAAAAAAAAAAAFiDZhALbdu2zbRdr149t2Pkn5M/prfyx4uPj1eFChXciuHseVmdJwAAAAAAAAAAAAAA8AzNIBbasWOHabtWrVpux6hZs6Zp+9ChQ0pLS/MqrwtZkWP58uVVpkwZ09j27du9ygsAAAAAAAAAAAAAAFiDZhALnTlzxrSdmJjodoyqVasWGdcbp0+fNm17kqPkmKeVOQIAAAAAAAAAAAAAAM9F+DuBUHHu3Dnl5uaaxkqXLu12nFKlSjmMpaamepxXUbE8yVFyzNPKHJ256qqrFB0dbUms66+/Xg888ECh+7z11lv68ssvLTneeb///nuhjx8/flxXX321pce8//77dcMNNxS6z5NPPqmFCxdadszKlStr9uzZhe6zadMm3X777ZYdU5LGjx+vXr16FbrPbbfdpj///NOyYzZr1kwfffRRofv88ssveuqppyw7piR9+OGHat68eaH7XHXVVTpx4oRlx+zZs6deeOGFQvf54osv9Pbbb1t2TEmaNWuWEhISCt3n0ksvtfSYnCPMOEd4jnOEGecI73CO+B/OEd7hHGHGOcJznCPMQukckdioQaH7cI7wHOcIM84RnmMdYcY5wjucI/6Hc4R3OEeYcY7wHOcIM84RnuMcYcY5wnPFdY7IzMz0ar4zNINYxNmtXGJiYtyO46wZxMrbxOSP5UmOkmOenuR48ODBQh8/cuSI/d/r1693O35BXDnB7tu3TytWrLDsmK7Iysqy/JhDhw4tcp8dO3ZYetzq1asXuU9qaqrlzzX/VW+c+fPPP4v9dT19+rTlx3Sl+WrdunU6dOiQZcesUaNGkfscOXLE8uealZVV5D5WH5NzhBnnCN/iHOEdzhH/wznCO5wjzDhHeI5zhBnnCN/iHOEdzhH/wznCO5wjzDhHeI5zhBnnCN/iHOEdzhH/wznCO5wjzDhHeI5zhFmonCOsQDOIRc6dO+cwFhUV5XYcZ1e/cBbbU/ljeZKj5JinJznWrFnTo2MDAAAAAAAAAAAAAICChfk7gVDh7AobrnR+5efs8i+eXr3DmfyxPMlRcszTyhwBAAAAAAAAAAAAAIDnuDKIRcqWLeswlpGR4XYcZ1fYcBbbU/ljeZKj5JinJzkeOHCg0MePHDmi9u3bux0XAAAAAAAAAAAAAICSjGYQi5QqVUrh4eHKzc21j6Wnp7sdp7ibQTzJUbKmGcSVe3Wdd8kllzi9hY4nateu7dI+HTt2tOR4roqKirL8mFWrVi1yn0aNGll63MqVKxe5T9myZS1/rhUqVChyn2bNmll6TFfiVahQwfLn6kq9tW7d2tJbMTVq1KjIfapWrWr5c3XlVlZWH5NzhBnnCM9xjjDjHOFbnCO8wznCjHOE5zhHmHGO8BznCDPOEb7FOcI7nCPMOEd4jnOEGecIz3GOMOMc4VucI7zDOcKMc4TnOEeYBes5IjMzU+vXr/cqRn42wzAMSyOWYJUqVdKpU6fs26+99poeeught2J8/fXXGjp0qGksJSXFsoaQhx9+WK+99pp9u3nz5tq4caPbcWJjY5Wammrffuedd3TPPfdYkuN5Bw8etJ/0Dxw44FbzCAAAAAAAcN+JzHNKWDDVNHa8z0hVji7lp4wAAABQErEuBVDS+OKz8TCvI8Auf4fZ/v373Y6R/9Yp1apVs/TKIFbkeObMGVMjiLO4AAAAAAAAAAAAAADAP2gGsdBFF11k2t6zZ4/bMf76669CY3orf7ykpCSdPn3arRj5c3QWFwAAAAAAAAAAAAAA+AfNIBZq0qSJaXvVqlVux1ixYoVp++KLL/Yqp/zy5yhJK1eudCtG/hzLli3LLVwAAAAAAAAAAAAAAAgQNINYqGfPnqbtY8eOadeuXS7PT09P1x9//GEa69WrlxWp2VWqVEnNmzc3jf32229uxci/f8+ePWWz2bzODQAAAAAAAAAAAAAAeI9mEAu1bt1aNWvWNI1Nnz7d5fkzZ85Udna2fTsmJkZXXHGFZfmdd/XVV5u2v/rqK5fnpqena86cOYXGAwAAAAAAAAAAAAAA/hPh7wRCzaBBg/Sf//zHvj1p0iQ9+uijiogo+lv94YcfmrZ79+6tMmXKWJ7j4MGDNX78ePv2zp07tXDhQocrmzjz5ZdfKjk52b4dERGhAQMGWJ4jAAAAAACw3uu7N+r13RsLfDzPMBzGWi7+WmFFXBH0ofot9FD9Fl7nBwAAAAAArMGVQSw2ZswYRUZG2rf/+usvvfbaa0XO+/LLL/Xrr7+axh599NEi59lsNtPXqFGjipzTunVrh9vPPPjgg6arkjhz9uxZPfnkk6axUaNGKSEhochjAgAAAAAA/0vOztKhjLQCv45kpjvMOZKZXuicQxlpSs7O8sOzAQAAAAAABaEZxGJ169bV6NGjTWPPPPOMfvjhhwLnrFq1Svfcc49prF+/frrssst8kqMkvfDCC6btTZs26fbbb1dubq7T/dPS0nTdddfp6NGj9rHo6GiNHTvWZzkCAAAAAABrxUVGqXpMGcu/4iKj/P3UAAAAAADABbhNjA88++yz+u677+yNExkZGRo0aJDuvfde3X333WrQoIFsNpv279+vSZMm6bXXXlNaWpp9fpkyZfT666/7NMcOHTrolltu0eTJk+1jU6ZM0a5du/T000+ra9euiomJUWpqqubNm6fnnntOf/75pynGk08+qZo1a/o0TwAAAAAAYB1u5wIAAAAAQMlAM4gPJCQkaObMmerdu7e9ySMnJ0dvvvmm3nzzTUVHRyssLEznzp1zmBseHq5PP/1UF110kc/zfOedd7Rjxw799ttv9rFly5apT58+stlsiouLU1JSktO51157rcMtYwAAAAAAAAAAAAAAgP9xmxgfufTSS7Vw4ULVqFHD4bHMzEynjSDly5fXrFmzNHjw4OJIUaVLl9b8+fM1ZMgQh8cMwyiwEeSee+7R559/rrAw3j4AAAAAAAAAAAAAAAQaPs33ofbt22vLli166qmnVLly5QL3i4uL03333adt27apf//+xZihVLZsWX3zzTeaOXOm2rdvX+B+NptNvXr10uLFi/XOO+8oMjKyGLMEAAAAAAAAAAAAAACushmGYfg7iZIgNzdXa9eu1caNG3XixAkZhqGKFSuqSZMm6tChg6KiovydoiRp//79WrFihfbv36+MjAyVKVNG9erV06WXXqqEhIRizeXgwYOqWbOmJOnAgQNOr7ICAAAAAAAAAACA0HIi85wSFkw1jR3vM1KVo0v5KSMA8C1ffDYe4XUEuCQ8PFzt27cv9OobgaBWrVqqVauWv9MAAAAAAAAAAAAAAAAe4jYxAAAAAAAAAAAAAAAAIYRmEAAAAAAAAAAAAAAAgBBCMwgAAAAAAAAAAAAAAEAIoRkEAAAAAAAAAAAAAAAghNAMAgAAAAAAAAAAAAAAEEJoBgEAAAAAAAAAAAAAAAghNIMAAAAAAAAAAAAAAACEEJpBAAAAAAAAAAAAAAAAQgjNIAAAAAAAAAAAAAAAACGEZhAAAAAAAAAAAAAAAIAQQjMIAAAAAAAAAAAAAABACKEZBAAAAAAAAAAAAAAAIITQDAIAAAAAAAAAAAAAABBCaAYBAAAAAAAAAAAAAAAIITSDAAAAAAAAAAAAAAAAhBCaQQAAAAAAAAAAAAAAAEIIzSAAAAAAAAAAAAAAAAAhhGYQAAAAAAAAAAAAAACAEEIzCAAAAAAAAAAAAAAAQAihGQQAAAAAAAAAAAAAACCE0AwCAAAAAAAAAAAAAAAQQmgGAQAAAAAAAAAAAAAACCE0gwAAAAAAAAAAAAAAAIQQmkEAAAAAAAAAAAAAAABCCM0gAAAAAAAAAAAAAAAAIYRmEAAAAAAAAAAAAAAAgBBCMwgAAAAAAAAAAAAAAEAIoRkEAAAAAAAAAAAAAAAghNAMAgAAAAAAAAAAAAAAEEJoBgEAAAAAAAAAAAAAAAghNIMAAAAAAAAAAAAAAACEEJpBAAAAAAAAAAAAAAAAQgjNIAAAAAAAAAAAAAAAACGEZhAAAAAAAAAAAAAAAIAQQjMIAAAAAAAAAAAAAABACInwdwIAAAAAAAAAAAAASo7Xd2/U67s3Fvh4nmE4jLVc/LXCbLZC4z5Uv4Ueqt/C6/wAIBTQDAIAAAAAAAAAAACg2CRnZ+lQRppbc45kprsUFwDwN5pBAAAAAAAAAAAAABSbuMgoVY8p45O4AIC/0QwCAAAAAAAAAAAAoNhwOxcA8L0wfycAAAAAAAAAAAAAAAAA69AMAgAAAAAAAAAAAAAAEEJoBgEAAAAAAAAAAAAAAAghNIMAAAAAAAAAAAAAAACEEJpBAAAAAAAAAAAAAAAAQgjNIAAAAAAAAAAAAAAAACGEZhAAAAAAAAAAAAAAAIAQQjMIAAAAAAAAAAAAAABACKEZBAAAAAAAAAAAAAAAIITQDAIAAAAAAAAAAAAAABBCaAYBAAAAAAAAAAAAAAAIIRH+TgAoSE5Ojv3fR44c8WMmAAAAAAAAAAAAAAD4xoWfh1/4Obk3aAZBwDpx4oT93+3bt/djJgAAAAAAAAAAAAAA+N6JEydUp04dr+NwmxgAAAAAAAAAAAAAAIAQYjMMw/B3EoAzGRkZ2rRpkySpcuXKiojgQja+cuTIEfvVV1atWqWqVav6OSOg5KEOAf+jDgH/ow6BwEAtAv5HHQL+Rx0C/kcdAoGBWiweOTk59jtnNG/eXDExMV7H5NN1BKyYmBi1a9fO32mUOFWrVlWNGjX8nQZQolGHgP9Rh4D/UYdAYKAWAf+jDgH/ow4B/6MOgcBALfqWFbeGuRC3iQEAAAAAAAAAAAAAAAghNIMAAAAAAAAAAAAAAACEEJpBAAAAAAAAAAAAAAAAQgjNIAAAAAAAAAAAAAAAACGEZhAAAAAAAAAAAAAAAIAQQjMIAAAAAAAAAAAAAABACKEZBAAAAAAAAAAAAAAAIITYDMMw/J0EAAAAAAAAAAAAAAAArMGVQQAAAAAAAAAAAAAAAEIIzSAAAAAAAAAAAAAAAAAhhGYQAAAAAAAAAAAAAACAEEIzCAAAAAAAAAAAAAAAQAihGQQAAAAAAAAAAAAAACCE0AwCAAAAAAAAAAAAAAAQQmgGAQAAAAAAAAAAAAAACCE0gwAAAAAAAAAAAAAAAIQQmkEAAAAAAAAAAAAAAABCCM0gQBFSUlJUrVo12Ww22Ww2PfTQQ/5OKWQdPnxYM2fO1Pvvv68XXnhBr732mr766ivt2rXL45gpKSlKSEiwv36PP/64hRmjuFCHwY06LBmoU/+izkoOaq34sDZFQajD4EYdlgzUqX9RZyWDVXWWkZGhhQsXasqUKXrllVc0YcIETZw4UcuXL1d2drbFWQcn1qUoDLUY3KjFkoE69a8SX2cGgEI99NBDhiRDkhEfH2+cPHnSrfmnTp0y5s+fbzz//PPGwIEDjcTERHu881+TJ0/2TfJBIDs72/joo4+MZs2aOXxfLvxq0qSJ8f777xs5OTluH+Ott96yx4mKijJ27Njhg2cCX6IOfSsvL8/YsWOHMW3aNOOBBx4wLr30UiMmJsbhe+QN6jD0UadmkydPLvTnmidf48aNK/SY1FnJ4Emt1a5d2+v3XzDVnzdYm8IV1KFvsTaFFahTM9am8AVv/x9wzZo1xtVXX+30HH/+Ky4uzrjnnnuMQ4cO+ehZBC7WpXAVtehbrE1hBerUjLVp8aIZBCjE1q1bjcjISPsJYvz48S7N++yzz4wbbrjBqF+/flD/ssDXtm7dalx88cVundDbtGlj/PXXX24dJzMz0/RLnQEDBvjmCcEnqEPfSElJMZ544gmjd+/eRrly5Vz6HnmDOgxt1KkjX/xPzfPPP1/oMamz0OdprYXyh1tWYm0KV1CHvsHaFFaiTh2xNoXVPK0zw/j7vXH77bcbNpvN5fdb2bJljc8//9yHzyiwsC6Fq6hF32BtCitRp45YmxYvmkGAQlx77bX2E0NcXJxx9uxZl+Z169YtJH5Z4EvLli0rcCEVFhZmlC9f3ggPD3f6eLVq1YydO3e6dby3337bFGPZsmU+emawGnXoG3/99ZfbCypvUYehizp15Iv/qVm9enWRx6XOQpuntRbKH25ZhbUpXEUd+gZrU1iJOnXE2hRW87TO0tLSCv3/wNjYWKN06dIFPv7uu+/6+Jn5H+tSuINa9A3WprASdeqItWnxshmGYQiAg/Xr16tNmzY6XyKPPPKIXn75ZZfmdu/eXUuWLHH5WJMnT9aoUaM8STMoHT58WK1bt9axY8dM40OGDNH999+vyy67TBEREcrLy9O6dev04YcfatKkScrLy7Pv26RJE61atUplypRx6Zjp6emqXbu2Tp48Kenv12jRokXWPSn4BHXoO3v37lXdunXdmuPtkoE6DE3UqXPbt2/36v39+OOP6+zZs/btZs2aadOmTUXOo85Clze1VqdOHe3bt8++PX78eFWsWNGt4/fo0UONGzd2a06wYG0KV1GHvsPaFFahTp1jbQoreVNnI0aM0LRp00xj9erV09NPP62rrrpKFSpUkCQdOXJE33zzjcaPH29ao4WFhenHH39Ur169LHo2gYV1KdxBLfoOa1NYhTp1jrVpMfNHBwoQDK655hp7d1h4eLixf/9+l+de2K0XFhZmXHzxxcbIkSON//znP8aKFSscOtYC9S9HfKV///6m52+z2YwPP/yw0Dlz5851uB/aM88849Zxn3jiCdP8pUuXevM0UAyoQ9/J3+FepkwZo0uXLsZDDz1kfPHFF8bzzz9veYe7YVCHoYg6td66descnvu///1vl+dTZ6HJm1rL/5fO7l4+OtSxNoWrqEPfYW0Kq1Cn1mNtivw8rbMZM2Y4vJeuuOIKIy0trcA5J0+eNFq3bm2a07BhQyM7O9uqpxNQWJfCHdSi77A2hVWoU+uxNnUfzSCAE3v27DHCwsLsJ4P+/fu7NX/8+PHGyy+/bCxatMhITk52eLykfrhlGIaxdu1ah+f/yCOPuDT3gw8+MM2LjY01jh8/7vKxd+/ebbq32pAhQzx9GigG1KFvHTt2zLjzzjuNSZMmGRs3bjRycnJMjzu7VJsVqMPQQp36xv3332963hEREcbRo0ddnk+dhR5va40PtwrG2hSuog59i7UprECd+gZrU1zImzpr2bKl6b1Ur149IzU1tch5R44cMcqXL2+a+95773nzNAIS61K4g1r0LdamsAJ16husTd1HMwjgxJgxY0wnk2+//dbS+CX1wy3DMIw77rjD9NwrVKhgpKenuzy/WbNmpvlPPfWUW8fv2bOnfW5YWBi/3Alg1KF/+ep/agyDOgwl1Kn1srKyjEqVKpme98CBA92OQ52FFm9rjQ+3CsbaFK6iDv2LtSlcQZ1aj7Up8vO0zn7//XeH8/j06dNdPu6rr75qmluzZk0jLy/Pw2cRmFiXwh3Uon+xNoUrqFPrsTb1TJgAmOTk5OjTTz+1b8fGxqpfv35+zCi0LFy40LR9ww03qFSpUi7Pv/XWW03bX3/9tVvHHzp0qP3feXl5mjp1qlvzUTyow9BGHYYG6tQ35syZY79v5XmjRo1yOw51FjqoNd9ibQpXUIehjToMDdSpb7A2xYW8qbP8a65y5cpp8ODBLh/7lltuUVjY/z7KOHDggFatWuXy/GDAuhSuohZDG7UYGqhT32Bt6hmaQYB85s+fbzqZ9O/fX9HR0X7MKHScOXNGO3fuNI116dLFrRidO3c2bW/btk1bt251ef7gwYNNPwinTZvm1vFRPKjD0EYdhgbq1DemTJli2q5UqZIGDhzodhzqLHRQa77D2hSuog5DG3UYGqhT32Btigt5U2crV640bXfs2FGRkZEuH7tixYq66KKLTGMzZ850eX6gY10Kd1CLoY1aDA3UqW+wNvUMzSBAPl999ZVpu2/fvn7KJPQcO3bMYaxBgwZuxWjYsKHD2M8//+zy/CpVqqh169b27Z07d2rdunVu5QDfow5DG3UYGqhT6504cULz5s0zjd14441u/Q/fedRZ6KDWfIe1KVxFHYY26jA0UKfWY22K/Lyps/zrLnfXXJLjusudNVegY10Kd1CLoY1aDA3UqfVYm3qOZhDgAoZhaMGCBaax7t27+yeZEHT69GmHsfj4eLdixMXFOYxt3rzZrRj5X9P8P0DgX9RhyUAdBjfq1DemTZum7Oxs05gnlzo8jzoLftSab7E2hSuow5KBOgxu1KlvsDbFhbyts/zrLnfXXM7mbNu2TXl5eW7HCUSsS+EqarFkoBaDG3XqG6xNPUczCHCBP/74Q8ePH7dv16pVS7Vr1/ZjRqHF2WWwMjMz3YrhbH93LnkoSV27djVtz58/36358C3qsGSgDoMbdeobn3zyiWm7ZcuWuuSSSzyOR50FP1/W2t69ezVv3jxNnTpVn376qebOnau1a9c6/I91KGNtCldQhyUDdRjcqFPfYG2KC3lbZ/nXXe6uuSQpIyPDtJ2enq59+/a5HScQsS6Fq6jFkoFaDG7UqW+wNvVchL8TAALJihUrTNstW7b0UyahqUKFCg5jJ06ccCuGs/23b9/uVoz8r+uaNWuUk5OjiAhOiYGAOiwZqMPgRp1ab/369dqwYYNpzJvudok6CwW+qrW2bdvq1KlTTh8rVaqULr30Uo0ePVrDhg0L6fcLa1O4gjosGajD4EadWo+1KfLzts7yr7vcXXMVNGf79u2qW7eu27ECDetSuIpaLBmoxeBGnVqPtal3uDIIcIE1a9aYtps3b+6nTEJT1apVFRUVZRpbu3atWzGc3bfL2aUUC1OrVi2VK1fOvp2RkaFNmza5FQO+Qx2WDNRhcKNOrTdlyhTTdmRkpG666SavYlJnwc9XtVbQB1uSdO7cOS1cuFA33XSTGjZsqEWLFllyzEDE2hSuoA5LBuowuFGn1mNtivy8rbP8fxHt7prLMAz98ccfDuPurrsCFetSuIpaLBmoxeBGnVqPtal3aAYBLrBlyxbTdv369f2USWiKiYlRmzZtTGOzZ892K4az/bOzs92+VFb+1/bPP/90az58hzosOajD4EWdWis7O1uff/65aax///6qXLmy17Gps+Dm71rbu3evLr/8cr3yyivFetziwtoUrqAOSw7qMHhRp9ZibQpnvK2zzp07m7Y3b96s3bt3uzz/119/1ZkzZxzGU1JS3MojULEuhauoxZKDWgxe1Km1WJt6j2YQ4AJ79+41bVevXt0/iYSwPn36mLaXLl2qVatWuTT3wIEDmj59utPHUlNT3coj/2ub/7WH/1CHJQd1GLyoU2vNmTNHJ0+eNI15e6nD86iz4GZlrYWHh6tr16566aWX9OOPP+rAgQNKTU1VZmamjhw5okWLFmns2LGqWrWqaV5eXp4effRRTZo0yeNjBzLWpigKdVhyUIfBizq1FmtTOONtnfXu3VthYf/7KMIwDL322msuz3/11Vedjru75gpkrEvhCmqx5KAWgxd1ai3Wpt6jGQT4f9nZ2Tp27JhpLDEx0U/ZhK4777xT0dHRprFRo0Y57VS8UFZWlkaNGqX09HSnj587d86tPPL/4ubAgQNuzYdvUIclC3UYnKhT6+W/1GFCQoL69+9vSWzqLHhZWWuPPPKI9u3bpyVLluixxx5T7969VaNGDZUpU0ZRUVFKTExU9+7d9eyzz2rv3r165JFHZLPZTDHuvPNOt+85HgxYm6Iw1GHJQh0GJ+rUeqxNkZ8VdVa3bl1dddVVprH3339f8+bNK3LuxIkTNWfOHKePubvmCmSsS1EUarFkoRaDE3VqPdam3qMZBPh/qampMgzDNFamTBk/ZRO6qlSpovvvv980tnXrVvXo0UMbN250Omffvn268sortXDhwgLjli1b1q088r+2ycnJbs2Hb1CHJQt1GJyoU2udOHHC4X/mbrrpJkVERFgSnzoLXlbW2t133+3yX6JERUXp5Zdf1ttvv20az8nJ0ZNPPunR8QMZa1MUhjosWajD4ESdWou1KZyxqs7GjRunyMhI+7ZhGBoyZIgmTpzoEF/6+wO1CRMm6I477igwprtrrkDGuhRFoRZLFmoxOFGn1mJtag1rvltACHDWPV2qVCk/ZBL6xo8fr8WLF2v16tX2sQ0bNqh169bq1q2bOnfurEqVKuns2bNavXq1fvzxR/v9LW02m/r27Wv6AWCz2RQXF+dWDvlf24K651G8qMOShToMTtSptaZNm6bs7GzT2C233GJZfOosePm71u69914tWrRIM2fOtI/NnDlTx44dU5UqVYotj+LA2hQFoQ5LFuowOFGn1mJtCmesqrNWrVrplVde0ZgxY+xjGRkZuu222zRhwgT1799fderUUW5urnbt2qXvv/9ehw8ftu87YMAAh792LleunNt5BDLWpSgMtViyUIvBiTq1FmtTa9AMAhTCWYddSfbZZ58pJSXFpX1jY2N10003OX0sKipKP/zwg66++mr9/vvv9vHc3FwtXLiw0G728/c7u/B/bOLi4kz3UHMFr23w4LUys6oOAwGvbejgtfTcJ598Ytpu3bq1mjdvbll8XpvQUtyv57hx40wfbhmGoR9//FEjRowo1jwKwtoU/kAdmrE2RSCiTj3H2hSu8vS1fPDBB5WamqqxY8eaYuzevdvhSjsX6tChg/773/8G7AdbrEvhL9SiGWtTBCLq1HOsTa1BMwjw/0qXLu0wlpGR4YdMAteTTz6pffv2ubRv7dq1C11MVa5cWQsXLtRzzz2nt956q8iOu8TERE2aNElXXnmlnnnmGdNjNWvWdCmnC+W/Pxq3OAgM1GHRrKxDf6MOgxN1ap3169drw4YNpjEru9sl6iyYBUKttWjRQrVq1dL+/fvtY6tWrQqYD7dYm8LXqMOisTaFv1Gn1mFtioJYXWdPPfWUWrVqpX/961/atm1bofuGhYVpzJgxeuGFF3TkyBGHxz1Zd/kC61IUB2qxaKxN4W/UqXVYm1qHZhDg/8XGxspms5k6wVJTU/2YUeiLiYnRiy++qAceeEAzZszQjz/+qC1btujEiRPKzs5WtWrVdNFFF+m6667TkCFD7Cfi/Au6tm3bun3stLQ007a7l0yEb1CHJQt1GJyoU+tMmTLFtB0VFaUbb7zR0mNQZ8ErUGqtSZMmpg+3jh8/Xuw5FBfWpsiPOixZqMPgRJ1ah7UpCuKLOhswYID69eunOXPmaN68eVq+fLmOHTumM2fOqFKlSqpVq5b69u2rESNGqH79+pIc11xRUVGW/nVwIGFdCmeoxZKFWgxO1Kl1WJtah2YQ4P9FRESoatWqpvtqHTlyRK1atfJfUiVElSpVdO+99+ree+91af9NmzaZttu1a+f2MfN3RtaqVcvtGLAedViyUIfBiTq1RnZ2tj7//HPT2MCBA1WhQgVLj0OdBa9AqbX878kzZ84U6/H9gbUpzqMOSxbqMDhRp9ZgbYrC+KrOwsPDdfXVV+vqq692af/8a66WLVsqKirKqxwCHetSXIhaLFmoxeBEnVqDtam1aAYBLlCnTh3TSfrQoUN+zCbw7N27198pKD09XZs3bzaNXXbZZW7Hyf/a1q5d26u8YB3qsHCBUIdWoQ6DF3XqvTlz5ujkyZOmMasvdShRZ8EuEGrt7Nmzpu34+Phiz6EggfAzkbVp6KMOCxcIdWgV6jB4UafeY22KogRCna1evdq07cmay1cC4ech69KSgVosXCDUolWoxeBFnXqPtam1wvydABBImjZtatretWuXnzJBQWbPnm26x1rLli3VsmVLt+Ps3r3btN2sWTOvc4M1qMOSgzoMXtSp9/Jf6jAxMVF9+/a1/DjUWXALhFrbuXOnaTshIaHYcwhkrE1DH3VYclCHwYs69R5rUxTF33WWmZmpWbNmmcZuvvnmYs0h0LEuLRmoxZKDWgxe1Kn3WJtai2YQ4AL576OY/1JK8L+JEyeatm+77Ta3Y+zbt09JSUn27VKlSoXsST4YUYclA3UY3KhT75w4cULz5s0zjY0YMULh4eGWHoc6C37+rrVdu3Y5fLjVokWLYs0h0LE2DX3UYclAHQY36tQ7rE3hCn/X2YwZM0zvn7Zt23Kr0nxYl5YM1GLJQC0GN+rUO6xNrUczCHCBjh07mrb/+OMP/yQCp7799lv98ssv9u1KlSpp+PDhbsfZsGGDabtNmzaKiOCuWYGCOiwZqMPgRp16Z9q0acrOzjaNjRo1yvLjUGfBz9+19sILLziM+eIvMYIVa9OSgTosGajD4Eadeoe1KVzhzzpLTU3VY489Zhp78MEHi+34wYB1aclBLZYM1GJwo069w9rUejSDABdo3ry5qlatat8+fPiww2WCAtHevXtls9lMX88884y/07LUtm3bdNddd5nGXn/9dY/uw7tkyRLTdjD9kqYkoA5LBuowuFGn3vnkk09M2+3atVOTJk0sPw51Fvy8rTXDMDw+9pdffunwXu3evbtL908NlFrzJdamJQd1WDJQh8GNOvUOa1O4wl//D5iTk6NRo0bp0KFD9rFevXrppptucml+oNSZL7EuLVmoxZKBWgxu1Kl3WJtaj2YQ4AI2m82h4BcvXuyfZELY0aNHtXDhQpf3/+WXX9SjRw8dO3bMPta7d2+NGDHCo+PnP8lfeeWVHsWBb1CHJQN1GNyoU8+tX7/eofP8lltu8cmxqLPg522tLV26VFdeeaV+/fVXt4771ltvaeTIkaYPx2w2m1555RW34gQL1qYoDHVYMlCHwY069RxrU7jKqv8HnD17tlJSUlza9+jRoxoyZIi++eYb+1ipUqX0/vvvu33cYMG6FEWhFksGajG4UaeeY23qG6F5vRPAC8OGDdPkyZPt23PnztXo0aPdipGSkqLPPvvM5f0XLVqkjIwMp4+1bdvW4R5jwe7o0aPq1auXGjZsqEGDBunyyy9Xq1atlJCQIOnvv8o5ceKEfvnlF33xxRf6/vvvTfPr16/v1vf3QseOHdP69evt2w0aNNAll1zi+ZOBT1CHxWPNmjVas2aN08d+//13h7HCFo833XSTYmNjXToudRgaqFPPTJkyxbQdHR2tG264wfLjUGehw5taMwxD8+bN07x581SvXj1de+21uuyyy9SqVSvVqFFDYWFh9v127typhQsX6t1339Wff/7pEGvcuHFq166dNU8qwLA2RVGow+LB2hTeoE49w9oU7rDi/wHHjh2rPXv2qH///urfv7/atWunhg0b2ussPT1d69at06xZs/Thhx8qOTnZPjcsLExTp05VgwYNrHlCAYh1KVxBLRYP1qbwBnXqGdamPmIAMMnJyTESExMNSYYko3Tp0kZ6erpbMf766y/7fG+/xo0b59Hxnn32WQ+/A763fv16p881KirKqFixohEREVHg9+Piiy829u/f7/Gx33vvvaD5PpVk1GHxGDdunGXfo7/++svl41KHoYE6dV9WVpZRqVIl0/Gvu+46nxyLOgsd3tTaokWLCqwZm81mxMbGGhUqVDDCwsIKra8HH3zQrZz9XWvuYm2KolCHxYO1KbxBnbqPtSncZcX/A7Zs2dLhfR8WFmaUK1fOKFOmTIH1FRkZaXz++edu5+zvOnMX61K4glosHqxN4Q3q1H2sTX2H28QA+YSHh5supZeenq4ffvjBjxkVbcuWLaZtm82mIUOG+Ckbz2VlZenUqVPKyclxeMxms+nWW2/VqlWrVLNmTY+PMWPGDPu/w8LCNHLkSI9jwXeow9BGHYYG6tR9c+bM0cmTJ01jo0aN8smxqLPQ4ataMwxDKSkpOn36tPLy8pzuU7lyZc2cOVNvvPGGW7H9XWtWYW2K86jD0EYdhgbq1H2sTeEuX9VZXl6ezp49q7S0NKePN23aVL///rtHfxns7zqzCutSXIhaDG3UYmigTt3H2tR3aAYBnLj33nsVHh5u3540aZIfsyla/vuNXXvttWrWrJl/knFB3bp1NXbsWLVr104REYXfraps2bIaPny41q5dq0mTJqls2bIeH3fPnj1atGiRffvqq69WnTp1PI4H36IOQxN1GFqoU/d88sknpu1q1aqpd+/elh+HOgs9ntZaq1at9N///lfDhg1z+RfDkZGRuvTSSzVx4kTt27dPgwcPdjtff9eau1ibwhXUYWiiDkMLdeoe1qbwhLf/D/jEE09o0KBBKleuXKH72Ww2dezYUVOmTNGGDRvUpk0bT9L1e525i3UpXEUthiZqMbRQp+5hbeo7NsMwDH8nAQSi66+/XtOnT5f0d2fYnj17VLt2bT9n5Vz79u21evVqSX+f+Ddt2qSmTZv6OSvXpKena+PGjdq1a5eOHz+utLQ0RUVFKSEhQRdffLHatGmjyMhIS4715JNP6sUXX7RvL126VF26dLEkNnyDOgw91GHooU4DD3UWmqyotdOnT2vbtm06cOCAjh07prS0NOXl5SkuLk7ly5dX3bp11aZNG8XExHiVazDXGmtTFIY6DD3UYeihTgMPdRZ6rKgzwzC0Y8cOe60lJydLkuLi4lS/fn21bdtWlStX9jrXYK4z1qUoCrUYeqjF0EOdBp4SWWf+u0MNENg2bNhg2Gw2+z2jHn74YX+n5FRycrIRHh5uz3PYsGH+TikgpaenG5UrV7Z/n7p27ervlOAC6jC0UIehiToNLNRZ6KLWQgu1Gpyow9BCHYYm6jSwUGehiToLLdRp8KIWQwu1GJqo08BSUuuM28QABWjRooWGDh1q3/7ggw909uxZ/yVUgGXLlik3N1fS352FY8eO9XNGgWnSpEk6ceKEffuFF17wYzZwFXUYWqjD0ESdBhbqLHRRa6GFWg1O1GFooQ5DE3UaWKiz0ESdhRbqNHhRi6GFWgxN1GlgKal1RjMIUIjnn3/efrm9lJQUvfPOO37OyNGF9/EaOnRoSF62yVtZWVl67bXX7NtXXnmlOnfu7MeM4A7qMDRQh6GNOg0M1Fnoo9ZCA7Ua3KjD0EAdhjbqNDBQZ6GNOgsN1GnwoxZDA7UY2qjTwFCi68zflyYBAt0///lP+yWD4uPjjZMnT/o7JZMOHToYkoywsDBj8+bN/k4nIL311lv21zAqKsrYsWOHv1OCm6jD4Ecdhj7q1P+os5KBWgt+1Grwow6DH3UY+qhT/6POQh91Fvyo09BALQY/ajH0Uaf+V5LrzGYYhuGTLhMgRKSkpKhx48Y6cuSIJGnMmDF6/fXX/ZwVXJWSkqL69evbL/302GOP6aWXXvJzVnAXdRjcqMOSgTr1L+qs5KDWghu1Ghqow+BGHZYM1Kl/UWclA3UW3KjT0EEtBjdqsWSgTv2rpNcZzSAAAAAAAAAAAAAAAAAhJMzfCQAAAAAAAAAAAAAAAMA6NIMAAAAAAAAAAAAAAACEEJpBAAAAAAAAAAAAAAAAQgjNIAAAAAAAAAAAAAAAACGEZhAAAAAAAAAAAAAAAIAQQjMIAAAAAAAAAAAAAABACKEZBAAAAAAAAAAAAAAAIITQDAIAAAAAAAAAAAAAABBCaAYBAAAAAAAAAAAAAAAIITSDAAAAAAAAAAAAAAAAhBCaQQAAAAAAAAAAAAAAAEIIzSAAAAAAAAAAAAAAAAAhhGYQAAAAAAAAAAAAAACAEEIzCAAAAABAkjRlyhTZbDbT1969e302D9bg+w8A8NRHH31k+vnx6KOP+jsleOiHH34wvZbDhw/3d0oAAADwM5pBAAAAAAAAAKCEOX36tB5//HH7dsWKFfXEE0/4MSN4o3///uratat9+7PPPtOyZcv8mBEAAAD8jWYQAAAAAB7Zu3evw9UIunfvbknsxYsXO8QeNWqUJbEBwBvOzn2FfZUqVUqJiYlq3LixBg4cqGeeeUa//PKL8vLy/P1UAJRwTzzxhE6dOmXffuqppxQfH1/kvDp16vjsilTOzqOBZu7cuQ45NmzY0GfHe++99xyOd8UVVzjd95VXXjFt33vvvcrNzfVZbgAAAAhsNIMAAAAAAPzimWeeCfgPfABvZWRk6NixY9qxY4fmzJmjZ599Vpdffrnq16+v1157TTk5Of5OESiUswaoKVOm+DsteGnr1q2aOHGifbtKlSq68847/ZhR8OjTp4+qV69uGtu1a5eWLl3qk+N9/PHHDmOjR492um+HDh3Up08f+/aGDRv06aef+iQvAAAABD6aQQAAAAAAAIrZ3r179fDDD6tjx47auXOnv9MBUMI8/fTTpitGjBkzRjExMX7MKHiEh4c7vWLd5MmTLT/Wn3/+qTVr1pjGKlSooEGDBhU458Jb/0jSs88+q6ysLMtzAwAAQOCjGQQAAAAAAMALZcqUUcuWLZ1+NWzYUOXLly9w7tq1a3X55Zfr4MGDxZgxgJJs3bp1mjlzpn07Li5Od999tx8zCj633nqrwxXNZsyYodTUVEuP4+yqIMOHD1d0dHSBc7p166YOHTrYt/fu3Wu6CgwAAABKDppBAAAAAACSpFGjRskwDNNXnTp1/J0WisDr5n9t27bVH3/84fRrx44dOn36tHbt2qXx48erUqVKDvP379+voUOH+iFzACXRyy+/LMMw7NsjRoxQbGysHzMKPvXq1VP37t1NY2lpafrqq68sO0Z2dramTZvmMH7rrbcWOfeuu+4ybb/22mvKy8uzLDcAAAAEB5pBAAAAAAAAfKx+/fp68skntWnTJrVv397h8RUrVmjGjBl+yAxASbJv3z598803prE77rjDT9kEt9GjRzuMObuSh6fmzJmjEydOmMbatGmjli1bFjl32LBhio+Pt2/v2bNH3377rWW5AQAAIDjQDAIAAAAAAFBMEhMTNWfOHCUmJjo89sEHH/ghIwAlyTvvvKPc3Fz7drt27dS8eXM/ZhS8rrnmGpUrV8409ttvv2nnzp2WxHfWWOKsAcWZUqVK6YYbbjCNvfXWW5bkBQAAgOBBMwgAAAAAAEAxqly5sh555BGH8WXLlik9Pd0PGQEoCXJycvTpp5+axrhFlediYmJ04403OoxbcXWQo0ePav78+aaxUqVKOT1eQfK/tr/++qt2797tdW4AAAAIHhH+TgAAAAAAfC01NVXbtm3Tjh07dOrUKaWkpCg6Olrly5dXQkKC2rZt6/Sv9H0hPT1dK1eu1Pbt23XmzBlFREQoMTFR7du3V+PGjV2Oc+rUKa1atUq7du1SSkqK4uLiVLVqVXXr1k2VKlXy4TMITsePH9eaNWt0/PhxHT9+XOHh4UpISFCVKlXUsWNHxcXF+TyHvLw8rVu3Tps2bdLx48dls9lUqVIl1atXT506dVJUVJTPcyhKbm6u9uzZo23btunQoUNKTk5Wbm6uypcvr/Lly+uiiy5S8+bNFRZWPH9bsnPnTq1du1aHDh1SZmamKlasqGrVqqlz584qX758seTgK0OGDNFDDz1kGsvMzNTmzZvVrl27QucG4uu0YcMGHTx4UKmpqYqKilJiYqJGjhzp0vxDhw5p27Zt2rt3r5KSknTu3DnFxcWpQoUKqlWrltq1a6eYmBgfP4u/7d+/X2vWrNG+ffuUlpam2NhYNWjQQJ06dXLrPbd161atX79eR44cUVZWlhISElS/fn117txZERHW/zrOMAxt2rRJu3fv1okTJ3Tq1CmVKVNGlStXVp06ddSuXTufHNcXzp49q9WrV+vYsWM6ceKEMjMzValSJSUkJKhdu3aqWrWqz3M4/zPjr7/+UlJSkv18PXjw4CJ/xp47d06bN2/W1q1bdebMGaWkpCg8PFylS5dW+fLlVbt2bdWvX1/Vq1f3+fPIb8GCBTp27Jhp7Nprry32PELJ6NGj9d///tc0NnXqVI0fP17h4eEex506dapycnJMY0OGDDHd+qUo3bp1U+XKlU23mpk6daqeffZZj/MCAABAkDEAAAAAwAN//fWXIcn01a1bN0tiL1q0yCH2zTff7PL87OxsY8GCBcb9999vtGjRwrDZbA7x8n/Vr1/fePrpp40TJ054lPPkyZMdYv7111/2x7dt22YMHz7ciImJKTCH1q1bGz/88EOhx1m6dKnRt29fIzw83GmM8PBwo0+fPsaff/5p+XOwYl63bt2KfC2K+po8ebJLzyc9Pd145ZVXjDZt2hT6HoiIiDC6dOliTJo0ycjJyXH9G/b/nL1fFy1aZH88KSnJGDt2rFGlSpUCcyhTpowxatQoY//+/W4f39PX7bzt27cbL730knHFFVcYZcqUKfL7Hx8fb1x77bXGihUr3M71vPwxx40bZ38sNzfX+Pjjj41mzZoVmEN4eLjRq1cv4/fff/c4B09Zee5z9v0u6BwQaK9Tamqq8dJLLxn16tUrMIeCnDhxwvjwww+NYcOGFVoX57+ioqKMrl27Gl999ZWRm5vr0XPJf+7J/5pNnz7daNu2bYE5REdHGyNGjDAOHDhQ4DEyMjKMt956y2jQoEGBccqVK2c8/vjjRlpamkfPI7/Vq1cbI0aMKPL7GBsbawwZMsRYuXKlS3GdnVfc/XKnLtLT043XXnvNuPTSSwv8+Xb+q2nTpsaECROM1NRUt79fhb0P8vLyjM8++8zo2LFjgT8zLjy35zdz5kxjwIABRmRkpEvfn2rVqhlDhw41pk2bZiQlJbn9XDwxfPhwUw5NmjTxKE7t2rW9+rlTGHfOJYGiVatWLp/LXXXRRRc5xFy4cKHbcUaOHGmK0aBBA6/yAgAAQHAJ/NU0AAAAgIAUqM0g06dPNypVquTxh1elS5c23nnnHbdzLuwD+XfffdeIjo52OYcHHnjAyMvLM8XPzMw07rrrLpdjREREGFOnTrXsOVg1r7iaQb788kujevXqbsdu2rSpsWTJEre+b4U1gyxdutStPEqVKmXMmjXLreN7+rqdPHnSuOSSS7x6La6++mrjzJkzbuVrGAU3GRw8eNC49NJL3crhiSeecPv43rDy3FetWjWHWJ999plpn0B8nVasWGHUqlWryOM6c8MNNxgREREeP5eLL77Yo2a3gpoAkpKSjP79+7t8/Pj4eOOXX35xiL9ly5ZCG5jyfzVo0MCj5q/z9u7dawwZMsSj7+GQIUOKfD8UZzPIRx99ZFStWtXt+FWqVDFmzJjh1vetoPfB0aNHja5duxZ5TGfNIPv27XNpbmFfjz76qFvPwxO5ubkO66O7777bo1g0g5j95z//ccj52muv9Tjeb7/95hCvXr16DmtDVzir5e3bt3ucGwAAAIJL8VwvFAAAAACKyZYtW3Ty5EmP56enp+vee+/VXXfdZUk+L774ou655x5lZma6POett97Sk08+ad/OysrSoEGD9N5777kcIycnR6NGjdKsWbPcyjcUPP/887r++ut16NAht+du3rxZvXv31hdffOF1HnPmzNHll1/uVh7nzp3TNddco/nz53t9/KKkpKRo/fr1XsWYNWuW2rdvr4MHD3qdz549e9ShQwf9/vvvbs178cUX9dRTT3l9fH9ISkpyGCtXrpxpO9Bep6VLl6p79+7av3+/R/OXL1/ucOsDd2zdulUdO3bUzz//7HGM81JSUtSjRw/98MMPLs9JSkrSwIED9ccff9jH/vjjD3Xp0kV//vmny3F27dql7t27O30PFGXFihVq3769Zs6c6fZcSZo5c6Y6duyoXbt2eTTfKtnZ2frHP/6h2267TUeOHHF7/rFjxzRs2DA9//zzXuVx9OhRderUSUuXLnV77t69e9W5c2eP5ha31atXO6yPunfv7p9kQsxNN93kcCur2bNn69SpUx7Fmzx5ssPYrbfeKpvN5nasHj16OIzNmzfPo7wAAAAQfILjZqEAAAAA4KHatWvrkksuUZMmTVSjRg3FxsaqVKlSSk1N1eHDh/XHH39owYIFDh/Ivf/++2revLnuvvtuj4/93XffmZo6qlSpogEDBqh169aqVKmSUlJStGHDBn311Vc6duyYae6ECRM0aNAgtW/fXvfcc4/pF/cXXXSRBgwYoIYNG6pcuXI6ffq0li1bpq+//trUdJKXl6e77rpL3bt3d+se877UoEEDnT17VtLfH8Dlf94tW7YsMkaFChUKfOz555/X2LFjHcYjIiLUo0cPXX755apevbpycnJ04MABzZ07VytWrJBhGPZ9s7KydNNNNyk8PFzDhg1z8ZmZ/fHHH3r88ceVlZUlSSpVqpR69eqlrl27KjExURERETpw4IB+/PFH/fLLL6a5OTk5+sc//qHNmzcX6+tWtmxZtWvXThdffLEaNmyo+Ph4xcbGKisrS2fOnNGWLVu0aNEibd261TRv586duu6667RkyRJFRHj2a4aUlBT169fP3jhjs9nUqVMnXX755apVq5bKli2rEydO6LffftO3336rjIwM0/wJEyZo4MCB6tChg2dP3g/27duntLQ0h/HKlSsXOs+fr9PRo0c1ZMgQ0/e/ffv2uuKKK1S7dm3FxsbqyJEj2rJli2bMmFFkvPDwcLVu3VpNmzbVRRddpIoVKyouLk6GYSg5OVk7d+7UihUr9NtvvykvL88+LzU1Vddff73Wr1+vmjVrevRcJGnkyJFat26dfbtNmzbq16+f6tatq7Jly+ro0aNauHChvv/+e9Px09PTdfPNN2vdunU6efKkBgwYYP/QNzIyUj169FDPnj1VrVo1RUREaO/evZo1a5ZWrlxpOv6ePXv0+OOP67///a/LOS9evFj9+vVzqIGwsDB16dJFnTp1Ut26dVWuXDmdO3dOBw8e1JIlS/TLL78oNzfXvv/27dt15ZVXas2aNYqLi3M4ToUKFezn46ysLIf3U82aNQs9F0t/n+8LkpeXp0GDBmnu3LkOj1WrVk29evXSJZdcokqVKikmJkanT5/W+vXrNW/ePFMjkmEYGjt2rCpVquRRE2deXp6GDRumPXv22Mfq1aun/v3766KLLlKlSpV06tQp/fXXX/rmm28c5t966606cOCAw3irVq3UvXt3NWrUSOXKlVNkZKRSUlJ05swZbdu2TRs3btSaNWtMr4mvLVmyxGGsbdu2xXb8UFa+fHkNHjzY1EialZWlzz77TPfff79bsdLT0zV9+nTTWHh4uEaNGuVRbrVr11blypV14sQJ+9jixYv1wAMPeBQPAAAAQcbPVyYBAAAAEKQC9TYx48aNM5o3b268+eabxo4dO1yak5GRYbz99ttGXFyc6ZjR0dHGwYMHXYrh7DLc528NEx4ebjz//PPGuXPnnM5NSkpyern/K664wvjmm2/s25UrVza++uqrAnPYuXOn0ahRI4c4L774osfPwerbxFxo3Lhxll4KftmyZUZ4eLhDzM6dOxd6SfTly5cbF110kcO8cuXKGfv27SvyuM7erzExMfZ/jxgxwjh8+HCh8ytUqOAQ46WXXnLpeXv6/f/rr7+McuXKGffee6+xePFiIysry6Xj/fbbb0bbtm0djvnqq6+6NN8wHG8DcOH3q0OHDsbatWsLzbt169YOMfr06ePy8b1h1bnv9ddfd4gTFRVlpKamOhwvUF6nC+urRYsWxvLlywucW9D5rmHDhsaQIUOMmTNnGmfPnnUpj7179xo33HCDQz79+/d3+bnkvz3Ihbfuqlu3rvHTTz8VOHfNmjVGlSpVHI7/+eefGwMHDrRvX3755YX+3Pn4448dzlFhYWHGgQMHXHoOR44ccZrHLbfcUuS5ateuXUafPn0c5rpyKwtn73lXbtdVmLFjxzrErFGjhvHVV18ZOTk5Bc7Lzs42PvroI6Ns2bIOtVPYeeO8/O+DC1+PihUrGlOnTi3wVhx5eXlGRkaGffvXX391eA716tUzli1b5tL34PTp08Znn31mdO3a1XjsscdcmuONa6+91pRrbGysR7cdMQxuE+PMzz//7JB3q1at3I4zZcoUhzj9+vXzKrfLL7/cFK969epexQMAAEDwCI7VNAAAAICAE6jNIK5+uOjMhg0bHBpCHn/8cZfmOvtA/vwHfTNnzixyflZWltGsWTPTXJvNZlSqVMmQZFStWtWl5pZdu3aZPuSUZDRq1Mjj5xAszSB5eXlG48aNnX5YnJmZWeT8U6dOOXz/JRkDBgwocq6z9+v5r+eff96l/H/99VfDZrOZ5jZo0MCluZ5+/zMzM4309HSXjpHfuXPnjL59+5qOWbNmTSM7O9ul+QV9vwYMGFBgE8GFTp065fCheFhYmEvNO96y4tx34sQJIzEx0SFOz549HfYNxNfpsssuM5KSkjzKyZtz9DPPPONwjty2bZtLc/M3AZz/uvjii40jR44UOf+3335zqNGEhAT7v2+44QaXvq/jx493yOGFF15w6Tn069fPNC88PNz47LPPXJprGH+fJ2+55RaH469cubLQeVY3gyxfvtwICwszxbv00kvdem/88ccfDj+vXfnAvKD3QZUqVYzNmze79TwefvhhU4zIyEhj586dbsU4Ly0tzaN57qhTp44p344dO3oci2YQR3l5eUbdunUdcl+3bp1bcZy9R7/++muvchszZoxDzMKaVAEAABA6wgQAAAAAFlmzZo1atWrl9dc//vEPj3Pw5rYaLVq00IsvvmgamzRpksfxJOmxxx7T4MGDi9wvMjLS4fYmhmHo5MmTkqRPP/1UDRs2LDJO/fr1dcstt5jGduzYod27d7uRdfD54YcftH37dtNYrVq1NH36dEVFRRU5v0KFCpo9e7ZKlSpVZFxXDRkyRE899ZRL+3bu3FlDhw41je3atcunr1tUVJTD83VVTEyMPvnkE5UuXdo+dv62N56qU6eOpk2bppiYmCL3rVChgsaNG2cay8vL008//eTx8YvLsWPHdNVVV+no0aMOj912220OY4H2OsXHx2v69OlOby3i6nxPjR07Vu3atbNvG4bh1Tk6Ojpa06dPV2JiYpH7durUSf369TONHT9+XJLUuHFjTZw40aXb7/zzn/9UuXLlTGMX3gasIKtXr3bY76WXXtKNN95Y5NzzbDabPvjgA1188cWm8QkTJrgcwwrjx4833XanWrVqmjt3rlvvjZYtWzrcXmfevHnasGGDRzlNnDhRTZo0cWvOhbeWkaTu3bsXemucwlxYo76QlZWlffv2mcZq167t02OWNDabzWH9JUkff/yxyzF2796tpUuXmsYqV66sq666yqvcnL3WO3bs8ComAAAAggPNIAAAAAAsk5aWpg0bNnj95c/GheHDh8tms9m3jx8/7vEvzMuVK6cnnnjC5f0HDBig6Ohoh/HevXurV69eLse59tprHcbWrVvn8vxg9M477ziM/fvf/1aZMmVcjlG3bl09+uijpjHDMPTuu++6nU9YWJheeeUVt+YMHz7cYWzt2rVuH7u4JCQkqG/fvqaxZcuWeRxv3Lhxbn0YfP311ys8PNw0Fsjfrz179mjChAlq0aKFfv/9d4fH27Vrp+uuu87y41r9Oj300EOqXr26t2l5xGazacSIEaYxb57LiBEj1Lx5c5f3v+aaa5yOjx071uUP82NiYjRgwADT2IYNG2QYRqHzXn75ZdN2gwYN9NBDD7l0zAtFRkY6/FyaN2+eMjMz3Y7liT///FNz5841jb344osODTKuuPHGGx2aJL/77ju34/To0cPhNXFFSkqKabtixYpuxygu+/btc3iP+auOQ9moUaMUFmb+dfvnn3/ucn1NnjzZ4XUaMWKEIiMjvcqrRo0aDmN79+71KiYAAACCA80gAAAAAHCB+Ph4JSQkmMZWrFjhUazrrrvOrWaEUqVKqXHjxg7jo0ePduu4l1xyicOYp1e3CAZZWVlasmSJaSwxMdGlK7Lkd/vttzs0GHhytYmePXuqfv36bs1p3769w1igv275P4j1tFbKlCnj1hUOJKl8+fIOx/fX96uwqyI1btxYFStWVP369fX444/bryZxoerVq2vGjBmmRjQrWfU62Ww23XrrrVak5LH8z2XdunXKzs72KJYV59bY2FiHq/q4GyclJUWHDh0qcP+MjAzNmTPHNDZq1CiHc5WrrrzySof4nr4n3PX111+btmNjYz1ugrLZbA5Xa1m8eLHbcdx9H5yXv/lj5cqVysnJ8SiWrx08eNBhzJUr4sA9NWvW1BVXXGEaO336tGbNmlXk3Ly8PE2dOtVh3IpzbtWqVR3GDhw44HVcAAAABL6ir18JAAAAAEHMMAytXbtWa9eu1aZNm3Tw4EGlpKQoOTm5wA8QT58+bdrev3+/R8fu2rWr23Nq166tjRs3msa6dOniVowKFSooNjbW9FfLZ8+edTuXYLFu3TplZGSYxgYNGuTSLRvyq1q1qrp06WL6QHH79u06deqUW3/13a1bN7ePXaVKFZUpU0ZpaWn2saSkJLfjeOPQoUNavny5Nm7cqB07digpKUnJyck6d+6c0ysX5L/Viae10rFjR5du55Nf/fr1tW3bNvt2cX+/zjt/VSRPtGrVSl9++aVbt2zw1+vUoEEDp39h7o3U1FQtXbpUGzdu1JYtW3Tq1CklJycrLS3NdCuRC/e/UGZmpo4dO+Z2XqVLl1bbtm3dmuPsNerYsaPbf7Vfp04dh7GzZ88W+BxWrlzpcGWByy67zK1jXqhChQqKj4831cv69es9Om+5K3/jXuvWrV26NVRB6tata9pev3692zF69Ojh0bE7dOigL7/80r79119/6bbbbtO7777r89u+uCs5OdlhzJ1mVbhu9OjRmj9/vmls8uTJGjZsWKHzfvrpJ4cGjQ4dOqhp06Ze5+Ts/Zj/yjYAAAAITTSDAAAAALBMt27dPPqr3PwWL17s8Ycz5yUlJenf//63Pv30U+3bt8+rWJ42UjRo0MDtObGxsabtUqVKqVq1ah7FufAX/f76kLw4OLsFjrsf8l6oXbt2pvexYRhav369Lr/8cpdj5L96gavi4+P90gzy9ddf67///a+WLFni9AN4V3laK958vy4UTO/zWrVq6Z577tGYMWNcbibw9+vUunVrj4+Z39q1a/Xqq69q9uzZOnfunFexCmukKEjt2rXdbhjLf36WrDnPS4W/d3/77TeHsbvvvtujBqrz0tPTTdsnT570OJarcnNzHa5AsnHjRrVq1crjmPmbN5OSkpSdne1yTVWpUsWjn7HS31f/euKJJ0zv3ylTpmju3LkaNWqUhgwZonbt2jncNsQf8r/e0t/rC1jvqquuUqVKlUw19eOPP+rQoUOF3ppn8uTJDmOeXrUmP2ev9YVrDQAAAIQumkEAAAAAhJxZs2bpjjvu0LFjxyyJ5+kHzOXLl3d7Tv4PsDyJ4SyOp7dRCAbOPsS8+OKLPY7XpEkTl45RmAoVKnh07OJ+3Q4fPqwRI0Zo4cKFlsTztFaC5fvliejoaMXFxalcuXJq1KiR2rRpo65du6pHjx4uf0gcKK9T/ltoeSI7O1tjxozRe++951VDy4U8eT5WnJ+tjFPYe9fZLT62bt3q9nELc+rUKUvjFXSM/FdxOnPmjM6cOWPpcU6fPq0qVaq4tK837+mqVavqxRdf1JgxY0zjx48f1yuvvKJXXnlF5cqVU6dOndShQwd17NhRnTp1UtmyZT0+pqdyc3Mdxjy9zRAKFxUVpREjRuiNN96wj+Xl5emTTz7RE0884XTOmTNn9N1335nGypQpo+uvv96SnJw1vgXqLY0AAABgLZpBAAAAAISUzz//XCNHjnT6wYenPP2A2d1bB/gqRqhz9kFiuXLlPI7n7MPd/H99XpRgeN0OHTqk7t27a9euXZbF9PTDpWD4fhXGqqsiORNIr1NcXJxXx83OztbQoUM1a9Ysr+I4i+suq95zxfHeLY5GDW+vzuKK4ngeknvPxdv39IMPPqicnBw9/vjjTuvq7Nmzmjt3rubOnSvp7w/lO3bsqOuuu07XX3+9KlWq5NXxXeXsyhD5G3NgndGjR5uaQaS/rxpTUDPIZ5995nArqKFDhzq9ipAnnNVEoN3KCAAAAL7h/+sUAgAAAIBFdu/erVtvvdWhESQyMlKDBw/WG2+8oZ9//lnbt2/X6dOnlZaWpry8PBmGYfqqXbu2n54BPOHsvvdlypTxOJ6zuc6OEexGjRrltMGgVatWevzxx/Xtt99q3bp1Onr0qJKTk5WVleVQK+PGjfND5iVLIL1O7t5WJb+XX37ZaSNI9erVdffdd2vatGn6/fffdeDAAZ09e1YZGRkOz2XRokVe5RCMrL5yhr8E4vPw9j0tSQ8//LD+/PNP3XTTTYqJiSl035ycHC1btkz33XefateurX/961/FcrsOZz/XvGkAcvZ9s6K5xFlOwXgFk6ZNm6pDhw6msZ07d+rXX391ur+zW8TceuutluXj7PvqzToJAAAAwYMrgwAAAAAIGY899pjDX1b27dtXH3/8sapWrepynOL4C2lYx9lfznrz4ZqzuVb9dW6g+OGHH/Tzzz+bxhISEvTpp5/qiiuucDkOteJbofQ6HT9+XC+99JJpLCIiQq+++qruvfdelz+UD4TnUtycXdVh69atuuiii/yQjeecPY/rrrtOX375pR+ysVbjxo01bdo0vfvuu/rhhx+0aNEiLVu2TNu3b5dhGE7npKen69///rdmz56tH3/80aeNqM5uh+PuFa8u5OzqW6mpqR7HKyyGp7fL87fRo0dr5cqVprGPP/5YXbp0MY1t3LhR69atM401atTIYT9vOHutrbjtFwAAAAIfVwYBAAAAEBLS0tL0/fffm8Zat26t2bNnu9UIIgXmXy+jYM4+KDp79qzH8ZzNrVChgsfxAtEXX3xh2g4PD9f333/vVoOB5N2HiShaKL1Os2fPVnp6umns5Zdf1oMPPujW1RkC4bkUN2e3EgnG70OoPI/CxMfH68Ybb9RHH32krVu36tSpU5ozZ44effRRNW/e3OmcHTt2qH///srKyvJZXs4aTQ4ePOhxPKt/7hYWI1ibQa6//nqHq2/MmDHDoeFl0qRJDnOtvCqI5Py15ip4AAAAJQPNIAAAAABCwtKlSx2uCvL4448rMjLSrTgHDhxQdna2lanBxypXruwwtnXrVo/jbdmyxWHM2YeYweynn34ybfft21ft27d3O86ePXusSglOhNLrlP+5lC9fXvfdd5/bcQLhuRS3KlWqOIzt27fPD5l4p3LlyrLZbKaxYHwe7ihfvrz69++vCRMmaOPGjdq+fbvuuusuh1ufbN682WlTgFUqVqyouLg405g3zSDOfiZu27bN43jnOfvZHaw/f2NjYzV06FDTWFpamr766iv7dlZWlj777DPTPhEREbr55pstzeXQoUMOY3Xr1rX0GAAAAAhMNIMAAAAACAkHDhxwGPPkEtu///67FemgGLVu3dphbM2aNR7HW716tWnbZrM5PUawyszM1PHjx01jntRKbm6uVq1aZVVayCfUXqf85+gOHTq43awnlcxzdIcOHRzGli5d6odMvBMTE6OWLVuaxnbs2KFjx475KaPi16hRI/33v//V1KlTHR775ptvfHrsFi1amLa3b9/ucSxnPxM3btzocbzz/vzzT4exNm3aeB3XX0aPHu0wNnnyZPu/Z8+erVOnTpke79evnxITEy3NI3+jTnR0dNDdZgoAAACeoRkEAAAAQEg4efKkw5gnt/aYPn26FenABc5uDZGbm+t2nNatWysmJsY09t1333kU69ixY/r1119NY40bNw6p28Tk/+BJ8qxW5s6d63C5e1gn1F6n/OdoT57LyZMntWjRIqtSCho9evRwOF/OmTOn2K5iZdW5WpJ69+7tMDZz5kyPYgWzG2+8Ua1atTKNWdFMUZh27dqZtvft26fk5GSPYl122WUOY/PmzZNhGB7FO2/OnDkuHStYdO7cWY0bNzaNLVu2TDt37pQkffzxxw5znDWQeGvDhg2m7ZYtW3rUjAcAAIDgQzMIAAAAgJCQ/77skvMGkcLs3r1bs2bNsiolFCE2NtZhzJMPrSMjI9WjRw/T2NGjR/Xdd9+5HevDDz9UTk6OaeyKK65wO04gs6JWJOn111+3Ih0UINRep/zPx5Pn8u677yojI8OqlIJGXFycunfvbho7ePCgPv3002I5vlXnakm6+uqrHcb+/e9/O5x3S4L8V2ZISkry6fE6duzoMOZpA0qbNm2c3nbGm2atXbt2OVz5Jzw8XF27dvU4ZiC49dZbHcY+/vhjHT58WD/++KNpvEqVKurfv7+lx8/IyNCOHTtMY86uNgQAAIDQRDMIAAAAgJBQtWpVh7H8v2QvTF5enm699VaP/9oZ7itfvrzD2J49ezyKdc899ziMPfzww0pPT3c5xr59+zRhwgTTmM1m07333utRToEqPj5epUuXNo25UyuSNHHiRC1evNjCrJBfqL1O+c/Ry5cvV1pamsvzN2/erJdeesnqtILGU0895TD28MMPe3zOdEdsbKzD1UE8Pe5ll13m0NiyZ88e/fOf//Q0vaB15MgR03blypV9erxevXopLMz8q+D8V8JyVXR0tG677TaH8X/9618er6Meeughh7FrrrlG1apV8yheoBg5cqRD/UydOlUff/yxw/fq5ptvdnolHm/8/vvvDs1Wffr0sfQYAAAACFw0gwAAAAAICV26dHEYGz9+vEuXQM/Ly9Mdd9yhpUuX+iI1FKB58+YOY3PnzvUo1pVXXunwV9Z79+7VjTfe6NJfnJ85c0ZXX321Q/PIwIED1bBhQ49yCmSdO3c2bS9evNjl7/38+fN1//33+yIt5BNKr1P+c3RqaqqeffZZl+bu3btXV111lTIzM32RWlDo1q2bwy1Wzpw5o759+2rr1q0exczIyNAHH3xQ5NVjwsLC1KRJE9PYggULlJeX59Fxx48fL5vNZhp7++23NW7cOI9vM/Lnn39q5MiROnPmjEfzPfHPf/5TW7Zs8WjuunXrHBoxWrZsaUVaBapYsaLDFSG8uZLHAw884HCrkXXr1umuu+5y+73x3HPP6fvvv3cYf/jhh92K0717d9lsNtPXlClT3IphtcTERIerfRw+fFgvvviiw77OriLirfyvcUxMjHr27Gn5cQAAABCYaAYBAAAAEBKqVq3q8MHprl271KdPH+3bt6/Aedu3b1ffvn01ceJESVJERITDX+PDN5o1a+ZwmfmXXnpJU6ZM0blz59yKZbPZNGnSJIWHh5vGZ82apSuuuEK7du0qcO7KlSvVuXNnbdiwwTRerlw5/ec//3Erj2AxbNgwh7HrrrtOX3/9dYFzzp07p+eee05XX321/fXJ//rBWqH0Ol1zzTUOVyV49dVX9fTTTxfasPXFF1/o0ksvtV+JIhCei79MmTLF4SoJO3fuVPv27fXSSy+5dJsRwzC0fPlyjRkzRnXq1NGdd97p0lU+OnXqZNrevn27/vGPfxT687Ugl112mcaNG+cw/txzz6lnz54uX63i1KlTmjhxonr37q0WLVro008/Ldare02aNElNmzZV79699dFHH+n48eMuzZszZ4769evn0DAxfPhwX6RpMmjQINP2b7/95vbP2/Nq1qyp559/3mH8o48+Uu/evbV27doiY+zcuVPDhg1z+n6477771K5dO49yCzSjR492GMv/fb/sssvUuHFjy4/9888/m7Z79+6tUqVKWX4cAAAABCZrrzsHAAAAAH707LPPqlevXqaxFStWqFGjRrr66qvVuXNnJSYmKiMjQ4cOHdJPP/2kX3/91fRB5NixYzVp0iSPPuCCeyIjIzV8+HD997//tY+lpaXplltu0T/+8Q/VrFlTsbGxDh8gP/fcc7rqqqsc4nXq1Enjxo3T2LFjTeOLFi1SkyZN1KtXL/Xs2VPVq1dXbm6uDhw4oLlz52r58uUOf41us9n0wQcfqFatWhY+48AxcuRIvfTSS9q9e7d9LDU1VUOHDlXr1q01cOBANWjQQJGRkTp+/LjWrl2rOXPm6NSpU/b9mzZtqgEDBujll1/2x1MoEULpdWrUqJGGDx+uqVOnmsbHjx+vKVOm6Nprr1WLFi1UtmxZnT59Wtu3b9fs2bNNz7106dJ6+eWXdddddxV3+gGhWrVqmjVrlrp37266xU5qaqqeeOIJvfDCC+rcubM6deqkqlWrqnz58jp37pzOnj2rw4cPa926dVq7dq3p/eGqW2+9Ve+//75pbPLkyZo8ebIqV66sypUrO1wlom3btvZGy/zGjh2rbdu26csvvzSNL168WF27dlWjRo3UvXt3NW3aVBUqVFB0dLTOnj2rM2fOaMuWLVq7dq22bt0aELd2+/nnn/Xzzz/rzjvvVNOmTXXJJZeoSZMmqlixosqVK6fc3FydPn1aW7du1U8//aRt27Y5xOjSpYuuu+46n+d644036vHHH7c3oqSnp2v+/PkaPHiwR/EeeeQRLV++XLNnzzaNL1y4UG3btlWLFi3Uo0cPNWjQQBUqVFB4eLhOnz6tffv2afHixVqzZo3T17Bjx4567bXXPMopEF155ZWqWrWqw62BLuSsYcRbhw8f1ooVK0xjI0eOtPw4AAAACFw0gwAAAAAIGT179tRjjz2mCRMmmMazsrI0Y8YMzZgxo9D5w4cP11NPPaVJkyb5Mk1c4Omnn9bMmTN19OhR03hubq727t3rdM7p06cLjWcYhsNfGWdnZ2v+/PmaP39+kTlFRkZq8uTJTq/KECoiIyM1Y8YMde7c2eHWOOvWrdO6desKnV+9enXNmTPH75ffD3Wh9jq9/fbbWrVqlcOH4QcPHtSbb75Z6Nzz34uSfuWmtm3basWKFbrmmmu0Y8cO02NpaWlasGCBFixYYPlx27Vrp1GjRjl9L504cUInTpxwGC9XrlyB8Ww2mz777DPVr19fL774okND3o4dOxyeX6DLy8vTpk2btGnTJrfmNWvWTF9++aVD46Mv1KhRQz169NAvv/xiH/vmm288bgax2WyaPn267r77bk2ePNnh8Y0bN2rjxo1uxRw4cKA+/fRTh+aiYBYeHq6bb77ZYX16XmxsrE/WHDNnzjTVVvny5TVw4EDLjwMAAIDAxW1iAAAAAISUF198UU899ZRsNpvLc8LDw/XEE0/ok08+cWsevJeYmKiFCxeqTZs2lsUcO3asvvjiC4fbKbiiSZMm+umnn3TTTTdZlk+guuSSS7RgwQJVrVrVrXkdO3bUihUrVKdOHd8kBpNQep3i4+P1888/q2PHjm7Nq1atmn7++WddeeWVPsosuDRr1kyrV6/Wvffeq5iYGK9itWvXTv3793dp3/fff18PPPCAZU0LYWFhGj9+vObOnauWLVv+X3v3F1p1+ccB/L2mzT9tplkobpXLGFMSpgldmCJRKBaIYFk3ZRSCNyqIIBgUI4R1kay6qTC7qYggKgi8KEkWgdtE+zMMGm0hhc458e9FOX8XwSH7/TJ/Z2NHv3u9rs7nOef7PJ/DgXMuzvv7PCOaa9q0aXnuuedyyy23jEpv12LWrFkjur6qqipPP/10Ojo6yvq9Ktffd9b59NNPc+7cubLnmzRpUvbs2ZM9e/akoaGh7HlmzpyZV155JZ988kmmTZtW1hz/K5S0YMGCsnsaTc8+++w/PvfEE09k6tSpo77me++9d0X9zDPPpKamZtTXAQDg+iUMAgAAFEpVVVVaW1vT0dGRVatWXfVPqylTpuSpp55Kd3d3Xn755TG5K5f/1tzcnM7Oznz11VfZsmVLVqxYkfr6+tTV1aW6urqsOdevX5+ffvopbW1taWlpuWrIZ8KECVm6dGnefvvtfPvtt1m+fHm5b+WGs3Tp0hw5ciTbt2+/6l38yZ87Erz77rv5+uuvU19fPzYNkqRYn9OcOXNy4MCBvP7662lsbLzqa++66660trbm6NGjWbZs2Rh1eGOoq6vLa6+9lr6+vuzcuTMtLS3X9Bs2efLkPPTQQ9m1a1d6enpy8ODBrFq16prWrKmpye7du9PX15e2trasXbs2TU1Nue2223LzzTeX/V5WrlyZw4cP57PPPsvatWszY8aMa7qusbExzz//fD766KP89ttveeutt0Ycjvl/HD16NN3d3Wltbc3DDz+curq6a7rujjvuyKZNm3Lo0KHs3bu37OBDudasWZO5c+eW6rNnz+b9998f8bwbNmxIb29v9u7dm0ceeSS1tbX/es2kSZOybNmytLe3p7+/P9u2bSs7lHv8+PH09PRcMbZ69eosWbKkrPlG27333vuP32NXC4qU6/vvv88333xTqqurq7N58+ZRXwcAgOtb1eW/78MIAABQIKdPn05HR0d++eWXDA0NZcKECZk5c2aampqyZMkSd0iOE8ePH09nZ2dOnDiRgYGBVFdX5/bbb8+sWbPywAMPjPmfcdejS5cupaurKz/88ENOnjyZP/74I7W1tZk7d27uv//+Ed8Fz+go2uf0448/prOzMwMDAzl//nymTp2a+vr6LFy4ME1NTZVu74YyNDSUrq6unDhxIoODgzlz5kymTJmS2trazJ49O01NTWlsbCw7ZDdWLl++nO+++y69vb0ZHBzM4OBghoeHU1tbm1tvvTX33HNPmpub/zUYNdaGh4fT19eX3t7e9Pf358yZM7lw4UJqampSV1eX2bNnZ+HChdfFbj3t7e1XBAMWL16crq6uUV3j0qVLOXLkSH7++eecOnUqQ0NDGR4ezvTp0zN9+vQ0NDRk8eLFIwoS/dUHH3yQJ5988oqx7u7uLFq0aFTmv9Fs3rw57e3tpXrdunX58MMPK9gRAACVIAwCAAAAADBOXLx4MfPmzcuvv/5aGjtw4EAefPDBCnY1Mhs3bsybb75ZqtesWZOPP/64gh1VzunTp3PnnXfm7NmzSf48kunw4cO57777KtwZAABjzR7IAAAAAADjxOTJk7Nz584rxnbt2lWhbkbHl19+WXpcVVWVl156qYLdVNYbb7xRCoIkfx6dJwgCADA+2RkEAAAAAGAc+f3339Pc3Jze3t7S2KFDh9LS0lLBrspz7NixNDQ0lOrxfCTKhQsXcvfdd2dgYCBJMnHixPT09GTevHkV7gwAgEqwMwgAAAAAwDgyceLE7N69+4qxHTt2VKaZEfrrriA33XRTXnzxxco1U2GvvvpqKQiSJFu3bhUEAQAYx4RBAAAAAADGmUcffTSPPfZYqd63b1+++OKLCnZUnv3795cer1+/PvPnz69gN5Vz8uTJtLW1leo5c+bkhRdeqGBHAABUmmNiAAAAAADGof7+/rzzzjulev78+Xn88ccr2BHlOnjwYD7//PNSvWLFiixfvryCHQEAUGnCIAAAAAAAAAAABeKYGAAAAAAAAACAAhEGAQAAAAAAAAAoEGEQAAAAAAAAAIACEQYBAAAAAAAAACgQYRAAAAAAAAAAgAIRBgEAAAAAAAAAKBBhEAAAAAAAAACAAhEGAQAAAAAAAAAoEGEQAAAAAAAAAIACEQYBAAAAAAAAACgQYRAAAAAAAAAAgAIRBgEAAAAAAAAAKBBhEAAAAAAAAACAAhEGAQAAAAAAAAAoEGEQAAAAAAAAAIACEQYBAAAAAAAAACgQYRAAAAAAAAAAgAIRBgEAAAAAAAAAKBBhEAAAAAAAAACAAhEGAQAAAAAAAAAoEGEQAAAAAAAAAIACEQYBAAAAAAAAACiQ/wB364Bp0qss6QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(figsize=(11, 7), dpi=200)\n", "\n", "layer_labels = [(int(key.split(\":\")[0]), int(key.split(\":\")[1])) for key in bf_energies.keys()]\n", "plot_labels = [str(item) for item in layer_labels]\n", "\n", "plt.errorbar(\n", " plot_labels,\n", " sim_physical_energy_diff,\n", " yerr=sim_physical_uncertainties.values(),\n", " ecolor=(20 / 255.0, 26 / 255.0, 94 / 255.0),\n", " color=(20 / 255.0, 26 / 255.0, 94 / 255.0),\n", " capsize=4,\n", " elinewidth=1.5,\n", " fmt=\"o\",\n", " markersize=8,\n", " markeredgewidth=1,\n", " label=\"Physical\",\n", ")\n", "\n", "plt.errorbar(\n", " plot_labels,\n", " sim_logical_energy_diff,\n", " yerr=sim_logical_uncertainties.values(),\n", " color=(0, 177 / 255.0, 152 / 255.0),\n", " ecolor=(0, 177 / 255.0, 152 / 255.0),\n", " capsize=4,\n", " elinewidth=1.5,\n", " fmt=\"o\",\n", " markersize=8,\n", " markeredgewidth=1,\n", " label=\"Logical\",\n", ")\n", "\n", "ax.set_xlabel(\"Hamiltonian Parameters (U, V)\", fontsize=18)\n", "ax.set_ylabel(\"Energy above true ground state (in eV)\", fontsize=18)\n", "ax.set_title(\"CUDA-Q AIM Circuits Simulation (lower is better)\", fontsize=20)\n", "ax.legend(loc=\"upper right\", fontsize=18.5)\n", "plt.xticks(fontsize=16)\n", "plt.yticks(fontsize=16)\n", "\n", "ax.axhline(y=0, color=\"black\", linestyle=\"--\", linewidth=2)\n", "plt.ylim(\n", " top=max(sim_physical_energy_diff) + max(sim_physical_uncertainties.values()) + 0.2, bottom=-0.2\n", ")\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Running logical AIM on Infleqtion's hardware " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The entire workflow we've seen thus far can be seamlessly executed on real quantum hardware as well. CUDA-Q has integration with Infleqtion's gate-based neutral atom quantum computer, [Sqale](https://arxiv.org/html/2408.08288v2), allowing execution of CUDA-Q kernels on neutral-atom hardware via Infleqtion’s cross-platform Superstaq compiler API that performs low-level compilation and optimization under the hood. Indeed, the AIM research results seen in [our paper](https://arxiv.org/abs/2412.07670) were obtained via this complete end-to-end workflow.\n", "\n", "To do so, users can obtain a Superstaq API key from [superstaq.infleqtion.com](https://superstaq.infleqtion.com/) to gain access to Infleqtion's neutral-atom simulator, with [pre-registration](https://www.infleqtion.com/sqale-preregistration) open for access to Infleqtion’s neutral atom QPU." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As a tutorial, let us reproduce the workflow we've run so far but on Infleqtion's QPU. We begin with the same GPU-enhanced VQE to generate the AIM circuits:" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "cudaq.reset_target()\n", "\n", "if cudaq.num_available_gpus() == 0:\n", " cudaq.set_target(\"qpp-cpu\", option=\"fp64\")\n", "else:\n", " cudaq.set_target(\"nvidia\", option=\"fp64\")" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Computed optimal angles=[1.5846845738799267, 1.5707961678256028] for U=1, V=-9\n", "Computed optimal angles=[4.588033710930825, 4.712388365176642] for U=1, V=-1\n", "Computed optimal angles=[-1.588651490745171, 1.5707962742876598] for U=1, V=7\n", "Computed optimal angles=[1.64012940802256, 1.5707963354922125] for U=5, V=-9\n", "Computed optimal angles=[2.1293956916868737, 1.5707963294715355] for U=5, V=-1\n", "Computed optimal angles=[-1.6598458659836037, 1.570796331040382] for U=5, V=7\n", "Computed optimal angles=[1.695151467539617, 1.5707960973500679] for U=9, V=-9\n", "Computed optimal angles=[2.4149519241823376, 1.5707928509325972] for U=9, V=-1\n", "Computed optimal angles=[-1.7301462945564499, 1.570796044872433] for U=9, V=7\n", "\n", "Finished building optimized circuits!\n" ] } ], "source": [ "device_circuit_dict = generate_circuit_set(\n", " ignore_meas_id=True\n", ") # Setting `ignore_meas_id=True` drops the noisy-identity gate from earlier" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And now, we change backends! Before selecting an Infleqtion machine in CUDA-Q, we must first set our Superstaq API key, like so:" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "# os.environ['SUPERSTAQ_API_KEY'] = \"api_key\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we declare the type of execution we would like on Infleqtion's machine based on the keyword options specified:" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "cudaq.reset_target()\n", "\n", "# Set the following to run on Infleqtion's Sqale QPU:\n", "cudaq.set_target(\"infleqtion\", machine=\"cq_sqale_qpu\")\n", "\n", "# Set the following to run an ideal dry-run on Infleqtion's Sqale QPU:\n", "# cudaq.set_target(\"infleqtion\", machine=\"cq_sqale_qpu\", method=\"dry-run\")\n", "\n", "# Set the following to run a device-realistic noisy simulation of Infleqtion's Sqale QPU:\n", "# cudaq.set_target(\"infleqtion\", machine=\"cq_sqale_qpu\", method=\"noise-sim\")\n", "\n", "# Set the following to run a local, ideal emulation:\n", "# cudaq.set_target(\"infleqtion\", emulate=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With that, we're all set! That simple change instructs our AIM circuits to execute on Infleqtion's QPU (or simulator). Due to the general queue wait time of running on hardware, we optionally recommend enabling the `run_async=True` flag to asynchronously sample the circuits. This will allow the cell to be executed and not wait synchronously until all the jobs are complete, allowing other classical code to be run in the meantime. When using `run_async`, an optional directory to store the job information can be specified with `folder_path` (this will be important to later retrieve the job results from the same directory)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Posting circuits associated with layer=('1:-9')\n", "Posting circuits associated with layer=('1:-1')\n", "Posting circuits associated with layer=('1:7')\n", "Posting circuits associated with layer=('5:-9')\n", "Posting circuits associated with layer=('5:-1')\n", "Posting circuits associated with layer=('5:7')\n", "Posting circuits associated with layer=('9:-9')\n", "Posting circuits associated with layer=('9:-1')\n", "Posting circuits associated with layer=('9:7')\n", "\n", "All circuits submitted for async sampling!\n" ] } ], "source": [ "submit_aim_circuits(\n", " device_circuit_dict, folder_path=\"hardware_aim_future_results\", shots_count=1000, run_async=True\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With the above cell execution, all the circuits will post to execute on QPU. We can then return at a later time to retrieve the job results with the cell below:" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Retrieving all circuits counts associated with layer=('1:-9')\n", "Retrieving all circuits counts associated with layer=('1:-1')\n", "Retrieving all circuits counts associated with layer=('1:7')\n", "Retrieving all circuits counts associated with layer=('5:-9')\n", "Retrieving all circuits counts associated with layer=('5:-1')\n", "Retrieving all circuits counts associated with layer=('5:7')\n", "Retrieving all circuits counts associated with layer=('9:-9')\n", "Retrieving all circuits counts associated with layer=('9:-1')\n", "Retrieving all circuits counts associated with layer=('9:7')\n", "\n", "Obtained all circuit samples!\n" ] } ], "source": [ "aim_device_data = _get_async_results(circuit_layers, folder_path=\"hardware_aim_future_results\")" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "physical_energies, physical_uncertainties = aim_physical_energies(\n", " data_ordering, aim_device_data[\"physical\"]\n", ")" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "logical_energies, logical_uncertainties = aim_logical_energies(\n", " data_ordering, aim_device_data[\"logical\"]\n", ")" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Layer=(1, -9) has brute-force energy of: -18.251736027394713\n", "Physical circuit of layer=(1, -9) got an energy of: -17.626499999999997\n", "Logical circuit of layer=(1, -9) got an energy of: -17.69666562801761\n", "------------------------------------------------------------------------\n", "Logical circuit achieved the lower energy!\n", "------------------------------------------------------------------------ \n", "\n", "Layer=(1, -1) has brute-force energy of: -2.265564437074638\n", "Physical circuit of layer=(1, -1) got an energy of: -2.1415\n", "Logical circuit of layer=(1, -1) got an energy of: -2.2032104443266585\n", "------------------------------------------------------------------------\n", "Logical circuit achieved the lower energy!\n", "------------------------------------------------------------------------ \n", "\n", "Layer=(1, 7) has brute-force energy of: -14.252231964940428\n", "Physical circuit of layer=(1, 7) got an energy of: -12.9955\n", "Logical circuit of layer=(1, 7) got an energy of: -13.76919450035401\n", "------------------------------------------------------------------------\n", "Logical circuit achieved the lower energy!\n", "------------------------------------------------------------------------ \n", "\n", "Layer=(5, -9) has brute-force energy of: -19.293350575766127\n", "Physical circuit of layer=(5, -9) got an energy of: -18.331\n", "Logical circuit of layer=(5, -9) got an energy of: -18.85730052910377\n", "------------------------------------------------------------------------\n", "Logical circuit achieved the lower energy!\n", "------------------------------------------------------------------------ \n", "\n", "Layer=(5, -1) has brute-force energy of: -3.608495283014149\n", "Physical circuit of layer=(5, -1) got an energy of: -3.476\n", "Logical circuit of layer=(5, -1) got an energy of: -3.5425689231532203\n", "------------------------------------------------------------------------\n", "Logical circuit achieved the lower energy!\n", "------------------------------------------------------------------------ \n", "\n", "Layer=(5, 7) has brute-force energy of: -15.305692796870582\n", "Physical circuit of layer=(5, 7) got an energy of: -14.043500000000002\n", "Logical circuit of layer=(5, 7) got an energy of: -14.795918428433312\n", "------------------------------------------------------------------------\n", "Logical circuit achieved the lower energy!\n", "------------------------------------------------------------------------ \n", "\n", "Layer=(9, -9) has brute-force energy of: -20.39007993367173\n", "Physical circuit of layer=(9, -9) got an energy of: -19.4715\n", "Logical circuit of layer=(9, -9) got an energy of: -19.96524696701215\n", "------------------------------------------------------------------------\n", "Logical circuit achieved the lower energy!\n", "------------------------------------------------------------------------ \n", "\n", "Layer=(9, -1) has brute-force energy of: -5.260398644698076\n", "Physical circuit of layer=(9, -1) got an energy of: -4.973\n", "Logical circuit of layer=(9, -1) got an energy of: -5.207315773582224\n", "------------------------------------------------------------------------\n", "Logical circuit achieved the lower energy!\n", "------------------------------------------------------------------------ \n", "\n", "Layer=(9, 7) has brute-force energy of: -16.429650912487233\n", "Physical circuit of layer=(9, 7) got an energy of: -15.182\n", "Logical circuit of layer=(9, 7) got an energy of: -16.241375689575516\n", "------------------------------------------------------------------------\n", "Logical circuit achieved the lower energy!\n", "------------------------------------------------------------------------ \n", "\n" ] } ], "source": [ "physical_energy_diff, logical_energy_diff = _get_energy_diff(\n", " bf_energies, physical_energies, logical_energies\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As before, we use the same metric of comparing against the true ground state energies; however, this time, both the physical and logical circuits are fully exposed to real hardware noise. Yet, we expect the use of logical qubits afforded to us by the `[[4,2,2]]` code to achieve energies closer to the true ground state than the bare physical circuits (up to a certain error threshold). And indeed they do! Visually, we can plot the energy deviations of both the physical and logical circuits from the cell above and observe that the logical circuits are able to outperform the physical circuits by obtaining much lower energies, demonstrating the power of error detection and the beginning possibilities of fault-tolerant quantum computation: " ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACIMAAAVkCAYAAABNJ02+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3yN5/8/8NfJHrKQECKJGdTW2JGgqKqt9mxLKa0WbT9GUaVao0W1arQRmxpFbamYsYKYQURIgkRk73X//vBLvk7u+5ycmXMSr+fjcR6P5Dr3dV3vs+75vq9LJgiCACIiIiIiIiIiIiIiIiIiIiIqF0wMHQARERERERERERERERERERER6Q6TQYiIiIiIiIiIiIiIiIiIiIjKESaDEBEREREREREREREREREREZUjTAYhIiIiIiIiIiIiIiIiIiIiKkeYDEJERERERERERERERERERERUjjAZhIiIiIiIiIiIiIiIiIiIiKgcYTIIERERERERERERERERERERUTnCZBAiIiIiIiIiIiIiIiIiIiKicoTJIERERERERERERERERERERETlCJNBiIiIiIiIiIiIiIiIiIiIiMoRJoMQERERERERERERERERERERlSNMBiEiIiIiIiIiIiIiIiIiIiIqR5gMQkRERERERERERERERERERFSOMBmEiIiIiIiIiIiIiIiIiIiIqBxhMggRERERERERERERERERERFROcJkECIiIiIiIiIiIiIiIiIiIqJyhMkgREREREREREREREREREREROUIk0GIiIiIiIiIiIiIiIiIiIiIyhEmgxARERERERERERERERERERGVI0wGISIiIiJ6Q2VmZmLjxo348MMP0aRJE1StWhVWVlaQyWRyj759+8rVi4yMFC3j6elpkNdAys2bN0/0Wc2bN8/QYRGVS35+fqLfW1BQkKHDIiJ643h6eorWx5GRkYYOi5RYtGiR3OdVp04d5ObmlliPxyVUFryp+4hcF5Oxu3fvHszNzeW+o2fPnjV0WEQ6Z2boAIiISD0RERF4+PAhnjx5gpSUFGRkZMDCwgKOjo5wcnJClSpV0LRpU9jb2xs6VCKl0tLScPv2bURERODFixdIT0+HIAiwtbWFs7MzateujYYNG8LOzs7QoRKVS6tXr8a3336Lly9fGjoUIiIiIiJ6Q0VFRWHhwoVyZT/88APMzc0NFBEREb0JvLy88NFHH2HNmjVFZZMnT0ZISAhMTU0NGBmRbjEZhIjIyCUmJmLfvn3Yu3cvzp07p9JFO5lMBi8vL7Rq1Qr9+/dHjx49YGFhoXKfGzZswNixY0Xljx490ukdFp6ennj8+LFc2ejRo7FhwwaV6stkMpX7MjExgaWlJSwtLWFnZwdnZ2dUqVIFtWvXRv369dGkSRN4e3vDyspKnZegM3FxcXBzc5O88+Wbb77Bjz/+aICodC88PBxbt27FgQMHcO3aNeTn5ytd3tTUFM2aNUPv3r0xfPhw1K5du5Qi1b1mzZohNDRUVN66dWtcuHBB5/1J/T7mzp2r8ogA8+bNw3fffafw+ZYtW+LKlSuahiciCAJq1aql9C4RdeLXFW3fR2P16aefYvXq1YYOg+iNFRkZiZo1a4rK/f39MWbMGJ314+fnh1OnTsmV+fr6vhF3IhKRvJL27XQlMTERjo6Oeu+HiMqPL7/8Eunp6UX/t2rVCoMGDTJgRERE9KaYN28eNm3ahIyMDABAaGgoVq9ejcmTJxs4MiLdYTIIEZGRevLkCX766Sds2LChaGdEVYIgICwsDGFhYdi4cSMqVqyIwYMHY/r06ahVq5aeIjZuBQUFyMzMRGZmJpKSkhAVFSVaxsLCAq1bt8aAAQPwwQcfoFq1aqUW36ZNmxQOgbpp0yYsXLiwTGckh4aGYt68edi3bx8EQVC5Xn5+PkJCQhASEoJ58+ahf//+mDdvHho1aqTHaHUvJCREMhEEAC5evIi7d++iQYMGpRyVdkJCQnDr1i2dfRb//fcfhwstJRs2bGAiiBEKDw9HeHi4XFmdOnVQp04dA0VEREREpF+nTp1CZmamXJmvry+sra0NFBGVttOnT2P37t1yZd9//72BoiEi0i99HfffvHkTMTExcmWNGzdG9erVtWr3TVC1alVMmjQJS5YsKSqbM2cORo4cCQcHBwNGRqQ7JoYOgIiI5OXl5WHBggWoX78+fv/9d7UTQaQkJCRg9erVaNCgAb744gvEx8frINLyJycnB2fOnMEXX3wBDw8PDBkyBNevXy+Vvv39/RU+9/TpUxw5cqRU4tC17OxsTJs2DS1btsQ///yjViJIcYIgYPfu3WjevDlmzpyp0vzBxkLZ5wsAf/31VylFolslvS51lNX3oKzJz8+XHNXE3t4eU6ZMwd9//41Tp04hODhY7rF48eLSD/YNs3nzZvTo0UPusXnzZkOHRURERKQ3o0ePFu3/xMbGGjosKkUzZ86U+79Fixbo1q2bgaIhItIvfR33L1u2TNTu8ePHdRDxm+HLL7+EpaVl0f+JiYlyySFEZR1HBiEiMiLPnj3D4MGDcebMmRKXdXZ2hru7O+zs7GBqaoq0tDQ8ffoUMTExKCgokKyTk5ODFStW4ObNmwgMDNR1+OVKXl4eduzYgb///hsff/wxFi9erLds4EuXLuH27dtKl/H390fPnj310r++xMTEoF+/frh8+bLS5SpUqIA6derA0dERJiYmSEpKQnh4OFJSUiSXz8vLw6JFi3DmzBns3r0bLi4u+ghfZ7Kzs7F161aly2zatAmLFi2CmVnZ2jXbvHkzfvrpJ63jTk5Oxt69e3UUFSlz7Ngx0fRcjo6OuHTpEurWrWugqIiIiIiI6E1z8OBBnDt3Tq5sxowZBoqGiIjeVK6urhgzZgzWrFlTVLZixQpMmTIFzs7OBoyMSDfK1hUHIqJyLCIiAu+88w4ePXok+by1tTUGDhyI/v37o0OHDqhcubLkchkZGbhw4QKOHTuG7du3iy76Aa/uDC+vPvroI3z88ceSz+Xn5yMrKwspKSl4/vw5Hj16hJs3b+LChQtISkqSrFNQUIC1a9ciMDAQu3fvRtOmTXUesyqjKxw4cAAvX75EpUqVdN6/Pjx+/Bh+fn4Kp/2oXr06Pv74Y/Tt2xdNmzaFTCYTLXPr1i3s27cPa9euxZMnT0TPnz17Fr6+vjh58iSqVq2q65egM//88w8SExOVLhMbG4vDhw+jV69epRSVbsTFxeHgwYPo06ePVu1s27ZNNDw06YdUsuGnn37KRJBybN68eZKjwRAREQFAcHCwTtuzs7PTaXtEmuD0k2XD3Llz5f739PRE//79DRQNkf4EBQUZOgQiKsHUqVPlkkHS0tKwZMkSjpRL5QKTQYiIjEBcXBw6d+4smbhhamqKzz77DDNnzlQpE9XGxgadO3dG586dsWjRIhw4cAALFy7EpUuX9BG60XFzc0ObNm3UqlNQUIALFy5g8+bN2LhxI9LT00XLPHz4EL6+vjh+/Di8vb11FS6ysrKwfft2Ubm1tbXcxfGcnBxs3rwZU6ZM0Vnf+pKQkIAuXbpInoAzNzfHnDlzMH36dFhZWSltp1GjRmjUqBG++uorLF++HHPmzEF2drbcMmFhYejatSuCg4NRoUIFXb4MnZGa/qT451u4nLEngzRr1gzh4eFIS0srKvP399c6GaT4e+Th4QFBECSTgEg7165dE5X5+fmVfiBERERkFNQ9diIi0oWgoCCEhITIlY0bNw4mJpzVnoiISl+9evXg6+uLU6dOFZWtXbsWc+bMMdpzzkSq4t4VEZGB5eXloU+fPpKJIK6urjhz5gx++eUXjYYkk8lk6N27Ny5cuICAgABUrFhRFyGXOyYmJmjXrh1+//13PHr0CJ988onkSBXJycno3r27wtFbNLF7927RqCRVq1bFN998I1pWlRFEDE0QBAwZMgQPHz4UPVe5cmWcPn0as2fPLjER5HUWFhb4+uuvce7cOckpYW7duoUxY8ZoE7beREVF4cSJE6Ly5cuXi8oOHjyIFy9elEJUmrO1tcUHH3wgV3bw4EHExcVp3Obt27dFUwmNHj1a8jdI2ouPjxeVubm5GSASIiIiIiJ6U/38889y/5uZmeHDDz80UDRERETA+PHj5f5PTk7Gn3/+aaBoiHSHySBERAa2YMECXLhwQVTu5uaGs2fPom3btlr3IZPJMGrUKISGhqJDhw5at1eeOTs7448//sD+/fsls34TExPxwQcfIC8vTyf9SSV4DB8+HGPHjhVdDA8NDcXVq1d10q++/Pbbbzh+/Lio3NHRESdPntTqzsOWLVsiKCgITk5Ooud2796NzZs3a9y2vgQEBKCgoECurGXLlhg/fjzq1KkjV56bm4tNmzaVZngaGTt2rNz/eXl5Wr33xUcFkclkRpvcUx4kJyeLyqytrQ0QCRERERERvYkiIiLw77//ypX16NHDqKd/JSKi8m/AgAFwcHCQK1u5ciUEQTBQRES6wWQQIiIDevjwIX744QdRuampKXbv3o1atWrptD83NzcEBgZi6NChOm23PHr//fdx6NAhWFpaip4LCQnB6tWrte7j8ePH+O+//0Tlo0ePhru7Ozp16iR6zphHB4mPj8fMmTMln9uwYQMaNWqkdR8NGjTAxo0bJZ/78ssvkZqaqnUfuiIIAjZs2CAqHz16NABg1KhRoueM+fMt5OPjI0pk0TTu3NxcUSKJn58fatasqXF8pFxOTo6hQyAiIiIiojdYQECA6MLawIEDDRQNERHRK5aWlnj//fflyiIiInDmzBkDRUSkG2aGDoCI6E327bffIjc3V1T+v//9D61atdJLnxYWFvjkk0/00nZ54+Pjg19++QWffvqp6LnvvvsOH3/8sVZ31G/YsEF0AqRZs2Zo3LgxgFdJA8WTRbZu3YqlS5dKJqkY2k8//SSZjDFw4ED06dNHZ/28//77GDRoEHbu3ClXHh8fjxUrVmD27Nk660sbp0+fFk2XY25uXpSMNXLkSMydO1fuO3Dr1i1cuXIFb7/9dqnGqq6xY8di1qxZRf9rGve///4rmmKm+Mgjb5L4+HhcuXIF4eHhSElJgY2NDSpXrozatWujVatWMDU1NXSIpUYQBISFheHu3buIjo5GWloaLCws4OLigipVqqBly5aoXLmyXmN48eIFLl68iIcPHyI1NRVWVlZwdnZGw4YN0bx5c5iZ8VAqLy8PoaGhuHfvHp4/f46MjAxYWFjA0dERtWrVQsuWLSVHc9K3O3fu4MaNG3j69CmysrLg5OQEZ2dneHt7w8PDo9TjKY+ysrLw4MED3Lt3D/Hx8UhJSUF+fj6cnJxQsWJFuLu7o2XLljA3NzdIbFevXsX9+/cRHx+PzMxM2NjYoEqVKhgxYoTK7URFReHKlSuIjIxEeno6bGxsULVqVTRq1AiNGzfmdGZKCIKAqKgohIWFISoqCikpKcjIyICdnV3R7/Htt9/W+3pckbCwMNy+fbto+2JqaoqKFSuie/fuaq8jIiIicPv2bTx58gSpqamQyWRF26omTZpwKrYyylg+14SEBFy/fh2RkZFISEhAVlYWrKysYG9vjxo1aqBBgwbw8PDg+qiUJSQk4OrVq4iIiEBSUhJycnKKthFeXl5o2rRpqe8nZmZm4sqVKwgLC8PLly9hYmICZ2dnVK9eHe3bt4etrW2pxlOS4jcEmJubo3fv3gaKRrnHjx/jxo0bePz4MVJTUyEIAipUqIAaNWrgrbfeQr169QwdolGLiYnBjRs3EBkZiZSUFBQUFMDFxQUuLi5o0KCB6EYTfSsoKMDNmzdx9+5dPHv2DOnp6TA3N0flypXRp08fg+2baCIqKgqhoaF49uxZ0b6WlZUVbGxsUKlSJXh6eqJWrVqS0y0bo2fPnuHq1at49OgRUlJSYGZmBhcXFzRu3BjNmzeHiYn+72s3lu1/WWIM526K0/Z4cODAgdiyZYtcWUBAADp27KivkIn0TyAiIoOIjo4WTE1NBQByD09PTyEnJ8egsfn7+4viAiA8evRIp/14eHiI+hg9erTK9aVinDt3rk5jFARBaNOmjWRf69at07jNgoICwdPTU9TmL7/8UrRMWlqaUKFCBdEyO3bs0MGr0q20tDTB3t5eFKuNjY3w9OlTnff37NkzwdbWVtSfs7OzwX8/hUaNGiWKr0+fPnLL+Pn5iZaZOHGiTvrX9vcxd+5cUf327dsLgiAIUVFRgomJidxzn376qdox9urVS64Ne3t7IT09XRAE6fWDPn7fJdH2fZSqX9z+/fuFTp06id7T1x+Ojo7C2LFjhcjISJX7Hj16tML21Hn4+/uL2n706JFoOQ8PD5VjU+Ts2bPCmDFjhIoVKyqNycTERGjTpo2wdOlSISMjQ+t+X7d//37Bz89PkMlkCvt3cnISPv30UyEiIkKurtR7LvX+CYL0e6jpQ9l7L/Vb1va3dPToUWHgwIGCjY2N0rhkMpng7e0trFixQkhLS9O4P6n9kuL7C0lJScLChQsl1x2vP7y8vITly5cL2dnZWr0H2lL0+Sv6vmjK19dX1Ievr6/a7eTk5AiHDh0Spk6dKrRo0ULp+qrwYW1tLXTq1EnYsGGDkJubq/PXcfLkSblljh07JvTu3VuwsrJSGFNJ8vPzhQ0bNggtWrRQ+tpcXV2F//3vf0JsbKzacb7u33//FS3fu3dvtd6biIgIyRjNzc3V/t1Jve7Q0FCV6t66dUtYvHix8N5770nuE0qtHxo2bCh8/fXXWu8rqrKOePz4sTB9+nShWrVqCmNS9fcXGhoqTJo0SWlbhY+mTZsKc+fOFRISErR6jbogtT1Q5XehK6mpqUL9+vVF/VerVk2Ii4vTuN2BAweK2jQzMxPOnj2rVjvG8rlGRUUJc+bMERo1alRiHMCr45+hQ4cK27ZtE7KyskpsX5Xfi7rU+V4p+h5q8lC2PyO1P6DN+YzU1FRh+fLlwttvv610HxGAYGtrK3zwwQfC8ePHNe5PEFTbply/fl0YNmyY0n0yCwsLoVu3bsK5c+e0ikdXzp8/L4rxnXfe0bg9fRyXPHnyRPjmm28kz9kUf1StWlWYPHmyEBYWpnY/06dPF7X3888/q9XGX3/9JRlXu3bt1GonMTFRdI6yUqVKQkFBgVrtCMKrfZOvv/5aqFWrVonvX7169YRp06YJMTExavdTSJXjnTt37giffPKJUKlSJYWxKNtn05a6+4iKXL16Vfjss8+EKlWqqLyudHNzEwYOHCisW7dOePHihe5fnBIlrYvz8/OFjRs3Ct7e3krXrc7OzsL06dNF+966oO/tv76O+0+ePKmzdjU5PiztczeldTwoCIKQmZkpasPe3l6l/SwiY8VkECIiA5k/f77kTskPP/xg6NCYDFLMkSNHJPvq0KGDxm0GBgaK2jMzMxMd2EhdWHz33Xe1fUk6p+g7M2bMGL31OXbsWMk+//77b731qaqUlBTJE3K7d++WW07qfXN0dBQyMzO1jkHb34eyZBBBEITu3bvLPefk5KTWgdGzZ88EMzMzuTbGjRtX9PybkAzy7Nkz0ftY0sPS0lJYtWqVSn2XpWSQW7duCZ06ddIoPjc3N2Hz5s0a913o+fPnwrvvvqtW39bW1sLy5cuL2ijvySC3b98WOnTooFGMzs7OQkBAgEb9lnTh6uDBg4Krq6ta8dSpU0e4e/euRvHoQllJBklOThY++ugjwcnJSevv6D///KPT11F48i8uLk7o2bOnSnEoc+/ePaFly5ZqvS4nJydh27ZtKsUpJSUlRbQtdHBwEPLy8lR+b9atW6cwvsOHD6vczsuXL0VJPs7OziVeBFqzZo3KF60VPSwtLYUpU6ZonKRV0jpi6dKlgrW1dYlxlPT7e/z4sdC/f3+NXmPFihWF5cuXa3RRTVcMnQwiCIJw8+ZNyc+ia9euQn5+vtrtrVy5UvI1/fTTTyq3YSyfa3x8vDBhwgTROkGdR6VKlYT//vtPaT9MBlHfX3/9pfQCsrJHx44dNd7fULZNycnJEaZOnapScubrjzFjxhj85okZM2aI4lq4cKHG7enyuCQjI0P46quvBHNzc7U/axMTE2HcuHFCYmKiyv0dPnxY1E7Pnj3Vinn48OGS8ZiZmQkpKSkqt7N3715RGwMHDlQrlvj4eGHcuHGSN76V9LCxsRHmzJmj0cVWZcc7ubm5wtdff63SutWYk0FevnwpjB07tsRktJIepqamQlRUlN5eZ3HK1sUPHz4UWrdurVb89vb2woYNG3QSW2lt/8tbMoihzt2UxvHg66Re47FjxzSKncgY6H9sJSIikrRnzx5Rmbm5OT766CMDREPKdOvWDZ6enqLy4OBgxMfHa9TmX3/9JSp79913RcM3jh49WrTcsWPHEBMTo1G/+rJ3717J8o8//lhvfSr6rezevVtvfapqx44dyMjIkCurWLGiaN7JgQMHiobsTUpKwj///KPvELVWfDqXxMREteLeuHEj8vLylLZZnt27dw+tWrXC0aNH1aqXnZ2NyZMn44cfftBTZKVv3bp1aNmyJU6ePKlR/ejoaIwYMQJfffWVaOotVT148ACtW7fGkSNH1KqXmZmJL774AlOmTNGo37Lk77//hre3N86ePatR/RcvXmD06NEYM2aM5BR5mlq1ahV69eqFZ8+eqVUvPDwcPj4+uHHjhs5iKY/i4uLw559/IjExUat2Hj9+jH79+uG7777TUWSvREZGwtvbGwcPHtSqnXPnzqFVq1YICQlRq15iYiKGDh2KZcuWadSvnZ0dvL295cqSk5Nx5coVldsIDAzU6LniTp48iYKCArmyTp06lTj9xMaNG3Hr1i2V+5GSnZ2NFStWwM/PD8+fP9eqrdcJgoAPP/wQ06dPR2ZmplZtHThwAE2aNJE8hlNFQkICvvjiCwwfPlyn68CyplGjRvjtt99E5cePH8fChQvVauvKlSuYPn26qLxnz5746quvVGrDWD7X06dPo3Hjxvjjjz9E+8fqePnyJR4/fqxxfZKXk5ODESNG4MMPP8TLly81auP06dN4++23FR4vayI9PR3du3fHzz//LFpvl2TDhg3o27evVt8zbR0+fFhU5ufnV/qBFBMdHY327dtjyZIlGv2eCwoKsG7dOrz99tu4e/euSnV8fHxEU+qdPn1arc+n+NTChfLy8nD69GmV25HaZ+jcubPK9YODg9GkSROsW7cO+fn5KtcrlJGRgfnz56NHjx5ISUlRu76U7OxsvP/++1i8eLFBv/PaevbsGXx8fODv76/x8W6h/Px8o3gvbt++jXbt2uHixYtq1UtJScGYMWPwzTffaNW/sWz/yxpjOHdTnK6OB4vr1KmTqOzQoUM67YOoNHGiayIiA3j27BmuX78uKvfz8yszczm+SWQyGfr27Yvly5fLlefn5+P06dPo37+/Wu0lJydLHnBIJX74+fnBw8ND7qReQUEBAgICMHPmTLX61Zfc3FzJExCenp5o37693vpt3749PD09ERkZKVd+/PhxFBQUlMp8oopIJfsMHToUFhYWcmUVKlRA//79sWnTJlH9IUOG6DVGbfXt2xdOTk5yFwj9/f0xePBgler7+/vL/V+/fn20bdtWpzEaq6dPn6Jr166IioqSK7e3t4enpycqVaqEtLQ0REREKDzxPHv2bPj4+MDHx6c0QtabBQsW4Ntvv1X4vIWFBWrXro1KlSpBJpMhNjYW4eHhkie+ly5disTERKxfv16tGGJjY9G1a1eFF09MTExQs2ZNVKtWDdnZ2YiKihIlHqxcuRI1a9ZUq9+yZPv27Rg+fLjCCw6Wlpbw9PRE1apVkZKSgidPnij87gYEBCAlJQW7du3Sej29adMmfP7556ITSTVq1ICrqytsbW0RHx+PsLAwyZN08fHxGDZsGK5evSpaP1PJbGxsUKNGDTg4OMDOzg6ZmZlISEhAeHi45ElmQRAwb948ODg44IsvvtC6/9TUVHTv3l302zU3N0fNmjXh4uKC/Px8REdH4+nTpwovTNy6dQvvvfeewgsPhe25uroiNTUVT548ESUDf/XVV5KJw6ro0qULgoOD5coCAwPRunVrleorughU2I6qpJbt0qWLyvWLk8lkcHd3h5OTExwcHCCTyZCcnIxHjx4hKSlJsk5wcDB69+6Nc+fOiS6OaWLWrFmi/Q0AqFatGlxdXWFnZ4fnz58jKioK6enpCtsJCAjAhx9+qHAdaGpqilq1aqFy5cqwtLQs2lZJrXe2bduGhIQEHDx4EKamppq/uDJs7NixOHXqFAICAuTKv/vuO/j4+Kh0UTgpKQmDBg1CTk6OXHmNGjWwcePGEpOYAOP5XP/55x8MGTIE2dnZCpdxcHBA9erV4ezsjPz8fCQmJiIyMlLp95a0k5+fj4EDB+LAgQMKl6lUqRLc3d3h4OCAZ8+eITIyUvJzTE9PxwcffIDt27dj4MCBWsfVv39/0YW4wn1mZ2dn5OXlITo6Gk+ePJFs49ChQ/jpp58wa9YsrWLRRGxsLEJDQ+XKLC0tRYmRpe358+fw8/PDw4cPFS5To0YNVKtWDebm5oiJiUFkZKTkxcyHDx/Cz88Pp0+fhpeXl9J+bW1t0bp1a7lk69TUVFy6dAnt2rUrMe47d+4oTYgODAxEz549S2yncNniVN0POH78OPr06aMw8VImk6FmzZpwdnaGjY0NXrx4gYcPH0ouf/LkSfj5+eHUqVOws7NTqX9Fxo4dK3nzhYeHB6pUqQJra2vExMQgOjoaWVlZWvWlLwUFBejTpw/u3LmjcJmqVavC3d296Eaj5ORkvHz5Ek+ePNHZBXddSkhIQP/+/REbGytXbm1tDU9PT1SpUgVJSUmIjIxUuM+4ePFi2NnZYfbs2Wr3byzb/7LGGM7dFKer40Epvr6+orIjR47gl19+0SpmIoMx3KAkRERvLqnhFwEIs2bNMnRogiBwmhgp+/fvl+xv5syZarf1xx9/iNpRNsXG7NmzRcvXrVtX25ekM1evXpV8b4YMGaL3vgcPHizZtybz9epKWFiYZEwXL16UXP7EiROiZU1MTIQnT55oFYe2v4+SpokRBEGYNGmSKG5VhhyVmie6+HDe5XmamI4dOxb9LZPJhMGDBwtnz54VTQuQn58vnDlzRvDx8ZFsx8vLS+mwpOHh4UJwcLDco2rVqqJ29uzZI1ru9UdcXJyobV0Mx7xz507J1yWTyYT3339fOHLkiJCeni6q9+LFC+H333+XfC0A1B42tlevXpLtODg4CEuWLBGePXsmqnP9+nVh4sSJcsP0WlpaCm3atBG1o2jagaysLLn3+aOPPhLV/eijj5R+NoWPq1evKnx92k4Tc+/ePYXz0NetW1fYuHGjaAjqgoIC4cyZM8IHH3wgWQ+A8OOPP6ocg9R+ibe3t9xUAxUrVhR+/PFHyX2V5ORkYfXq1YKzs7NkLNoMTa6psjJNzIMHD+Te4+HDhwtbt24V7t27p3BKh8zMTCEwMFAYMWKE5PD1FhYWwpUrV7R+HW+99Zbc/02aNBF27NghJCcni+o/e/ZM8juXk5MjNG7cWPKzqF69urBu3TrJ4d7Pnz8vDB06VG75SpUqCQ0bNhS1U9IQ4FJDPHfu3Fml9+XmzZsKf2OF69P4+HiV2vLy8hLVDw8PL7Fe+/btBeDVsOMdO3YUli5dKly4cEFIS0tTWOf+/fvC/PnzFa7Hp02bplLMhaTWEQ0aNJD7/tnZ2QnfffedcP/+fVH9nJwcYffu3UJwcLDouXPnzikcWt7Hx0fYvXu3kJSUJKqXnJwsbN68WahTp45k3Xnz5qn1GnXBGKaJKZSeni76DQMQqlatKjx//rzE+v369RPVNTMzE86fP69S/8byuZ49e1awtLSUbMvW1lb45ptvhIsXL0qub/Pz84Vbt24Jq1atEjp06FC0T1LSdsTQ08RERUVpvW9a+FB23KHtNDHff/+9wnXr4MGDhTNnzoj2w1NSUoSNGzcKtWvXlqxXoUIFldarhaS2fa8fRwAQWrVqJezdu1dITU0V1b9//77w4YcfSk4rYWFhIURERKgci678888/oliaN2+uVZvaHpcUFBQIXbt2lfzMLC0thRkzZkhuO6KiooRFixYJdnZ2knWbNm2q0vRnUuvm+fPnqxT7r7/+qnQ/oEmTJiq18/TpU1FdNzc3leqGh4cL9vb2Ct+DjRs3Sh5PZmRkCP/884/QokULybrqTDks9R4W38a4uLgIy5cvl1xvpKenCwEBAXo9j6TpNDFr1qyRfH8aNmwo/PXXX6Kppl+XlpYmXLhwQViwYIHQpk2bonWBrs/tKiO1Li5+fqN+/frCtm3bRMf++fn5wokTJ4QePXpIvgcmJibCuXPn1IrHENt/fR33Jycnyz333nvvidqdPXu2Su3evn1b6ftmDOdu9HU8qEhSUpLk601ISFC5DSJjwmQQIiIDmDNnjuROkDZzqesSk0HEHj9+LNlfnz591G6rVatWonYmTJigcPn79+9L9n369GktXpHu/PXXX5LxLV26VO99L1myRLLvrVu36r1vRb7++mtRPPXr11e4fH5+vlCjRg1RHVVPACmi7e9DlWSQK1euiJZR5aLqxx9/LFfH1NRUdMG9PCeDFD6cnJxUOgGUn58vjBo1SrKNo0ePqvV6dDV/urYnXR8+fCh50rBKlSpCYGCgSm2kpKQI3bp1E7VhZ2cnREZGqtTG9u3bJd/XFi1aqJTYdOrUKcHBwUHp56zqxX1tkzb00W5ubq7g7e0t+bo+/PBDISMjo8Q2du7cKXmhy9zcXGkSy+sU7ZcUPjp37qzSSZmIiAjB3d1dVN/NzU1hYoO+lKVkEG9vb2Hbtm1Cbm6u2v1funRJ8j3v0aOHWu1IvY7i32lNPsN58+ZJttezZ0/JJJDi9uzZo/BCbuGjpPV8VlaWXGITAMHKykrIzMwssf/ly5eL1n+mpqZyZX///XeJ7URHR4vidnd3L7GeIAhCnz59hNmzZ0smzpUkKSlJGDJkiKhvMzMzITo6WuV2SlpHeHt7axRfQkKC5Pe3QoUKwrZt21RqIzs7Wxg9erTka1SUKKwvxpQMIgiCcOfOHcHW1lYUT5cuXZT+nn/55RfJ16HqsYexfK6JiYlC9erVJV9Lr1691P7OFl7437Jli9LlDJ0MUpyu9k112e7ly5clLxZaW1urdM4mPT1dGDFihOT70qZNG5W3p8q2fSYmJsIvv/yiUjvr1q2TbGPGjBkq1delWbNmieIYNWqUVm1qe1yiaJ1Su3btEi+QCoIgREZGCs2bN5dsQ5XkxlOnTonqqbqv1rdvX7l6jo6Ocv/LZDLJRIziNm/erNHnkp2dLbRs2VJU19zcXOXvZ0FBgTBz5kzJ92/37t0qtaFo+1b46Nmzp+TF4dKkaTJI69atRfX69++v8GYyZcLCwoQJEyYIMTExGrwCzUiti19/fPTRRyrt865evVoysa1BgwYqJV0JgvFs//V13C8Vly6OLY3l3I2+jgeVkfq+HDt2TKd9EJUWJoMQERmAohMDjx8/NnRogiAwGUSR4ifqgVcXDNVx+/ZtybhLuoutXbt2ojpjx47V5uXojNQJHQDCf//9p/e+//vvP8m+tU2k0FReXp7g6uoqiueHH35QWk/q5EetWrWUjvpQEm1/H6okgwiCIDRp0kRumZJGrUlPTxfdPfX++++LlivvySA2NjZCaGioyu1kZWUJdevWFbUzdOhQtV6PsSSDvPPOO6L6Li4uat+hmJOTI7pDEoAwadKkEuvm5uZKXoSpU6eOSidNC50+fVrpxeCynAyiKNlv6NChaq2f9uzZIzlCRKdOnVSqr+xCb6dOnYScnByVYwkMDJRsR93EKm0pSgYpjYc6ySDabIcKRURECE5OTnIxyGQy4d69eyq3oezkn6YjLMTGxkr+dn18fFQ6KV1oz549kienCx+qnOiXWieeOHGixHrFRzbq06ePKOlYWcJxoYCAAFH/qu5navsdyc/PlxzlQZ3R95StI5o0aSIavUhVxZNXgVfb70uXLqndVvGRZIBXF6dKU0kXy3TxUOX7/rqNGzdKtqNoO3XhwgXB3NxctHyvXr1U7tNYPtfPPvtM8rWPHTtWNFqcLjEZpGRS+5ampqbCv//+q3L/+fn5wsCBAyXfm4CAAJXaULbtW79+vcqxCIIgjBw5UtRGtWrV1GpDF6Tu8F+8eLFWbWpzXJKcnCw5soerq6taxyVxcXFCvXr1RO2YmJiU+L3Lzs4WjcJnYWEheZf96/Lz80XJH999950okWn79u0lxj927FiNvqcLFiyQfM379u0rsW5xM2bMELXVqFEjleoq275169ZNrWMFfdEkGSQxMVG0j1mhQgWDJ7aoQ1kyyKBBg9S6eK9oJJyVK1eqVN9Ytv9lLRnEGM7dCIJ+jgdL0rNnT1FfJZ3fJTJW2k3STEREGomOjpYsr1y5cilHQuqoVq2aqOzp06dqtfHXX3+JyurVq4e2bdsqrTd69GhR2d9//20U80THxMRIllepUkXvfbu4uEiWK/qN6dvhw4dFc/aamJhg5MiRSutJfb4RERE4ffq0TuPTh7Fjx8r9/+DBA7k5j4v7+++/kZqaqrSNN8HSpUvRpEkTlZe3tLTE119/LSo/d+6cLsMqFVevXsWJEydE5bt27ULNmjXVasvc3Bxbt24tmh+5UEBAAJKTk5XWPXDggOT6a/369XB2dlY5Bh8fH3z11VcqL1+W/Prrr6Ky6tWrY+3atZDJZCq3069fP3zyySei8pMnT+LWrVsax+fo6IgtW7bA3Nxc5TqdO3dG+/btReVl8bdUGtT5nBWpWbMmvvvuO7kyQRCwdetWrdv29vbWaK5wAPD390d2drZcmZWVFQICAmBlZaVyO/369cOYMWM0iqFQ586dRWWBgYFK6+Tn5+PUqVNyZV26dEGXLl3UakfRMlIxSdH2O2JiYoLff/8dNjY2cuVbtmzRql0AMDMzg7+/P+zs7NSu++zZM2zcuFFUvmbNGnh7e6vd3po1a+Dm5iZXdujQITx48EDttsqTkSNH4qOPPhKVf//996LvZWJiIgYPHozc3Fy5cg8PDwQEBKjUn7F8rjExMfjjjz9E5d7e3li7di1MTU3VjoV048aNG5LHYJMnT0bPnj1VbsfExAR//vknqlatKnpOav9KHYMGDZL83SgzZ84cUdnTp0/x6NEjrWJRl9Rvo0aNGqUaw+s2bNggOjYFgN9//12t4xJnZ2cEBASItokFBQX47bfflNa1sLBAhw4d5MpycnKUHlMDQEhICJKSkuTK+vXrJ1qXqbIf8N9//4nKStoPyMrKwsqVK0Xl3333HXr37l1in8XNnz8fLVu2lCu7deuWSvErYm9vjz///FOtYwVjEh0dDUEQ5Mo6duwIe3t7A0WkOy4uLli7di1MTFS/PDl58mR07dpVVC61PS3OWLb/ZY2xnLtRRpvjwZJIbZ/Cw8P10heRvjEZhIjIABITE0Vl5ubmopOgZFwcHR1FZeokY+Tl5WHz5s2i8pISBYBXJ3yKX5hIS0vDzp07Ve5fXxISEiTLHRwc9N631GcCAPHx8XrvW4pUsk+nTp1EB4nF1atXD23atFGpPWMzfPhw0ckVf39/hcsXf65y5cro1auXXmIzVjVq1MC4cePUrjdw4EDRyZInT54Y7PuuqSVLlojKBg8eDB8fH43aq169Oj788EO5MlXWj2vXrhWV9e3bF76+vmrHMGPGDIXJaWVVcHAwrl27JipftGgRKlSooHZ7CxculNwulHSCXJkJEybA1dVV7XqDBg0SlYWEhGgcB5Vs+PDhMDMzkysLDg7Wut05c+ZodNFUEASsW7dOVP7ZZ5+pfWITAH788Ue1EkiKK57AAZR88ebKlStISUkRtVO8rQcPHiAqKkppW5pcBNKlqlWronv37nJljx8/FiXYqqtPnz5o0aKFRnVXrlyJnJwcubLWrVtjxIgRGrVnZ2eHL7/8Uq5MEARs2LBBo/bKk19//RWNGzeWKysoKMDw4cPx/PnzorIxY8bg8ePHcsuZm5tjx44dcHJyUqkvY/lc169fL0pqMTExQUBAgGhdSaVLar/EyclJlNSoCnt7eyxcuFBUfuXKFVy8eFGj+GQymUax1KlTB82bNxeVl+b+jyAIePLkiai8evXqpRZDcVKfd+fOndG3b1+122rTpo3kuuTPP/9EVlaW0rqa7AcU33a7uLigUaNGaieFPnz4ULRurVevXonnMAICAhAXFydX5uHhoXGSvJmZGWbOnCkq1+acyLhx40p8Hcas+H4egHKRCAIAc+fO1eic4c8//ywqu3PnDs6cOaO0nrFs/8saYzl3o4ymx4OqkFp/REZG6qUvIn1jMggRkQFkZmaKykrjwjlpx9raWlQm9VkqcvDgQcTGxsqVyWQylZJBHB0d0adPH1G5sovupUXRe6AoUUOXFP1u1PlcdOXFixf4999/ReVSo35IkVpu165dkncqGRNnZ2e8//77cmU7d+6UTJR6+PCh6E67ESNGlNk7dTQ1atQojU70Ozo6olatWqLysnT3SXZ2Nvbu3Ssq//zzz7VqV2o9quyEUFZWluSJUXXvsixkY2ODYcOGaVTXWB09elRU5ujoKJlIoQonJyfJulL9qErTz6v4XYdA2fodlUUVK1YUrb8uXbokuttRHa6urujRo4dGdR88eICHDx+KyjX9Trm4uGiV2NiyZUvRPk1ISIjSu+SKr8NcXV3RsGFDtG/fHpaWlkqXfd39+/dFI6o1aNBAckQ8fZK6K/PChQtatanp5wkA27dvF5Vpu62SuuBQ0sWLN4G1tTX+/vtvUaJhbGwshg4divz8fCxbtgz79+8X1f3pp5/QunVrlfsyls/177//FpX16NEDDRo00CoW0p7UfsngwYM1Pl8zdOhQyYu3mu7/tGvXDvXr19eorqH3f54/fy66GAtIj8BaGiIjI3H//n1R+fjx4zVuc8KECaKyxMREXLp0SWk9TZJBij/fuXNnyGQyUTJnRESE0ouXUv1IxVOc1Pp0/Pjxon0QdfTp00c0mpc220lt9gOMgdQ5tStXrmi1/2wMrKysMHz4cI3qNmrUSHK7f+TIEaX1jGX7X5YYy7kbZbQ5HlSF1PZJKqmRqCxgMggRkQHk5eWJyrQ5YKLSUVBQICpTZ2hsqTsafH194eHhoVL9UaNGicrOnDlj8CHq8vPzJctL4zutqA+pk0z6tnnzZtEdfhUqVED//v1Vqj948GDR68nIyMCOHTt0FqO+FJ/mJS0tDbt27RIt5+/vLzpx8SZOEaPpXRTAq7v6itNmSM3SdunSJdG0DK6uriVOlVWS5s2bi4YbPX/+vMLlr127Jvq92tvbi+5MV8fgwYM1rmuMpEZt6Nu3r1brdqmTfo8ePRIlSqrC1dVV8vegCmP+Hc2ePRvBwcE6e0jdBWwoxUfPSUpKwsuXLzVur2PHjhrfBSZ1R3bjxo3h5eWlcTyaJkoBgKmpqWhUovz8fAQFBSmsI3URCHh1gr1du3ZKly3pudIcFaSQ1OhKUgk7qjIxMUHHjh01qhsdHS26cGZhYaH1SGYuLi6i79iVK1dE26PSpst1jqYjsXh5eUmO2BUUFIRhw4ZhxowZouf69u0ruitXGWP5XJ89e4bbt2+Lysv6Rcvy4NmzZ6IREgBgyJAhGrdpbW0teTyo6ehYZfk4oviUJoU0GXFOF6Q+A2tra42mOCnUrl07eHp6qtTX65o3by4a4ejatWuSowoDry7SFp9GpjCBo127dqIbmXS9H5CTkyO5LzVgwACl9Upiamoq2oeJiorSaBrgKlWqlPkEu1q1aolGngsPD8f8+fMNFJFudO3aVasbIqX2uZWNtmQs2/+yxljO3SijzfGgKqS2T4q2ZUTGjmMPEhEZgNQw0sZyEYIUK74TDEiPFiIlNjYWhw4dEpWrOmoEAHTv3h1Vq1aVGy4ZeHWBXWr42dKiaFj0lJQUVKxYUa99Sw2bCUB0YFEapEZpGTBggMqxODk5oVevXqIkCn9/f3z88cc6iVFfevToIfpu+vv7y32/CwoKRHO0tmzZEk2aNCm1OI1Fw4YNNa4rdWdhWdp+SM3B3rJlS7US66SYmZnBzc0N9+7dKyp7+PAhMjIyJKdgk7o7r1mzZlqNUtO8eXOYmZlJJnyWNYIgSJ5QU+fuayne3t4wMTERJVcGBwerPRy3Nid3jfl3VLt2bclpwzSlj6GkExIScPDgQYSGhuLGjRuIjIxEamoqUlJSkJGRoVZbSUlJqFy5skZxSN3hrCqpdYAm84Xrsn6XLl1EIx8EBgZKjgyXlZUlOmn6+l28Xbp0wcmTJ4v+l5oG5vU+pGLRVGESy4ULF3Djxg3cvXsXSUlJSElJQWpqqmRytSLanGytX7++xvuDp06dEpXVq1dPdLeyJjw9PeW2VZmZmXjw4IFW+wba0uU6RxtDhw7FqVOnsGbNGrlyqaHDPT091R4h0Vg+V0XTcmhzkZ90Q2o0IhMTE63X723atBFNHaDpyEdl+ThC0T6CqudUdE3qM2jSpInW8bRp00Z04bmkZBATExP4+fnJ3YVfUFCAkydPKkwmKj4aauG229LSEu3bt8eJEyeKngsMDJRMOBMEQW5/AXh1w1OnTp2Uxnv58mVR/3Z2dlol1RaSSqa5ceOG2tO9aLOfaCysrKzQpUsXHDx4UK583rx5OHfuHL7++mt07txZNJWssdN2nSr12RaOmCJ1XsFYtv9ljbGcu1FG379zqXjUmS6eyJgwGYSIyACkTkympaUhPz9frxmtpB2pu1dVvYtl06ZNoguEtra2GDhwoMr9m5qaYvjw4Vi2bJlc+caNG/H9998rPQBMSUnBnTt3VO7rdbVr14azs7PC5xXtrCclJek9GUTRRYLSnkf1ypUruHnzpqhcnWSfwuWLJ4OcP38e9+/fR7169bSKUZ/MzMwwcuRIuflET58+jYiIiKJpAY4fP46oqCi5em/iqCAAtPpdSJ2cLGkOamNy69YtUZmtra3WUwEAkEzkSEhIkFxHSd1t3rRpU636t7S0RP369SVfY1mTnJwseXFA21EmbGxs4OXlhbt378qVazLU6pv8OzKUs2fPYvHixThy5IjO7njT5mK/NnPASw2Xru06wMPDA46Ojhq/JnWGiD9//rzoO1s8GWT27NlF/z99+hR3794VJVEJgiAafaTwgpS6Xr58iR9++AFbtmzRaLQfKYb6fkitxytWrKiTbZVUMkxCQoLW7ZYXy5cvx8WLF3H9+nWFy1hYWGDnzp1qT0lpLJ+r1LQctWrV0jgxjnRHalSQevXqqX1xqjip/afCJDl1j1vL8v6PomQQRTeX6JvU562LEdWaN28umpJClX3dLl26iKZkCAwMlEwGKZ7kWbNmTdSsWVOurdeTQRQlhd68eRMvXryQK2vWrBkqVaqkNFap9WnVqlV1sj6VmvJXk+2kNvsBxmTmzJk4dOiQaITV48eP4/jx43BxccF7770HPz8/dOjQAbVr1zZQpKrTdp9bqn5ycjKSkpJEI+wAxrP9L2uM5dyNMvr+nSuaLl5R4hGRMWMyCBGRAVStWlWyPDk5We8Xz0lzxUfkAFSf31bqzrV+/fqpPSTq6NGjRckg0dHROHbsGN59912F9a5evVri3R2K+Pv7Y8yYMQqfV/R9Lo2h8xTdyVTaySBSn6+7u7vaF1PeffdduLi4IC4uTq78r7/+wo8//qhNiHo3duxYuWQQQRCwYcOGoiFMi0+TZGlpiWHDhpVqjMZC1yPXlKU5g6WS6nbs2KG36ZASEhIkTxBIrZ8UrcvUUbVq1XKRDKJoSGpXV1et265WrZooGURRf8oYYgSoN1VaWhomTZqETZs26Xx9o82dVdoMLy31nZOapkRdzs7OGu//vPXWW6hSpYpcIsWdO3fw7Nkz0W+veJJInTp14O7uXvS/t7c37O3t5UZQCwwMFCWDXL9+XbRelhqqviQBAQGYOnWqzk9+G+r7IbWtOn36tNbDYitSXi4a6IKVlRX+/vtvtGzZUuEIgEuWLNHormJj+VxjYmJEZeXlomVZJ7Vt0NW+j6L+1D1uLcvHEYpG4MvLy4OFhUWpxVGoND9vVfZ1paZmUZQUWry8eEJp8f9jY2Nx69YtNGrUqMT2VZkqTmp9+uDBA6PaTmqzH2BM2rVrh3nz5mHu3LmSz8fFxWHDhg1Fow85OzvDx8cHnTp1Qrdu3YzypiJt97kdHR1hYWEhmh46MTFRch/WWLb/ZY2xnLtRRt+/c6kbIMzMzJgIQmVS2RpDioionKhRo4Zk+aNHj0o5EvXo+kRBWbqAGRkZKXnXjKLP8nUXL16UHJVD3VEjgFfz2UvdraLuMMm6pOg9kLrrTdfu378vWf76XTH6lpWVhW3btonKR44cqfYBgpmZGYYPHy4q37RpE/Lz8zWOsTQ0aNBANIVEQEAACgoKkJCQgH379sk917dvX7UvNlHZV9onRhQljEldrNVFEllpJ6Lpi6IT1rp4fVInbDRJBqHSkZKSgu7du2Pjxo162W/Tpk1t7tTW1zpA2xOSql4IKukikKmpKXx9feXKXr9DWFnb6k4Rs3TpUowZM0Yv63dDfT+MZVv1pqpTp47CKVNatGiBzz//XKN2jeVzTUtLE5WpO8oJ6YfU/og+tw1v2v6PovWy1EgQpaE0P29VPusGDRqIklHu3buH6OhoubK0tDTRdHfFt90tWrQQrVd0uR9gLOtTZbQd0ceYzJkzB6tWrVJpFJ0XL15gz549+Oyzz+Dl5YWWLVvi119/NdjvTIq+jrsV/c7KwvfVGJWF903fv3OpEa14UwqVVRwZhIjIAN566y3J8kuXLhnFvJaWlpaS5erOA18Sqbv9DDVEaEkUDVVc/M4KKcVHRABeHbjY2NhoNLxemzZtcO3aNbmyffv2KcyC1zdF3+fLly9j8ODBeu378uXLkuWKYtKHvXv3Sh50enl5afT5Ss0t+vTpUxw9ehTvvfeeRjGWlrFjx+LixYtF/z958gT//fcfwsLCkJ2dLVqW3jylMWLQ6xQlUUmdDNPFfOWGmvNc1xSdLNTXe8R5d43X2LFjcf78ecnn7Ozs0KZNG7Ro0QI1atRAtWrVYGNjAysrK8l9yU8//VS0/2IoxbdJAHRyV7KifWhVde7cWZRgGhgYiBEjRhT9n5KSgitXrsgtI3XhpkuXLjhw4EDR/0FBQaIpKaWGjVfljuBC+/fvx1dffSX5nImJCRo3boy2bduiZs2aqFGjBhwcHGBlZQUrKyvR9IYHDx7EggULVO5bn4xlW/WmWr9+PQ4ePCj53LVr13Do0CGN9omN5XOVKi8v+w9lXWnvH75p+z+KRkU11EXq0vy8Vf2sO3fujC1btsiVBQYGyt1IdPr0abkpiGUymWjbbWpqCj8/P/zzzz9y7XzxxRdF/+fl5eH06dNy9czNzRUm473OWNanb5JJkyahT58+WLhwIbZs2YLU1FSV6l29ehVXr17FDz/8gKVLl0refFTa9LXPLbV/D/D7qim+b9LbCSaDUFnFZBAiIgNQlPBx+fJlTJw4sZSjEVN0Z5LUXUzakDp4MdaRAhQNz1lS8k5mZqbkEHopKSlo3769TmIDXh30bNmyBZMnT9ZZm6pq0aKFZHnxCxX6oKiP0kwGUTQqy6hRo3Taz19//WX0ySBDhgzBl19+KXfA5O/vL5oSws3NDV27di3t8MgImJkZx+GHnZ2dqEwX2zhVT8oZO0V3a6Wmpmp9sVvqPSovwziXN8eOHcOePXtE5R4eHliwYAEGDRqk1slcY7pDU+o7p4vfr6JpLVQlldRRfB/01KlTcidLZTKZ5FSAxdtKTk5GSEgIWrVqBeDVsMfFLwJZWFiodBEIeDUy2usXlQqZmppi6tSpmDJlCqpXr65SW4D0vOSGYizbqjfRzZs3lY78IQgCRo0ahevXr6s9lLixfK5Sx9rarjtIN6T2f3SxbVDUxpu2/6NoCpYXL14YZKqk0vy8Vf2su3TpUmIySPH9gkaNGklOu9GlSxe5ZJBTp04hLy+vaF14+fJlUaytWrVSaSpjY1mfvmnc3NywevVqLFu2DAcPHsTx48cRFBSk0qi8z58/x4gRI3Dp0iWsWLGiFKJVTF/73IrOZfP7qhm+b6+2T8WpOl08kbHhNDFERAbQokULyYPBU6dOGcXUKYoSMnQ51F12drZofkdlfRtSQUGBaIoL4NWOcceOHZXW3b17d6kNEahsqhg/Pz8IgqDRY8yYMUr7dXV1hZeXl6j84sWLes0kT0pKEg2PCry6SOXu7q63fl/35MkThYlCunbgwAHJOTuNiYODA/r37y9XtnPnTtGd4KNHjxbdEUxvBqmTrl9//bXG66eSHn5+fpJx6OtCTHm5mKNoW6yL1ye1TaxYsaLW7ZLu/frrr6Kyt956CyEhIRgxYoTad/UZ03D4UusAXeyvadtGzZo1RVPdRUVFyZ3kL77f0bRpU1SuXFnUVqNGjVClShW5stfrXrx4UXSncps2bVRO2jl48KBoiksTExPs378fixcvVisRBDCu74fUtmrQoEF621aVtK/9pkhLS8MHH3xQ4igBL1++xJAhQ+TujFeFsXyuUtu80r77Vpdyc3MNHYLOSO3/6GvfB3jz9n+sra0lkxZiYmIMEE3pft6qftaqJIWWNFWcovLU1FS5kVW1mSpOan3aqlUrva1P582bp1JcbwobGxt88MEHWLt2Le7fv4/nz59j165d+Pzzz9GkSROldVeuXGnwZBBt95cLCgrUmnLNWLb/ZY2xnLsxJKntk4eHhwEiIdIez8ITERmAubk5unfvLiqPiIgotQvLyig6UL13757O+ggLC1Orb0M6cuQIoqKiROUdOnQoMXlFWYKGrl29ehU3btwotf5e17NnT1FZVlaW6K4WXdqyZQuysrJE5X369NFbn8UFBASgoKCgVPrKycnB5s2bS6UvbRSf/kXqRD2niHlz1ahRQ1RmiCQnqW1N8YuamtBFG8ZA0bYtIiJC67YfPnyocn9kOBkZGZL7pOvXr0elSpU0ajM+Pl7bsHRGKnlClbsqlcnMzNTJBS2paVpe/yxUvQgEQDRiiLJ2FPWtyP79+0Vl48aN03gUM2P6fhjLtupNM2HCBNHxpqmpKb788kvRsufOncOsWbPUat9YPlep9U94eHip9S91p6+6iTWvK0+/Dan9EX3t+yjqr7zz9PQUlUVHR5d+ICjdz1vVz9rd3R21a9eWK3v69GnR+bP4+HjROR9F+wENGjQQjcaiq/0AY1mf0itVqlTBgAEDsGLFCoSGhuLx48f46aefFF60njdvnkGTcLXd537w4AEEQf5GSplMpvB8Mr+vmuH7Jp0MIrUdIyoLmAxCRGQgI0eOlCz/448/SjkSsVq1akneFajL4ZsVtdW4cWOd9aELyu5CKCnbOzIyEidPntR9UEr89ddfpdpfodfnsn/d+vXr9dbnn3/+KVleWskggiBgw4YNpdJXodJMLtJU586dlWbKd+zYUXSCi94cDRs2FJU9fvy41ONo1KiRqOz69etatZmUlGSQ16IPtra2kiMsFR/lR13x8fGSJ/ylvhdkWHfu3BHdnV+nTh20adNGo/ZiYmIQFxeni9B0omnTpqIybdcBN27c0Mlc18ruCo6Li8Pt27flnnvnnXdUbuvcuXNFibT//fefSn0rEhISIipTdHyjiqtXr2pcV9eMZVv1Jlm3bp1kEvn8+fPx888/Y9y4caLnlixZgkOHDqnch7F8rs2aNROVvXjxQmHCgK7peqo8Q43qoA9S35GYmBjJYeLVIbX/5OnpCWtra63aLYukzvdoe2FYU1Kft7b7uoraUGdfV9l+wMmTJ+UugpuZmcHX11dhW8WTOwrbyczMRHBwsNxzNjY2aNu2rUoxSr2ep0+flquRgsoyd3d3fP311wgLC8P48eNFzyclJeHAgQMGiOwVbfe5pep7eXnByspKcnlj2f6XNXzfgPv374vKShp9h8hYMRmEiMhAevToIXmhZd++fTo5ANWGmZkZWrduLSo/c+aMzvo4d+6cqMzKygotWrTQWR+68Ntvv8kNpVmoSpUqGDJkiNK6GzZsEGWrOzo6IisrSydD6C1dulTU55YtWwxyAN68eXN4e3uLyq9fv44dO3bovD+pqUeAV3e/FL8LVl9OnToleefQhQsXdPL5XrlyRdR2aGiowdcPJZHJZEoTpTgqyJtN6gTj+fPnJacN06dWrVqJym7duqXVHVLabiNlMplW9XVN6rM6deqUVm1KJUiamZlJbj/IsGJjY0VlDRo00Lg9Xe5D6oLUfu7riRKa0NXoflJ35RZe/Pnvv//k9i3Nzc3h4+OjsK3iF5SysrJw/vx5ZGRk4MKFC3LP2draSr4viujyO5Kbm4uLFy9qVFcfpNZ/4eHhBrt7vby7ceMGpkyZIirv3r07ZsyYAeDVsPbFT74LgoBRo0ap/LkYy+faokULyYSM48ePl0r/UtPVPn/+XOP2pI7r1WFM+z/e3t4wNTUVletj/0fVi+7ljdQ+382bNw0QifRnEBYWJrl9U1VOTg7Onz+vUl+KKEsGKb6v0apVK8n1iaK2goODkZmZiXPnziE7O1vuuQ4dOqg8BaDUbyUzM9OotuX06hzr6tWrJZOgz549a4CIXtF2n1kqoVnq+L6QsWz/C+lru6frdo3l3I2h5Ofni5LwAentGFFZwGQQIiIDMTU1xbfffisqz8vLw6hRo0QHZrqkyrBu7du3F5XdvXtXJ9OQ5OXl4e+//xaVe3t7w9zcXOv2dSUoKAjTp0+XfG7+/PmwtLRUWFfRqBH9+/dXWk8dgwcPhomJ/KY8Pj5ectju0iD1fQaAKVOm6HQIyqSkJMkTxsCr+StL64Si1CgstWvXVutCijItW7ZEvXr1VOrX2IwePVryc6hQoQI++OADA0RExqJTp06ikacyMjJw5MiRUo2jfv36ooshubm52LVrl8ZtajstltS2wZB317Vr105UdvToUa3ujt24caOorEmTJpKjkZFhSc3lXaFCBY3bUzSal6FI7XMmJyfj33//1bjNTZs2aRsWgFcJx2+99ZZc2cuXL3H9+nXRyfM2bdrA1tZWYVs1a9ZEzZo15coCAwNx5swZ0YlcHx8ftfbDdfkd2blzJ1JTUzWqqw8NGzYUvW8AsGfPHgNEU76lpaXhgw8+EI1EVL16dWzatKlof9LKygp///236Dv28uVLDBkyRKVpTozlczU1NUWHDh1E5atXry6V/qtVqyYqu3XrlsZTX2p77GlM+z8VKlSQvONXm6k6Y2NjcezYMVE5k0H+j6Gmum3Tpo3omLWgoADbtm3TuM0DBw5InvtQ5/Pu1KmTKK6goCAUFBSoNVWc1PPZ2dk4e/as1lPF2dvbo2PHjqJybieNj4mJieQ5GG2SALV17949yZufVJGdnS15Plnq2LWQsWz/C+lru6frdo3l3I2hPHjwQLR/amdnBy8vLwNFRKQdJoMQERnQ2LFjJU823Lp1C1999ZVe+vz3339LnN4EgMILtqtWrdI6hu3bt0vOCz5o0CCt29aV/fv34/3335dMymnbti0+/vhjpfUDAwMlh88bNmyYzmJ0c3OTvBvUUFOJ9OrVS3KI0tjYWEyYMEE0SoqmPv30U8kD1zp16mD48OE66aMkKSkp2L17t6h86NChOu1Hqr2tW7fqNVlMF2rWrImjR49i7969co8jR44ovWhF5Z+1tTUGDhwoKp8/f36pxmFiYiIZx2+//abRxZAnT55g3759WsUkdVdfenq6Vm1qo2/fvqI7/vLy8jTeD7h7967kiSMmiBknqTvHnz59qlFb165dw4kTJ7QNSafs7Owkp5VbvHixRvsr+/btQ1hYmC5CA6D4rmB1LwJJLSPVjqptvU5X35H8/Hz8/PPPatfTN6kpbxYvXqzV6DEk9sknn4iG4DY1NcW2bdvg7OwsV16vXj2sWbNG1Ma5c+cwe/Zslfozls9V6nj8xo0bWu9LqKJu3bqifY709HTJ0QxKEhoaqvUd3sa2/yO1f3jo0CHJoeJVsXLlSlGykpmZGfr166dRe2Vd06ZN4eTkJFcWGxuLJ0+elHosjo6OklOt/f777xrd+S4IAn755RdReYMGDSSnqFTE2dlZNJ1OYmIi/vnnH4SHh8uVl7Ttdnd3R506deTKdLUfILU+XbNmjVYjq5B+VK5cWVSmi6kNtfHTTz9pVG/dunWihCsrK6sSjymNZfsP6G+7p+t2jeXcjaFIjRLesWNH0U2ZRGUFv7lERAZkamqKjRs3St6F9+uvv+J///ufzi6g5+Tk4Ouvv0bv3r1VuvOuSZMmkgfG69ev1+hEUaGkpCTJ0TacnJyMYvqIuLg4fPLJJ+jbt6/kTnPlypWxY8eOEnf+pBIyXF1ddT6FiVRyyZEjR/Ds2TOd9qOq9evXS859vHPnTnzxxRdaf5+nTZsmeaeOiYkJ/P39S21kmR07diAjI0NUrstkH0XtJSQklMqJYm117doVffv2lXtIjThEb54vv/xSdLdbSEgIfvjhh1KNQ2r+5NDQUKxbt07ttqZNm6b1iaTiJ8YBIDIyUqs2teHu7q7wYvmjR4/Ubm/SpEmiiyFWVlYYN26cxjGS/kjdOX7hwgUkJSWp1U52djZGjx6to6h0S2odcPnyZbXXAenp6fjyyy91FRYA6btz/f39Rb89TZJBrly5Inknvzp3BAPS35HDhw+r1Qbw6mLA1atX1a6nbxMnThTdDRkTE6NwdDpS39q1a7F161ZR+fz58xVOfzRs2DDJ7cbixYtV+v4Zy+c6YMAA1K5dW1Q+fvx4rUbgUoVMJpOcmnX9+vVqtZOTk4OPPvpI63iMbf9n3Lhxorurc3Nz8fnnn6vd1v379yWndu3Xrx/c3Nw0jrEsMzU1Rbdu3UTlQUFBpR8MgM8++0xU9uDBA42SFDdu3Cg5bdLkyZPVHr1UaptcfCRWGxsblUYcKb4f8M8//4i2u46OjmpP2Tx06FDRvkBGRgbGjh1r8EQDkvfw4UNRWfXq1Q0Qyf/ZtWuX5KhJysTGxmLOnDmi8oEDB6JixYpK6xrL9h/Q33ZPH+0ay7kbQ5Ca4u29994zQCREusFkECIiA2vatCl+++03yed++ukn9OrVCzExMVr1cejQITRu3BhLlixR62K81OgkgiCgX79+Gp20ffnyJbp37y55p8DEiRMNNmJAfn4+zp8/j4kTJ6JmzZpYu3at5PtUsWJFHDt2DDVq1FDaXnJyMvbu3Ssql5rWRVsDBw4UJUDk5+dLDsVfGurUqYO1a9dKPrdy5UoMHDhQ7QtJwKuROIYOHarwpMzUqVMlh1vWF6mpWpo1a4YGDRrotJ969eqhZcuWonJDjf5CpAvNmjWTvCN29uzZ+P3337VuPyMjA6tXr5acwuB1rVq1Qps2bUTlU6dOxYULF1Tub9myZVpNL1OoYcOGorKLFy/qLClUE1988YWoLCsrC3369FFr+q9p06ZJnkwZNWoUKlWqpE2IpCdNmjQRjfyQnZ2N7777TuU2cnJyMHz4cNy8eVPX4enEO++8g+bNm4vKP//8c5XvdM/JyUHfvn01SpBSxs/PTzQyz507d+T+t7W1VWlqus6dO8udxM3Pz8e9e/fklqlYsSKaNWumVoxSF+t/+uknpKSkqNzGjh07MHfuXLX6LS1Vq1bFN998Iypfu3YtZsyYofGUGoVyc3OxZcsWREREaNVOWRUaGip5AaZ79+6YMWOG0rorV65E06ZN5coEQcCoUaMQHR2ttK6xfK6mpqaYOXOmqDwuLg5du3bVOLE/Ly9PpWQSqTt9N27ciNOnT6vUT25uLsaOHYuQkBC1YyxOav8nODhY63Y15ezsjBEjRojKjx49ilmzZqnczosXL9C7d2/JESak9q/eJFIX0wyVDNKzZ0/UrVtXVD5nzhwcOnRI5XaCg4MxadIkUXnFihUxatQoteOSSvYsvh/QoUMHWFhYqN3WvXv3RMkafn5+ap+rsrKywqJFi0Tlhw8fxocffqh1onxBQQEOHDig8XQi5cHu3bvx+++/S96IpKqEhATJqQzffvttbULTiSFDhqh8nJCcnIwePXqIjkFNTU0xderUEusby/Yf0N9xvz62p8Zy7sYQpM5f9OjRwwCREOmIQERERuHbb78VAEg+KlSoIEyfPl14+PChyu0lJycL/v7+QosWLUTt+fr6qtzOuHHjFMb0/fffC6mpqSW2kZ+fL2zevFmoWbOmZFtNmzYVMjMzVY6pkFRbH330kRAcHCz5OHfunBAYGCjs3btXWL16tfD1118LPXr0EBwdHRW+94WPevXqCbdu3VIprtWrV0u2cenSJbVfoyp69eol6qt+/fp66UtVc+fOVfheVq1aVVi1apWQlpZWYjsZGRnC2rVrherVqytsr3///kJeXl4pvKpX7t69KxnH4sWL9dLfsmXLRH2ZmJgI0dHRSutJxTh37lyV+5X6DNu3b6/lq1Gdh4eHVvHrirbvo1R9bYwePVrUnr+/v8r1pd7XR48eqR3Ho0ePRO14eHioXD8pKUkyFgDCgAEDhAcPHqgVT0FBgXDx4kVh+vTpgpOTkwBAePbsWYn1rl+/LpiZmYlicHJyEnbv3q20bk5OjjBnzhxBJpPJ/TY1/XxycnIES0tLUf3Vq1erVF8Rqd+yOt9hRfsBTZs2FW7cuKG0bkpKisL61atXFxISElSKwd/fX1R/9OjRKr8GKbr+bapL6jek7u9ZFb6+vqI+VN0PHD58uGSMixYtEgoKCpTWffDggdCpUye5eqampqK2Tp48qfHrULWuMiEhIZJxWVtbC8uWLRPy8/MV1r1z547QunVruXo2NjY6i7NVq1aS73/ho0ePHiq31bhxY6VtDRgwQO34jh8/LtmWj4+PEBsbq7RuZmam8N1338mtM6U+B1V/5/pYRwjCq/Wyt7e35Ov09fUVrl69qnabN2/eFObNmydUq1ZNACAEBwdrHaeqFO2fKzp20vQRGRmpNI6UlBShXr16ojiqVasmxMXFqfRa7t27J9jZ2Yna6NChg5Cbm6u0rjF9rv369ZOMw93dvcT9kNclJiYKq1atEjw8PFTajiQkJAhWVlaifh0cHIQjR44orXvt2jWhQ4cOStd76mxTN27cKKpbuXJlISoqSuU2pGizzxsfHy+4urpKvq7JkyeXeBx79epVoWHDhpL1J06cqPJr0PW2T1/rSnUlJCQIFhYWcnFUr169xH0LRbQ9Ljlz5ozkPry1tbWwZs2aEuPavn27wnNKO3bs0Og1paSkSB6jvP746aefVGrrxYsXcscrUo9ff/1VozgFQRD69u0r2WaTJk2EoKAgtdt7+PChsHTpUqFOnToCAGHbtm0l1tH2eKc0aPJ7/uWXXwQAQqVKlYSvv/5aCAkJUavPx48fS+5PWlhYCC9fvtTi1ahOal38+nbDyclJ2Lhxo9I2Ll68qHCdOm3aNJVjMZbtv76O+x8/fiz52g4fPqxVu8Zy7kZfx4NS7t27J+qrefPmeumLqLSYgYiIjML8+fNha2uLGTNmiLKB09LSsHTpUixduhTNmjVDhw4d0LBhQ7i7u8POzg6mpqZIT0/H06dPce/ePQQHB+PChQvIzs7WOq6VK1fiypUruHbtmiimb7/9FkuWLIGvry/8/PxQo0YNVKxYEebm5khISEBsbCzOnz+PwMBAhaOb2NvbY9euXbCystI6VgD4888/8eeff+qkLeBVlvknn3yCH3/8UXL+RSlSo0bUrVsX3t7eOovrdcOGDcOBAwfkysLCwnD+/Hm0a9dOL32WZN68eZDJZJg3b57ouefPn2Py5MmYMWMGunbtinbt2qFu3bpwdHSETCZDcnIywsPDERwcjKNHjyrNEO/evTu2bdsmuntWn6Q+X5lMhqFDh+qlvyFDhuCrr76Su1OhoKAAAQEBkncUEpUFDg4O+Pfff+Hj4yMaLWj37t3Ys2cP3n33XXTr1g1t27ZFjRo14OTkBDMzMyQnJyM5ORmRkZG4efMmQkNDcezYMTx9+lTtOJo2bYqvvvpKdFdbYmIiBgwYgK5du2LUqFFo27YtqlWrhuzsbERHR+Pw4cP466+/EBYWVlTHzc0N3t7ekiNDqcLc3Bx9+vTBzp075conTpyIQ4cOoUePHqhVqxbs7OxEd+5ZWlpKjnCgC7/88guCgoLw4MEDufLQ0FC0bNkSQ4YMweDBg9G4cWNUqVIFqampiIyMxP79++Hv7y95l7ZMJkNAQIDkULZkPGbNmoVt27aJ7pSbMWMG9uzZgwkTJqBjx46oXr06ZDIZnj9/jtDQUOzduxfbtm2Tuxva19cXBQUFOHPmTGm/DKVatGiBb775RjTUcWZmJqZNm4aVK1di8ODBaN68OVxdXZGWlobHjx/jwIEDOHHihNzUR3379kViYiJOnTqlk9g6d+6MS5cuKXxelSliXm9L2Z2X6k4RA7waWaVt27aiOw7PnDmDhg0bYsKECXj//fdRv3592NraIiEhAZGRkTh06BA2btwoN2y1lZUVPvvsMyxZskTtOPTJ3Nwce/fuRbt27fDkyRO5506dOoUWLVrAx8cHPXv2RLt27VCzZk04OTnB0tISKSkpSE5ORnR0NG7cuIEbN24gMDBQcqh2Q1NlmgF1TJkyBcuXL1f4/Pjx43H//n25MlNTU2zbtg3Ozs4q9VGvXj2sWbNGNKXi2bNnMXv2bPz4448K6xrT5+rv74/Q0FDRncRPnjzBgAED0Lx5c/Tv3x/vvPMOatSogcqVKyM/Px+JiYl4+PAhrly5gpMnT+LYsWOSI1Ao4uTkhK+//hrz58+XK09OTsa7776Lzp07o0+fPqhbty4qVKiA+Ph4PHjwAEeOHEFQUJDc+YpVq1bhww8/1Oj1A8D7778PKysruVEE4uPj0bRpU4wcORKtW7dG1apVJacidXNz08t0K5UqVYK/vz969OghOjezatUq7N+/H2PGjEHv3r3h4eEBOzs7xMbG4saNG9i+fTt27NghmhoPALy8vCSnjXnTODk54f3338eePXuKymJiYnDhwgWdr49U0aFDB3zzzTei44HMzEx88sknWL9+PUaPHo0uXbqgWrVqMDU1xdOnT3H27Fls3LhR4agmI0eOxKBBgzSKyc7ODm+//bbS0QpV3Q+oXLkymjRpgtDQUIXLaLIfUGjjxo3w9fUVnTO8ceMG/Pz80KxZM/Tr1w/t27dH3bp14eTkBBsbG6SmpiI5ORnPnj3DzZs3cePGDQQFBeHWrVsax1JevXz5EosXL8bixYtRs2ZNvPPOO2jZsiWaNWsGV1fXovc0IyMDT58+xc2bN/Hvv/9i+/btkueFZ82aVeK0Kvq0cOHCoikWExMTMWrUKCxatAiDBg3CW2+9hSpVqiApKQkRERHYu3cvzpw5IzlqRt26dUXbMWWMZfuvr+N+d3d3tGrVSnT80KtXL3zwwQfo0qULPDw8YGtrK5r6xd7eXnJkEcB4zt2Upt27d4vKjHXqUyKVGTYXhYiIijt06JDg7OysNGtfm4e9vb3w+++/qxVTXFyc6O5OXTw8PDzUzmx/nb7eIwCCmZmZMGzYsBLvei7u1q1bku3NmTNH49dZkvT0dKFChQqiPj/++GO99amq7du3S8ami8f06dNLvPNP13Jzc4WqVauKYunYsaNe+5X6/dWtW1dpHan3jCODqE/b91GqvjbKy8ggha5evSr5m9LFQ5W7SwTh1e+6e/fuWvVlYWEhnDp1SuvP5+zZsyXeuSf1UPbe6+JOubCwMJ1+TqtWrVKrf44MojltRgYRBEGYPXu21p+3h4eHEBMTo9XdXPq8Eyw/P1/o37+/Vq/Ry8tLSEhI0GmcikbeKHxcu3ZN5bb279+vtK2wsDCNYrx+/bpga2ur1Xsnk8mETZs2afU71/fd7o8ePRK8vLx0tg58/WEMI4Po+jFlyhSFMSgaQXHBggUavabx48dLfqcOHTpUYl1j+VwfPnwoeHp66qxvVbcj2dnZQtOmTbXq65tvvhEEQfttqqJRxEp6KNuf0cU+7/Lly3X2uVSrVk3tu6fL68gggiAI//zzjygWde7wf50ujkvy8vKEgQMH6uzz9vX1FdLT0zV6PYVmzZqlsH0nJyelo5cVN3XqVIVtubq6ahWnILwaTadt27Y6e/9ef3BkEN2+n126dCnV82iK1sXTp0/X6nVUqVJFuH//vkYxGcP2Xx/H/YIgCFu2bNF4nVUSQ5+7Kc2RQVq2bCnXj5mZmcqj1xEZK/UmgyMiIr3r0aMHwsLC8Omnn8Lc3Fxn7VpaWmLKlCl4+PAhJk6cqFZdZ2dnHDt2DNOmTYOZmW4GlXr33Xdx5coVtGjRQift6YKlpSV8fX2xYsUKPHnyBFu2bEHjxo3VakNq1AgAorvWdMnGxgZ9+vQRle/cuVOruUV1YfDgwbhz5w769u2rszZr1qyJ/fv3Y8mSJTr7Pqrq8OHDeP78uahcn5+vovYfPHiAs2fP6rVfIn1r3rw5QkJC0K1bN522K5PJVB4xyMzMDHv37kWvXr006svKygrbt29Hx44dNar/uvbt20vOZWxoXl5eOH/+PJo2bapVOzY2Nti2bZvknOpknObPn6/RXPeF6tWrhxMnTqBatWo6jEq3TExMsGPHDowbN06j+k2aNEFgYKDOR7pp3749LC0tJZ+rXLmyWr9HX19fhevE6tWrw8vLS6MYmzZtiu3bt0vesa8Kc3NzrF+/HiNGjNCofmnx9PTExYsXMXz4cJ23Xdr7soZ0/fr1ojuBX9etWzeNR7tbsWKF6LcgCAJGjRolOTLV64zlc61VqxYuXbqE7t276zwOZSwsLHD8+HGNRhaTyWT4/vvvlY7Aoo5ly5ahXr16OmlLl6ZMmYJNmzZpvI4r1Lx5c5w/fx516tTRUWRlX8+ePUWjuuzcuVM0GllpKRyd6IsvvtC6reHDh+Pw4cOwsbHRqh1lI3906tRJNGKApm1pMypIoUqVKuHkyZP48ssv1YpLFbo8L/qmGzJkCA4dOmQU+x6LFy/G1KlTNapbv359nD17FnXr1tWovjFs//V13D9s2DAMGTJE5+0CxnHupjQ8ePAAISEhcmV9+/ZVefQ6ImPFZBAiIiNUsWJF/Pbbb4iIiMD//vc/uLu7a9xWq1atsGrVKsTExGD58uWoXLmyRu2YmZlh6dKlCA8Px6RJkzQ6ISKTydCrVy+cP38ehw8f1jgWTchkMlhaWsLe3h5ubm5o3rw53n33XUyaNAm//vorTp8+jeTkZAQFBeHzzz+Hq6ur2n3k5uZi8+bNovIWLVpofJJdVVLJAikpKdi1a5de+1VFjRo1sHfvXoSEhGD48OEanxSpUKECli9fjrCwMI0v2mpLKtnH3NwcH3zwgV77HThwICwsLFSKh6isqVatGo4ePYo9e/ZonSBYv359LFiwAJGRkWodrFtbW2Pfvn1YtmyZylOCAa8uAp89exb9+vXTJFxJixYtwpo1aww6dK+UmjVr4tKlS/j+++/h6OioVl2ZTIZ+/frh1q1bejs5RfpROKXPL7/8AltbW5XrmZiYYPz48bh06VKZuPhlZmaGtWvXYvfu3ahVq5ZKdaytrfH111/jwoULqF69us5jsra2VjhcfqdOnUTDOytjb2+vcLpCbS8Cvf/++wgODlY4tLQizZo1w9mzZ7WaXqI0OTg4YPPmzQgKCoKvr69Wbbm7u+N///sf7t69i7fffltHERq31NRUDBo0SG4qEODVPsDmzZvV+j6/zsrKCjt37hRtu+Pj4zF06FDJqTpeZyyfq7OzM44cOYKtW7dqfNxoY2ODsWPHws/PT61+g4KCMHXqVMljDSlNmjRBUFAQZs+erVGcUuzs7HDhwgUMHTpU5xeStTVixAjcvHkTffr0Uft76uTkhB9++AEXL16Eh4eHniIsm8zMzPDZZ5/JlUVFReHw4cMGiuhVTL/88gsCAwPRrFkztevXrVsXu3fvxubNm7VOIAKAdu3aKZxOWZ2p4gCgY8eOCpMqdJEMAry6uernn3/G1atX0bt3b61+yy4uLvjss89w+fJlDBgwQCfxlUWF5yw9PT21aqd+/fo4cOAAtm3bpvK6Xt9kMhmWLVuGf/75R+V9b0tLS0yfPh1XrlzR+vjCGLb/+jru37x5M77//nu1jt1UZQznbvRt7dq1ojJNE5eIjIlMECQm3CIiIqNz9epVnD17FpcvX8bDhw/x5MkTJCcnIzMzExYWFnBycoKTkxOqVq2KFi1awNvbG61bt9YqkUSZjIwMBAcH48yZMwgODsbz58+RkJCAhIQE5OXlwcnJCRUrVkTlypXRvHlzdOzYET4+PnBxcdFLPMYgOjoa69evF5W3b98eXbt21WvfeXl5+OGHH0R30jRu3NjoDp7T09MRGBiIs2fPIjQ0FI8ePUJcXBzS09OVnrA1MTHBtm3bNJ53V1uCIGDRokWi+birV6+u8d3E6vjzzz8RFRUlV2ZnZ4dp06bpvW8qP0aPHo3Y2Fi5soCAAFSpUsVAEYlduXIFe/bswenTp3H9+nWkp6dLLlehQgV4eXnhrbfegq+vb9EcuNqKj4/HunXrsGvXLly/fl20XnVyckKnTp0wYsQI9OnTR+5E55gxYxAQECC3vL+/P8aMGaN2HNnZ2di/fz+CgoIQGhqKyMhIpKamIj09Hfn5+XLLenh4IDIyUu0+NJWamoodO3Zg3759OH/+PBISEkTLmJubo1mzZujevTtGjBih96RI0r+XL1/i999/x7///ouQkBDR99Dc3BxNmjTBu+++i48++gg1a9aUe37v3r2IiYmRK+vXr59eEim0kZ+fj3///Rf79u3D5cuX8fjxY6Snp8PGxgZVqlRBo0aN0LVrVwwePFjvic3Hjh3D+fPnReXvvPMOOnTooFZbhw4dEs0hDry60NCmTRuNYyxUUFCAvXv3YtOmTTh9+jQSExNFy9SoUQOdOnXCsGHD0K1bN7kLq2FhYThx4oTc8g0aNFD7gldpuXv3Lnbv3o3//vsP165dE82hXsja2hp169ZFw4YN0aFDB3Tp0gX169cv3WBJZcbwuQqCgMDAQOzevRunT59GWFiY5GgJVlZWqFu3Llq3bo3u3bujW7dusLe317jfqKgo7N27F0eOHMH9+/fx4sULZGRkwM7ODrVq1ULr1q3Rv39/vf8mo6OjsWPHDly5cgU3b97EixcvkJaWJjni5dy5czFv3jy9xvO6sLAwbNq0CcePH8f169eRm5srWqZSpUpo164d+vTpg0GDBqmVZPymSUpKQo0aNZCWllZU1qtXL+zfv9+AUf2foKAgbN++HSdPnsSDBw8gdQnF09MTHTt2xKBBg9CjRw+dJzOtXbsWT58+FZV//PHHopFVSvL7778jLi5OVD5hwgRUrVpV4xgVefz4MXbt2oUTJ04gJCQEL168kFzOwsICtWvXRoMGDdCuXTt06dIFTZs21ThJsLwKCwvDuXPnEBwcjGvXruHhw4dITk6WXNbGxgaNGzdG69atMXjwYLRr166Uo1VPfn4+Dh06hAMHDiAkJASPHj1CamoqTE1Ni/a9u3XrhmHDhuktacCQ2399HfenpaVh165dOHfuHEJDQxEdHY20tDSkp6eL9it8fX0RFBSkduyGPnejazk5OXBzc5NbX7Vp0wbBwcEGjIpIN5gMQkREREYnMDAQ7733nijxwsLCAgcPHsQ777xjoMiIqLTFxcXhxYsXyMzMhJmZGezs7ODg4FAqo0tlZWUhMjISaWlpsLS0hLOzs9KTpbpMBilL4uPj8fz5c2RmZsLc3BxOTk5wc3MzquFeSbcyMzMRGxuLhIQEmJiYwMHBATVq1DCKYafJ8AoKChAbG4uXL18iOzsbFSpUQLVq1cr1RdGEhISi9aCJiQns7Oxgb2+PypUrG91IB6Q6Y/hcc3NzER0djeTkZOTl5cHW1hb29vZwdXXld8uA8vPzER0djcTEROTm5sLa2hpVq1Yt1dFPy4OvvvoKS5cuLfrf1NQU4eHhWo+EoGtZWVmIiopCSkoKAMDW1hY1atTQy5335VVKSgqePn2KjIwMCIJQtD51dnbmMYOGEhMT8fLlS6SlpSE/P7/oONnZ2ZnbBy0Zw/a/LDLkuRtd2LJli2j6yn379qF3794GiohId5gMQkREREZp69atGDFihOgOnAoVKuC///5TONw5EZGhvKnJIERERERE6oqPj0etWrWQmppaVDZp0iSsWrXKgFEREdGbRhAENG3aFDdv3iwqa926NS5cuGDAqIh0h2lsREREZJSGDRuGJUuWiMrT0tLw3nvv4d69ewaIioiIiIiIiIi0VblyZXz55ZdyZX/99ZfCKUWIiIj04eDBg3KJIACwcOFCA0VDpHtMBiEiIiKjNW3aNNHJIeDVHUTdunVDdHS0AaIiIiIiIiIiIm1NmzYNVapUKfo/MzMTy5YtM2BERET0pime+NGtWzd06dLFQNEQ6R6TQYiIiMioLVu2DEOGDBGVP3nyBN27d0dCQoIBoiIiIiIiIiIibdjb2+Onn36SK1u5ciViYmIMFBEREb1J9uzZIzcdjLm5OVauXGnAiIh0j8kgREREZNRkMhkCAgLQuXNn0XN37txBz549kZGRYYDIiIiIiIiIiEgbo0aNQvv27Yv+z8zMxNy5cw0YERERvQny8vIwY8YMubKpU6fCy8vLQBER6YeZoQMgIiIiKomFhQX27t2L8ePHIykpSfT8unXrMGXKlNIPjIiIiIiIiIg0JpPJsG7dOuzYsaOozMzMDLm5uTA3NzdgZEREVJ49efIEQ4cOLfpfJpNh+vTpBoyISD9kgiAIhg6CiIiIiIiorBszZgwCAgLkyvz9/TFmzBjDBERERERERERERERvLE4TQ0RERERERERERERERERERFSOMBmEiIiIiIiIiIiIiIiIiIiIqBxhMggRERERERERERERERERERFROSITBEEwdBBEREREREREREREREREREREpBscGYSIiIiIiIiIiIiIiIiIiIioHGEyCBEREREREREREREREREREVE5YmboAIiMSVZWFm7evAkAcHZ2hpkZfyJERERERERERERERERERKQ/eXl5ePHiBQCgcePGsLKy0rpNXukmes3NmzfRqlUrQ4dBRERERERERERERERERERvoEuXLsHb21vrdjhNDBEREREREREREREREREREVE5wpFBiF7j7Oxc9PelS5fg6upqwGiIiIiIiIiIiIiIiIiIiKi8e/bsWdEMFq9fs9YGk0GIXmNm9n8/CVdXV7i5uRkwGiIiIiIiIiIiIiIiIiIiepO8fs1aG5wmhoiIiIiIiIiIiIiIiIiIiKgcYTIIERERERERERERERERERERUTnCZBAiIiIiIiIiIiIiIiIiIiKicoTJIERERERERERERERERERERETlCJNBiIiIiIiIiIiIiIiIiIiIiMoRJoMQERERERERERERERERERERlSNMBiEiIiIiIiIiIiIiIiIiIiIqR5gMQkRERERERERERERERERERFSOMBmEiIiIiIiIiIiIiIiIiIiIqBxhMggRERERERERERERERERERFROcJkECIiIiIiIiIiIiIiIiIiIqJyhMkgREREREREREREREREREREROUIk0GIiIiIiIiIiIiIiIiIiIiIyhEmgxARERERERERERERERERERGVI0wGISIiIiIiIiIiIiIiIiIiIipHmAxCREREREREREREREREREREVI4wGYSIiIiIiIiIiIiIiIiIiIioHGEyCBEREREREREREREREREREVE5wmQQIiIiIiIiIiIiIiIiIiIionKEySBERERERERERERERERERERE5QiTQYiIiIiIiIiIiIiIiIiIiIjKETNDB0BE8goKCpCWlobU1FTk5uaioKAA+fn5hg6LiIh0yNTUFKamprC0tISDgwOsrKwgk8kMHRYREREREREREREREZUTTAYhMgKCICA1NRWpqalIS0tDQUGBoUMiIiI9ysvLAwBkZGQgMTERFhYWcHBwgKOjI8zMuHtGRERERERERERERETa4dUGIgMTBAHPnj1DcnKy5PMymQympqalHBUREelTfn4+BEEo+j8nJwcvXrxAUlISPDw8YG5ubsDoiIiIiIiIiIiIiIiorGMyCJEBSSWCmJqaws7ODnZ2drCxsYGJiYkBIyQiIn3Jz89HamoqkpOTkZGRAQDIzc1FVFQUPDw8mAhIREREREREREREREQaYzIIkYFIJYK4urrCwcEBMpnMgJEREVFpMDU1haOjIxwdHZGTk4MnT54gNzcX2dnZiIqKgru7OxMCiYiIiIiIiIiIiIhII7zCQGQghXeDF6pevTocHR2ZCEJE9AaysLCAu7t70WggmZmZSExMNHBURERERERERERERERUVjEZhMhAUlNTi/52dXWFvb29AaMhIiJDs7CwgJubW9H/aWlpBoyGiIiIiIiIiIiIiIjKMiaDEBlAQUFB0UU+U1NTODg4GDgiIiIyBjY2NrCwsAAAZGRkID8/38ARERERERERERERERFRWcRkECIDSEtLQ0FBAQDAzs6OU8MQEVEROzu7or85OggREREREREREREREWmCySBEBvD6FDGvX/QjIiKqUKFC0d9MBiEiIiIiIiIiIiIiIk0wGYTIAHJzc4v+trGxMWAkRERkbKytrYv+fn17QUREREREREREREREpComgxAZQOEUMTKZDCYm/BkSEdH/kclkRdOHFW4viIiIiIiIiIiIiIiI1MGr0EQGkJ+fDwAwNTU1cCRERGSMCrcPhdsLIiIiIiIiIiIiIiIidTAZhIiIiIiIiIiIiIiIiIiIiKgcYTIIERERERERERERERERERERUTnCZBAiIiIiIiIiIiIiIiIiIiKicsTM0AEQ0Ztj9ZojWL32iM7bnTj+XUz85F2dt0tEREREREREREREREREVBYxGYSISk1qWiaePU/US7tERERERERERERERERERPQKk0GIqNTYVbCGa1Unhc8XFAiIjUuSK6vi4ggTE1mJ7RIRERERERERERERERER0StMBiGiUjPxE+XTucS/TEGDJp/JlQWd+B6VK9nrOzQiIiIiIiIiIiIiIiIionLDxNABEBEREREREREREREREREREZHuMBmEiIiIiIiIiIiIiIiIiIiIqBxhMggRERmdDRs2QCaTyT2CgoIMHVa5M2/ePNH7HBkZaeiwjA6/j0REREREREREREREVNaYGToAIiIyXjKZTOVlTUxMYG9vD0dHR7i4uKBly5Zo1aoVevTogSpVqugxSiIiIiIiIiIiIiIiIiJ6HUcGISIinSgoKEBSUhIiIyNx6dIlrF69GmPHjoW7uzuGDx+O27dvGzpEIiIiIiIiIiIiIiIiojcCk0GIiEivcnJysHXrVrRs2RLLly83dDhERERERERERERERERE5R6niSEiIrXY2dnBxEScS1hQUIDU1FSF9bKzs/Hll18iPj4eCxYs0GeIRERERERERERERERERG80jgxCRERquXHjBpKSkkSPlJQU5ObmIiwsDKtWrULdunUl6y9cuBBbt24t5aiJiIiIiIiIiIiIiIiI3hxMBiEiIp0xMzODl5cXJk2ahLt372Lq1KmSy33zzTfIzs4u5eiouHnz5kEQBLmHp6enocMiIiIiIiIiIiIiIiIiLTEZhIiI9MLU1BTLli3D+PHjRc9FR0djw4YNpR8UERERERERERERERER0RuAySBERKRXy5YtQ8WKFUXl//77rwGiISIiIiIiIiIiIiIiIir/mAxCRAaXk5OHfQcuYdbcLaLn+n3wI6ZM+xP7DlxCTk6eAaIjbVWoUAEjR44UlZ86dQr5+fkGiIiIiIiIiIiIiIiIiIiofDMzdABE9ObKzc3DH+uOYvXao3jxIllymbB7MQi7F4Ot20/DxcUBE8Z1x4Rx3WFuztVXWeLn54cVK1bIlaWmpiIuLg6urq5atR0WFoarV6/i6dOnyMnJQeXKleHq6ooOHTrAyclJq7aNRUpKCm7evIkHDx4gOTkZqampMDc3h42NDSpVqgRPT0/UqVMHLi4uhg61yP3793Hv3j3Ex8cjPj4eeXl5sLe3h6urKxo2bIi6devC1NRUqz6ysrKK+nnx4gVSUlIgk8lQsWJFVKpUCY0bN0bdunV19IqIiIiIiIiIiIiIiIjKDl5NJSKDCLsXjUlT1uLGzccq14mLS8b8hTvxz/6L+G3FeNT3ctNjhKRL7u7ukuXx8fEaJYPk5ORgzZo1WLlyJcLDwyWXMTU1RYcOHTB//nx07NhRpXbff/99HDx4UK4sNDQUTZo0UTvG1w0dOhTbt2+XKztz5gw6dOigsE52djY2bNiATZs24fz58xAEocR+PDw80K5dO/Tt2xc9e/aEra2t0uXnzZuH7777Tq7s0aNH8PT0LLEvKZcuXcLq1atx4sQJREdHK13W3t4enTt3Rt++ffHBBx/AxsamxPYFQcDZs2dx8OBBBAUFISQkBHl5ykcMqlKlCt577z1Mnz4dDRs2VOv1EBERERERERERERERlVWcJoaISt2lyw/wXp8FaiWCvO7Gzcd4r88CXLr8QMeRkb7Y29tLlqempqrd1t27d9GiRQt8/vnnChNBACA/Px+nTp2Cr68vJk+ejIKCghLbnjhxoqhs7dq1asf4uvj4eOzdu1eurGHDhkoTQc6cOYNGjRphwoQJOHfunEqJIADw+PFjbNu2DYMHD8bkyZO1ilsdt27dwnvvvYfWrVtjw4YNJSaCAK9GO/nnn38wZswYVKtWDc+fP1e6/NatW+Hu7o6OHTvip59+wsWLF0tMBAGA2NhY+Pv7o1GjRhgzZgwyMjJUfl1ERERERERERERERERlFZNBiKhUhd2LxpCRy5CamqlVO6mpmRgychnu3Y/RUWSkT8nJ0tMAOTg4qNXOlStX0LZtW9y+fVuter/99hvGjRtX4nI9evSAh4eHXNmWLVuQman59zUgIADZ2dlyZePHj1e4/OHDh9GtWzeliS6qUDWBRFu7d+9GmzZtcPjwYY3bSE5ORlZWltJlLl26pFKSiSKCICAgIADt27dHbGysxu0QERERERERERERERGVBZwmhohKTW5uHiZNWat1Ikih1NRMfPr5Ghw5MAfm5lydGbNHjx5JlleuXFnlNqKiojB16lS5xBJPT0907twZbm5usLW1RVxcHM6ePYtLly6JkiH++usv9O7dG3369FHYh4mJCT755BPMnDmzqCwpKQk7duzAmDFjVI71devWrZP738rKCqNGjZJc9sWLFxgxYoRkYkT16tXRvn171K5dG/b29jA1NUVKSgpevnyJO3fu4MaNG0hMTNQoRk39/vvvmDx5smTiiampKby9vdGyZUs4OzvD2toaSUlJiImJwZUrVxAWFqbSaC2KmJiYoFatWmjUqBFq1aoFe3t72NraIj09HXFxcQgNDZUcPeT69esYPnw4jh07BhMT5sQSEREREREREREREVH5xKunRFRq/lh3VOOpYRS5cfMx/lh3FJ992lOn7ZJunTx5UlTm6OgIZ2dnldv48ssv8fLlSwBA48aNsXTpUnTr1k1y2eDgYIwYMQIRERFy5dOmTUPv3r0hk8kU9vPRRx9h7ty5yM3NLSpbu3atRskgp06dwr179+TKBg4cCCcnJ8nlly1bhoSEBLmyOnXq4LffflP4WgsJgoDLly/jwIED+Ouvv9SOVV2nT5/GlClTRIkgNjY2+OKLLzB16lRUqlRJYf24uDjs2bMH/v7+uHTpkkp9mpqaolevXujfvz/ee+89pe0X9vHbb79h8eLFcgk2gYGBWLlyJb744guV+iUiIiIiIiIiIiIiIipreEssEZWKnJw8/LHuqF7a/mPdUeTm5pW8IBlESkoKNm/eLCr38/NTa2SGwkSQ9957D8HBwUqTI9q2bYtTp06hYsWKcuUPHz5EUFCQ0n5cXFzQv39/ubLg4GDcunVL5VgLrV27VlT2ySefKFx+165dcv87Ozvj7NmzJSaCAIBMJkOrVq3w/fff4/Hjx/jmm2/UjldVSUlJGDRokGjUDXd3d1y5cgULFy4sMVHDxcUFEyZMwMWLFxEYGAhHR0ely/fr1w8RERHYu3cvRo4cWWL7hX189913OHv2rOi78PPPP4viJyIiIiIiIiIiIiIiKi+YDEJEpeLw0auIi0sueUENxMUl49CRq3ppm7Q3efJkpKSkiMp79eqldlteXl7YuXMnbG1tS1zWzc0N8+fPF5Xv3bu3xLoTJ04UlUkldiiTkJCA3bt3y5U1bNgQHTp0kFw+JycHDx8+lCsbO3YsqlSpola/AGBmZoYGDRqoXU9Vq1atQmxsrFxZxYoVcfbsWY367dy5c4nJIL6+vnB3d1e7bQBo2bKlaLqeqKgoHDhwQKP2iIiIiIiIiIiIiIiIjB2TQYioVPwXdFOv7Z88pd/2SX3Z2dn45JNPsGnTJtFznp6eGDlypNptrly5UqVEkEIjRoyAlZWVXFlISEiJ9Xx9fdGwYUO5ss2bN8tNNVKSgIAAZGdny5WNGzdO4fLx8fGistq1a6vcX2nJyMjAihUrROVr1qxBjRo1DBCRavr37486derIlUlNX0RERERERERERERERFQeMBmEiEpF6I3IMt0+laygoAAJCQm4fPkyFi1ahDp16kiOpiGTybBs2TKYm5ur1X79+vVVmi7ldQ4ODmjWrJlc2Y0bN1SqO2HCBLn/ExMTsXPnTpX7Lj4ShZWVFUaNGqVw+QoVKojKHj16pHJ/peXo0aOixJUmTZpg4MCBBopIdb6+vnL/X7hwwUCREBERERERERERERER6ReTQYioVDyMeKbf9h8+12v79H9q1qwJmUwmepiamqJSpUpo1aoVZs6ciejoaMn6CxcuRP/+/dXut2vXrhrF+9Zbb8n9n5aWhpycnBLrjRo1CjY2NnJlxRM8FDl79izu3r0rVzZw4EBUrFhRYR17e3u4urrKla1Zswbh4eEq9VlagoKCRGXFE2eMVdWqVeX+v3PnjoEiISIiIiIiIiIiIiIi0i8mgxBRqcjOztNr+1nZuXptn7Rna2uLtWvXYsaMGRrVb9GihUb1nJycRGXJyckl1nNwcMDQoUPlyqSSPKRIjYgyfvz4Euv17t1b7v/ExES8/fbbWLhwIZ49029ClapOnz4tKuvUqVOpx5GYmIiAgABMmTIFnTt3Rq1ateDs7AwrKyvJZCWZTIaFCxfKtZGeno7cXK47iIiIiIiIiIiIiIio/GEyCBGVCktLM722b2Wp3pQjVHpsbW0xbtw4hIaGYty4cRq3U7lyZY37Ly4jI0OluhMnThSVSSV6vC4xMRG7du2SK2vQoAF8fHxK7O+bb74RxZucnIzZs2ejevXqaNOmDWbOnInDhw8jKSmp5BegBxEREXL/Ozg4wMvLq9T6v3PnDvr374+qVatizJgxWLlyJU6ePIlHjx4hPj4e2dnZarVnqPeRiIiIiIiIiIiIiIhIn/R7dZaI6P+rXcsVt+880V/7tauWvBDphJ2dHUxMxLmEJiYmsLOzg6OjI1xcXNCiRQu0atUK77zzDhwcHLTut0KFClq3UUgQBJWWa9myJby9vXH58uWiso0bN+LHH3+EpaWlZJ1NmzYhMzNTrkyVUUGAV1PwbN26FYMGDRIlNQiCgIsXL+LixYtYtGgRZDIZGjduDD8/P3Tt2hXdunWDhYWFSv1oKjc3FykpKXJlVatWhUwm02u/hebPn4/vv/8eeXm6G2lI1cQgIiIiIiIiIiIiIiKisoTJIERUKpo28dRrMkjTJp56a5vk3bhxA56enoYOo9RMnDhRLhkkISEBu3btwvDhwyWXX7dundz/VlZWGDVqlMr99e7dG+fPn8enn36KixcvKlxOEATcuHEDN27cwMqVK+Hk5ISRI0fim2++QbVq1VTuTx0JCQmiMkdHR730Vdy0adPw888/q7SsmZkZrKysYGpqKleelZUlmWRDRERERERERERERERU3nCaGCIqFZ39Guu1/U6++m2f3lxDhgwRJTwomirm/PnzuHXrllzZwIEDUbFiRbX6bNGiBS5cuIDjx49jxIgRKiVcJCYmYuXKlahduzZWrVqlVn/G7siRI5KJINbW1hg+fDjWrFmDixcvIjo6Gnl5ecjNzUVqaiqSkpLkHv/73/8MED0REREREREREREREVHp48ggRFQqenRvARcXB8TFJeu8bRcXB7z3bgudt0sEvEo4GD16NFasWFFUdvr0ady7dw9eXl5yy0oliag6RYyUd955B++88w4KCgpw/fp1nD59GmfPnsXZs2cRGxsrWScrKwufffYZYmNj8f3332vctxSppJakpCSd9iFl2rRporL+/ftj3bp1aiXapKen6zIsIiIiIiIiIiIiIiIio8WRQYioVFhYmGHCuO56aXvCuO4wN2duG+nPhAkTRGXFEz+Sk5Oxc+dOubIGDRrAx8dH6/5NTEzQokULfPHFF9i1axeeP3+OsLAw/Pzzz2jTpo1knQULFiA4OFjrvl9nbm4Oe3t7ubLY2Fi9TrVy+/Zt3LlzR66sbdu22Llzp9ojrkhNc0NERERERERERERERFQeMRmEiErNhHHd0aSxh07bbNrEExPHv6vTNomKq1+/Pjp16iRXtnHjRmRnZxf9v2nTJmRmZsoto82oICXx8vLCl19+ieDgYJw7dw61a9cWLbN06VKd91u8n6SkJNy/f1/n/RQKDAwUlX3zzTcwNTVVuy19xklERERERERERERERGRMmAxCRKXG3NwMv60YDzs7a520Z29vg99WjIeZmfoXhYnUNXHiRLn/4+PjsXfv3qL/161bJ/e8lZUVRo0aVSqxtWvXDkeOHIGFhYVc+YkTJ3TeV8eOHUVlJ0+e1Hk/hZ4+fSoqa9eundrtZGdn4/Lly7oIiYiIiIiIiIiIiIiIyOgxGYSISlV9Lzds3zRN64QQe3sbbNs4FV71qusoMiLl+vbti6pVq8qVFU4Vc/HiRdy4cUPuuQEDBqg9jYk26tSpgw4dOsiVpaSkICkpSaf9FB8hBQD++OMPnfbxOqmpXRwdHdVuZ+fOnXIjuRAREREREREREREREZVnTAYholLXyrsuDu//VuMpY5o09sChfbPRyruujiMjUszc3BwfffSRXFlQUBAePHhQlBTyuk8++aS0Qivi4uIiKsvJydFpH927dxf1ExoaKjdKii7Z2dmJyp49e6ZWG3l5eViyZImuQiIiIiIiIiIiIiIiIjJ6TAYhIoPwqlcdRw7MwZxZg+Di4qBSHRcXB8yZNQhHDszhiCBkEOPHj4eJyf9tOgVBwLJly7Bjxw655Ro0aAAfH5/SDg937tyR+9/c3BzOzs467cPKygpTpkwRlY8fPx4xMTE67QsAqlcX/9YPHDigVhvz5s3DzZs3dRUSERERERERERERERGR0WMyCBEZjLm5GT77tCeuX/oZ6/+YhAH92oqWaVDfDcOHdsT6Pybh+qWf8dmnPWFubmaAaIkAd3d39OzZU65szZo1SE9PlysbP3682m0fPHgQQ4cOxeXLlzWKbefOnaKpatq0aQOZTKZRe8pMmjQJrq6ucmXx8fHw8fHBvXv31G7v1KlTCqez8fPzE5UtWLBA5cSTn3/+GT/88IPaMREREREREREREREREZVlTAYhIoMzNzdDn16tsOC7YaLn9uz8BsuXfoQ+vVoxCYSMwsSJE5U+b2VlhVGjRqndbm5uLrZv345WrVrh7bffxo8//oj79++XWC81NRXff/89hg8fLnruww8/VDsOVTg4OGDHjh0wM5P/TT569AgtW7bEt99+i4SEBKVtvHz5EuvXr0fbtm3h5+enMBmkefPmqF+/vlzZ8+fP0bFjR5w6dUph++Hh4RgwYACmTZsGQRAAQJTAQkREREREREREREREVF7xyioREZEaunfvjpo1a+LRo0eSzw8YMAAVK1bUqo+QkBCEhIRgxowZqFy5Mpo3bw4vLy84OTnBwcEBOTk5ePHiBW7duoUzZ84gKytL1Iavry9Gjx6tVRzK+Pj4YPny5fjss8+Kki0AID09HQsWLMCiRYvQunVrtGjRAs7OzrC2tkZycjJiYmJw9epV3LlzB3l5eSX2I5PJsGDBAgwcOFCuPCIiAn5+fmjSpAl8fX1RrVo1FBQU4Pnz5zh//jyuXr0qF5ePjw98fX2xYMEC3b0JRERERERERERERERERorJIERERGowMTHB+PHjMWPGDMnnP/nkE532Fx8fj+PHj+P48eMq13n77bexc+dOvUwR87pJkybB2dkZY8aMQWZmptxz+fn5OH/+PM6fP691PwMGDMBnn32GX3/9VfTcjRs3RNPjFPfWW29h7969kvWJiIiIiIiIiIiIiIjKI04TQ0REpKYPP/wQFhYWovIGDRrAx8dHozYrV64MJycnreIyMzPD5MmTcfLkSbi4uGjVlqoGDRqE8+fPo1OnThq34ezsDBsbG6XLLF++HDNmzFA7waVPnz44d+4cKlWqpHF8REREREREREREREREZQ2TQYiIiNTk4uKCXr16icrHjRuncZsdOnTAixcvcOrUKcycORO+vr4lJkgUcnd3x/Tp03Hr1i38+uuvqFChgsZxaKJZs2b477//8N9//2HIkCGoXLlyiXUqVqyIQYMGYceOHYiOji4xecXExAQ//PADzp07h/fffx+mpqYKlzUzM8M777yDgwcP4p9//oGDg4Par4mIiIiIiIiIiIiIiKgskwmCIBg6CCJjER0djRo1agAAoqKi4Obmppd+Hjx4gLy8PJiZmaFu3bp66aMsin+ZggZNPpMru3vjV1SuZG+giIgUa9iwIe7evVv0v5WVFWJiYlCxYkWd9ZGfn4+IiAiEh4cjOjoaKSkpyMjIgI2NDezt7eHm5oamTZuiWrVqOutTFwoKChAaGoqIiAjEx8fj5cuXMDMzg52dHapXr44GDRqgdu3aMDHRPCc1JSUF586dw+PHj5GQkAATExM4OTmhTp068Pb2hr192V5vcDtBRERERERERERERPTm0Md1ajOtWyAiInrDnD9/Xi4RBAAGDBig00QQADA1NUXdunXLXDKAiYkJmjdvjubNm+utD3t7e/To0UNv7RMREREREREREREREZVlnCaGiIhITX/88YeobPz48QaIhIiIiIiIiIiIiIiIiEiMySBERERqiIuLw99//y1X1qhRI3Ts2NFAERERERERERERERERERHJYzIIERGRGpYsWYKsrCy5skmTJhkoGiIiIiIiIiIiIiIiIiIxJoMQERGp6Nq1a1ixYoVcmYuLC0aNGmWgiIiIiIiIiIiIiIiIiIjEmAxCRERUgufPn2PVqlXo2rUrcnNz5Z773//+BxsbGwNFRkRERERERERERERERCRmZugAiOjNsXrNEaxee0Th8wUFgqjM751vYWIiU9ruxPHvYuIn72odH1GhrVu34tNPPwUAZGdni6aFKdSwYcOi5YiIiIiIiIiIiIiIiIiMBZNBiKjUpKZl4tnzRLXqxMYlqdQukS7l5OQgOTlZ6TI2NjbYuHEjLC0tSykqIiIiIiIiIiIiIiIiItUYVTJIbGws7t+/j8jISERFRSE1NRXp6enIy8uDjY0NbG1t4eLiAg8PD9SsWRP169eHqampocMmIhXZVbCGa1UnvbRLVJpcXFywbds2tGzZ0tChEBEREREREREREREREYkYNBkkPDwchw8fRlBQEC5fvoyYmBi16ltaWqJp06Zo3bo1unfvjs6dO/MObSIjNvETTudCZZOpqSmcnJzQsGFD9OrVCx999BGcnHSf2ERERERERERERERERESkCzJBEITS7PDRo0fYuHEjtm7divDw8KJyTcOQyWRFf1tZWaFr164YNWoUevXqBXNzc63jpTdLdHQ0atSoAQCIioqCm5ubXvp58OAB8vLyYGZmhrp16+qlDyIiKru4nSAiIiIiIiIiIiIienPo4zp1qY0MsnfvXqxYsQJnzpwBIE7+eD2pQ12FbWVmZuLAgQM4cOAAnJycMHbsWHz++edFbxoRERERERERERERERERERFReWeiz8bz8vLwxx9/oG7duhg4cCDOnDkDQRAgCAJkMpnco7Bc3QcAyXYSEhLw888/o3bt2hg6dChu376tz5dKREREREREREREREREREREZBT0MjKIIAjYtGkTvvvuO0RGRoqSNgqXKeTs7IymTZuicePG8PDwgJubG1xdXWFjYwNra2uYmZkhMzMTmZmZSEhIQHR0NGJiYhAWFobQ0FDcv38feXl5Re293kdeXh527tyJXbt2YejQoZg3bx5q1aqlj5dNREREREREREREREREREREZHA6TwY5f/48Jk+ejNDQULkkEOD/EkCcnZ3Ro0cPdOrUCZ06dYK7u7tWfWZnZyM4OBgnT57EiRMncOHCBVHf+fn52LJlC3bu3ImpU6di9uzZsLGx0apfIiIiIiIiIiIiIiIiIiIiImMjE14fokNLo0aNwpYtWwCgaCqYwuYdHBwwdOhQfPDBB/D19YWJif5mqHn27Bn27NmDrVu3Ijg4GIB8QopMJoObmxs2b94MHx8fvcVBJUtOTsb58+cRHh6OlJQUWFpaonr16nj77bdRt27dUo8nOjoaNWrUAABERUXBzc1NL/08ePAAeXl5MDMzM8jrJCIi48btBBERERERERERERHRm0Mf16l1OjLI5s2bi5IugFeJF61bt8bEiRMxaNAgWFlZ6bI7hVxdXTFp0iRMmjQJt2/fxtq1a7FhwwakpqYWJahER0fj5MmTek0GEQQB4eHhuHTpEi5fvoxLly7h2rVryMrKEi1X2jw9PfH48WOt2vD398eYMWM0qhsaGor58+fjwIEDyM3NlVzmrbfewvTp0zF69Gi57xUREREREREREREREREREREppvNpYoBXyQ3du3fHjBkz0LFjR310obK33noLK1aswPz587Fq1SqsXLkSL1680Ft/aWlpWLRoES5fvozLly8jKSlJb32VVYsWLcKcOXOQl5endLnbt29j7NixCAgIwM6dO+Hs7FxKERIREREREREREREREREREZVdOp+rxcfHBxcuXMDhw4cNngjyOgcHB8yaNQuRkZH4/vvvYWdnp5d+4uPj8cMPP+D48eNMBJHw1VdfYebMmZKJIHZ2dpLTBwUFBcHX1xcvX74sjRCJiIiIiIiIiIiIiIiIiIjKNJ2ODPLvv//ivffe02WTOmdtbY1Zs2ZhwoQJiIiIMHQ4RmPBggWoVKmSWnXatm2r1vJbtmzB0qVL5co8PT0xa9YsDBw4EI6OjsjJycGlS5fw448/4uDBg0XL3b17F8OGDcORI0c4ZQwREREREREREREREREREZESOk0GMfZEkNdVqlRJ7eQHTdja2qJFixbw9vaGt7c3wsPD8e233+q9X3UNHz4cnp6eems/PT0dU6dOlStr3rw5jh49Kjf9i4WFBTp06IB///0Xs2bNwg8//FD03LFjx7B7924MHDhQb3ESERERERERERERERERERGVdTpNBiHAxsYGEyZMKEr+aNiwIUxNTYue37Bhg+GCM6AVK1YgLi6u6H8bGxvs2rVLLhGkuIULFyIkJARHjx4tKpszZw769+8vOZ0MERERERERERERERERERERMRlE51xcXLB69WpDh2FU8vLy8PPPP8uVTZs2DbVq1Sqx7qpVq1CvXj0IggDg1XQx+/fvR9++ffURKhERERERERERERERERERUZnH4RVI706fPo2XL18W/W9iYoJx48apVLdOnTro1KmTXNnevXt1Gh8REREREREREREREREREVF5opdkkHfffRe7du1Cbm6uPpqnMmbfvn1y/7dt2xY1atRQuf6QIUPk/j948CDy8/N1EhsREREREREREREREREREVF5o5dkkGPHjmHw4MGoVq0apk6dips3b+qjGyoj/vvvP7n/27dvr1b9du3ayf3/8uVLXL9+XduwiIiIiIiIiIiIiIiIiIiIyiW9ThPz8uVLrFixAs2aNUOrVq2wdu1apKam6rNLMjL5+fm4f/++XFnr1q3VaqNhw4awt7eXK7t7967WsREREREREREREREREREREZVHZvpsXCaTQRAEAMCVK1cQEhKCqVOnYsCAAfjwww/h6+urz+5JTZGRkbh79y5evHgBmUyGSpUqoUqVKmjSpAnMzc01ajMiIgI5OTlyZbVq1VKrDZlMBk9PT9y4caOoLCwsTKN4iIiIiIiIiIiIiIiIiIiIyju9JoMAry7kA4AgCBAEARn/j737Do+qWt8+fu8kEwghjRKCVINUpQuIdNQTBBFFUNQjRQSponKO8hNRRFQ8VlSkSVVUEAtKVQQEpRcFwSC9JoSSSnqy3z94MzKkJzPZSfh+rmuuk7322s96BjkEkjtrxcfrs88+02effabg4GANHjxYAwYMUNWqVV3dCnJw66236uLFi1ne8/LyUtu2bTV48GA9+OCD8vDI+2+ba3cFkaSaNWvmu78aNWo4hEEOHjyY7xoAAAAAAAAAAAAAAFwPXHJMzLRp09SyZUt7AES6EgrJeGWMHzlyROPHj1etWrV0zz336LvvvlNaWporWkIusguCSFJCQoLWrVunRx99VHXr1tX69evzXPfSpUsO1zabTRUqVMh3f9eGhSIjI/NdAwAAAAAAAAAAAACA64FLdgYZPny4hg8frv3792vOnDlatGiRzp8/L+mfUEgG0zSVmpqqVatWadWqVapcubL69++vQYMGqWHDhq5oD4Vw/Phx3XnnnXrjjTf03HPP5To/Li7O4bpcuXIFWtfLyyvHuigZ3j2yV+8e2Zv7xHx6tk4TPVunidPrAgAAAAAAAAAAAEBJ5NJjYm6++Wa9++67+t///qcffvhB8+bN0+rVq5WammoPhFx9jIwkRURE6J133tE777yjNm3a6IknntBDDz0kb29vV7Z6XXJ3d1e7du109913q2XLlmrYsKECAgJks9l06dIlhYaGav369Zo9e7bCwsLsz6Wnp+v5559XxYoVNXjw4BzXuHz5ssN12bJlC9TrtWGQa+vm1enTp3O8f/X7hPPFpCTrTGLB/tvlVhcAAAAAAAAAAAAAcIVLwyD2RTw8dP/99+v+++/XuXPntGDBAs2fP1+hoaGSst4tRJK2bdumbdu26emnn9aDDz6oQYMGqV27dkXRcqn33HPPqVevXqpWrVqW94OCghQUFKTOnTtr/PjxmjBhgt566y37fxtJGjZsmNq3b6/69etnu05CQoLDtaenZ4H6LVOmTI5186pGjRoFeg7O4WvzVLWy2Qe70k1TYUnxDmNVy5ST21V/PmRXFwAAAAAAAAAAAABwRZGEQa5WpUoVPffcc3ruuee0ZcsWzZ07V0uWLFFsbKwkx2BIRvAgLi5O8+bN07x581SvXj0NHjxY/fv3V2BgYFG3X2qMGDEiz3M9PT315ptvqkaNGho9erR9PDU1VePHj9fSpUuzffbanUCSkwu2g0NSUlKOdVEy5Hacy/mkBAWuWegw9kfnPqpcxiubJwAAAAAAAAAAAAAA13KzcvG2bdtq9uzZCg8P17x589SpUydJ/4RAMoIhhmHINE2ZpqmDBw/q+eefV40aNXTfffdp+fLlSk9Pt/JtXDdGjRql3r17O4x98803OnfuXLbPlC9f3uE6MTGxQGtfuxPItXXz6tSpUzm+tm/fXqC6AAAAAAAAAAAAAAAUF5aGQTJ4eXlpwIABWr9+vQ4dOqQXXnhB1atXtwdApMzBkJSUFP3www/q1auXqlevrhdeeEGHDh2y+J2Ufi+//LLDtWma+vHHH7Odf21oo6DHuzgrDFK9evUcX1WrVi1QXQAAAAAAAAAAAAAAiotiEQa5WnBwsCZPnqzjx49r9erVevDBB+Xp6ZllMCRjLDw8XG+++aYaNGigjh07auHChQUOHSBnTZo0Uc2aNR3GctpNIyAgwOE6OTlZly5dyve6YWFhOdYFgJJu/vz5DsFHwzC0YcMGq9sqdjZs2JDp12n+/PlWtwUAAAAAAAAAAFCsFLswSAbDMPSvf/1LX375pcLCwvTBBx+oRYsWOe4WYpqmfvvtNw0aNEhVq1bVsGHDtG3bNovfSenTqFEjh+uIiIhs59arVy/T2MmTJ/O95qlTp3KtC8D5rv2mu2EYOn78uNVtAQAAAAAAAAAAAMhBsQ2DXM3f31+jRo3Szp079ccff2j06NGqUKFCjruFxMTEaNasWWrXrp3F3Zc+FSpUcLiOjIzMdm5wcLA8PT0dxo4ePZqv9UzTzPTN5wYNGuSrBgAAAAAAAAAAAAAA14sSEQa5WuPGjTV16lSdPXtWS5YsUbdu3eTm5mYPgVz90+uS7GEROE9UVJTDtZ+fX7ZzPTw8VLduXYex/O7W8tdffykmJsZhrGHDhvmqAQAAAAAAAAAAAADA9aLEhUEy2Gw29enTRytXrtTJkyf16quvysvLy+q2rguHDh1yuA4MDMxxfteuXR2uf/vtt3ytd+38ChUqqFmzZvmqAQAAAAAAAAAAAADA9aLEhkEyHDlyRB999JFmzJihxMRESewG4kqHDx/OFAZp0qRJjs/06tXL4XrLli06depUntdcvHixw3WPHj3k4eGR5+cBAAAAAAAAAAAAALielMgwSHx8vObPn69OnTqpXr16mjJlis6cOeNwVAxc47XXXss01q1btxyf6dSpkypUqGC/Tk9P1+zZs/O03uHDh7Vu3TqHsfvuuy9PzwJASTJw4ED757GMV+fOna1uCwAAAAAAAAAAACVQiQqD/Pbbbxo8eLCCgoI0ePBg/frrr/ZvmEmSYRj2IEjGWMeOHS3rtyhkvOeM18CBA3OcX5hdU7788kstWLDAYaxz586qVatWjs95eHjomWeecRh75513dOzYsVzXHDVqlEPP9evXz7TTCAAAAAAAAAAAAAAA+EexP2sjLCxMCxYs0Pz58+3Hk1wdDrh6F5CM8apVq2rAgAF6/PHHddNNNxVtw8Xcxo0b9eabb+r//u//1KFDhzw/N3XqVP33v//N9Gv/v//9L0/PP/300/rggw90/vx5SVd2d+nTp49Wr16typUrZ/nMiy++qDVr1jiMTZo0Se7u7nnuGwAAAAAAAAAAAACQtekzV2v6rNVOrzt8aDcNfzLnEybgWsUyDJKSkqJly5Zp3rx5+vHHH5Wenp5tAES6EgLx8PBQjx49NHjwYHXv3l1ubtZterJz507t3Lkzy3tbtmzJNDZjxoxsaz366KPy8fFxWm+maWrVqlVatWqVgoOD1adPH7Vr107NmjVT9erV7b9upmnq0KFDWrdunaZNm6Y///wzU62XX35ZrVq1ytO65cuX19tvv60BAwbYx3bv3q3WrVtrwoQJ6t27t/z9/ZWcnKwdO3ZoypQpWr58uUONO++8U3379i3Eu0dxlZyepmXhx/Vd2PFM97ps/kFtAgLVLbCGegXVlqcbYSAAAAAAAAAAAADAGWLjEhQWHumSurBWsQqD/PHHH5o7d64+//xzXbp0SZIcjoC5WsZ4/fr19fjjj6t///6qUqVK0TacjeXLl+uVV17J8/zhw4dne69bt25ODYNc7ejRow47exiGofLly8tmsykqKkrp6enZPvv000/r5Zdfztd6/fv31++//6733nvPPnb8+HENHjxYgwcPlq+vr+Li4rJct379+vr8888z/T5AyZaSnqb3juzTu0f36lxS1p8Q9sdGan9spOaePKigMuX0THBjPVOnsWyEQq4r6enp2rNnj44dO6aIiAhFRUXJ399fgYGBuvHGG9W8eXOXhQAjIiK0fft2nT17VufPn5eXl5eqV6+uFi1alJjdp06ePKl9+/bpwoULunDhgpKSkuTj46PAwEA1bNhQDRo0kKenZ6HWSElJ0eHDhxUaGqrw8HDFxMTINE0FBASoQoUKatiwoW6++Wb+HAcAAAAAAAAAoBjxKe+lqkEB2d5PTzd1LiLKYaxKoL/c3HL+er9PeS9ntIdCsDwMEhkZqUWLFmnevHn6/fffJeV+DIy3t7f69u2rwYMHq127dkXab2lmmqZiY2NznFO5cmXNnDlT999/f4HWePfdd1WhQgVNnDhRaWlpDvdiYmKyfKZDhw766quvsj1OBiXT/phL6r9nvXZHX8jzM+FJ8Xr+r21afPaIFjbvopt9K7iwQxQHu3bt0nvvvac1a9bowoXsf69UrlxZISEhevbZZ9W8eXOnrP3dd9/pgw8+0MaNGzP9eZWhQYMGGjNmjJ544gl5eFz5lDpx4sRMgcBjx46pdu3aOa43f/58DRo0yGFs/fr16ty5c4H6Dw0N1Ycffqgff/xRhw8fznGul5eXOnbsqJ49e+rRRx+Vv79/ntbYvXu3vv/+e23YsEFbt25VUlJSjvMDAgJ05513auzYsWrTpk1e3woAAAAAAAAAAHCR4U/mfJzLhYsxathktMPYhrWvqlJFX1e3hkKy5CwV0zS1evVqPfTQQ7rhhhs0ZswY7dmzR6ZpyjRNGYZhf2XMN01Tbdq00axZsxQWFqa5c+cSBCmAZs2a6eOPP9aDDz6oGjVq5OkZm82mtm3b6pNPPtGJEycKHATJ8OKLL2rnzp2677777N88zUqjRo00Z84cbdiwodjs+gLn2HwpXLf/uixfQZCr7Y6+oNt/XabNl8Kd3BmKi4iICD366KNq1aqVFi1alGMQRJLOnz+vzz77TC1btlT//v1znZ+Tc+fOqVevXrr//vu1fv36bIMg0pXAxfDhw9WmTRudOHGiwGs608mTJ/XII4/o5ptv1scff5xrEESSEhIStGbNGo0aNUo33HCDdu/eneP8n3/+WfXq1VPLli31yiuv6Jdffsk1CCJdCYB+9dVXuu2229SjRw9dvHgxz+8LAAAAAAAAAAAAeVekO4McOXJEc+fO1cKFC3X27FlJue8CUqlSJT322GMaPHiwGjVqVJTtFtjEiRM1ceLEIlnr6l+/vPD399fw4cPtR9NcunRJoaGhOnXqlM6dO6fLly8rPT1dvr6+CggI0I033qiWLVuqbNmyTu27WbNm+vbbbxUVFaXNmzfr0KFDio2Nlaenp6pXr66WLVuqfv36Tl0TxcP+mEu6e+sqxaQmF6pOTGqy7t66Sls63KdGPtlvXYWS58iRIwoJCdGRI0fy/axpmvr000+1bds2rVmzJtfdOK4VHh6uLl26KDQ0NF/P7d69W23bttXmzZvz9Zyzbdq0SQ888IDOnz9f4BoJCQnZ7tSUYd++fTp06FCB15CklStX6tZbb9Xq1av58x4AAAAAAAAAAMDJXB4GiY+P15IlSzR37lz99ttvkrIPgGTcc3NzU0hIiAYPHqx7771XNpvN1W1etypUqKDbb7/dsvX9/f3VvXt3y9ZH0UpJT1P/PesLHQTJEJOarMd2r9PWDvfJ5ubulJqw1smTJ9WuXTudO3cu0z1PT0/deeedatSokSpXrqwLFy5o//79Wrt2rZKTHX9P/f3332rbtq127typatWq5Wnt+Ph43XHHHVkGQWw2mzp37qwmTZooMDBQUVFROnz4sNasWWMPToSFhalXr17q0aNHAd554S1btkx9+/ZVSkpKpnuGYahJkya67bbbFBgYKB8fH0VHRys8PFy7d+/Wn3/+meVz+VGrVi3dcsstqlu3rnx9feXj46OEhARdvHhRe/fu1datW5WQkODwzPHjx9W7d2/t2LFD5cqVK9T6AAAAAAAAAAAA+IfLwiC//vqr5s2bp6+++kqXL1+W9E8IJKsAiCTdeOONGjRokAYOHKjq1au7qjUAFnnvyL4CHw2Tnd3RF/TekX16rm4zp9ZF0UtPT9djjz2WKQhiGIaefPJJvf766woIyLwLzKVLlzRu3DjNnj3bYTw8PFz9+/fX2rVrM33eycoLL7ygAwcOZBofNGiQ3nzzTVWuXDnTvaSkJL333nuaNGmSEhIStHfvXvvOV0Xp4MGDeuyxxzIFOjw8PDRkyBC98MILOX5ejY6O1rJly7Rw4UL9/PPPeVrTMAzdcccd6tOnj+65555cQzcxMTGaO3euJk6cqOjoaPv4gQMH9MILL+j999/P07oAAAAAAAAAAADInZsritavX1+dOnXS/PnzFRcXJ9M0ZZqmDMOwf0MuY6xMmTJ6+OGHtXbtWh05ckQvvvgiQRCgFEpOT9N7R/e5pPZ7R/cpJT3NJbVRdD788ENt3LjRYcwwDM2dO1fTp0/PMggiXdnhaNasWZo1a1ame+vWrdO0adNyXXv37t368MMPM41PnTpVc+fOzTIIIkllypTRuHHjtGbNGvvOFhcuODfwlJu0tDQ98MADio2NdRgPCAjQunXr9PHHH+f6edXPz88enNm5c6duvPHGHOe3b99e+/fv108//aQnn3wyT7uv+Pr66umnn9aePXsyHd8ze/ZsRUZG5loDAAAAAAAAAAAAeeOSMMihQ4ckySEAcm0IpFmzZvrwww919uxZLVq0SF27dnVFKwCKiWXhxxWeFO+S2uFJ8fou/LhLaqNopKam6p133sk0/uKLL2rgwIF5qjFkyBA9//zzmcbffvttpaXlHBaaOnWq0tPTHcaefPJJPfXUU3lau0OHDpoxY0ae5jrbF198of379zuMlSlTRmvXrlWHDh3yXa9ly5aqVatWjnNuvfVWNWzYMN+1pSu7gC1ZskRubv/8FSQ+Pl7z588vUD0AAAAAAAAAAABk5pIwSIZrAyB+fn4aMWKEdu3apd27d2vkyJHy9/d3ZQsAionVEadcWn9NxGmX1odrfffddzp1yvH3SHBwsF544YV81Xn55ZczBRlOnDihZcuWZftMZGSklixZ4jDm7++vN954I19rP/bYY2rXrl2+niks0zQ1ZcqUTOOTJ09WixYtirSX/GjVqpW6dOniMLZ+/XqLugEAAAAAAAAAACh9XBoGMU1TktSlSxd99tlnCgsL00cffaTmzZu7clkAxdCuKNcenbEr6rxL68O1vvnmm0xjI0eOVNmyZfNVx8vLSyNHjsxT/Qxr165VYmKiw1i/fv2yPZYmJyNGjMj3M4Xx+++/Z9oVpHLlyho9enSR9lEQnTt3drjetm2bNY0AAAAAAAAAAACUQi4Lg9xwww0aP368Dh8+rJ9//lmPPPKIypQp46rlABRzB+OiXFv/crRL68O1Nm/e7HBtGIYeeeSRAtV67LHH7DtTZVf/almFEPr27Vugte+//37ZbLYCPVsQGzZsyDQ2aNCgEvH5NigoyOE6IiJCFy64NjQGAAAAAAAAAABwvfBwRdEVK1YoJCREbm4u3XgEQAmSlJ7m0vqJaakurQ/XCQ8P14kTJxzGgoODM4UF8iooKEjBwcE6cuSIfezYsWM6d+6cqlSpkmn+jh07HK4Nw1DLli0LtLaXl5caNWqkP/74o0DP59fGjRszjV17/EpRuHz5slasWKEdO3Zo7969OnLkiGJjYxUbG6uEhIQ814mMjFSlSpVc2CkAAAAAAAAAAMD1wSVhkLvvvtsVZQGUYGXc3JXowkBIWXeX/HGGInDy5MlMY82aNStUzRYtWjiEQSTp1KlTWYZBzp4963BdrVo1+fn5FXjtW265pcjCIEePHs001qZNmyJZW7ryazphwgQtXbpUly9fLnS9qKiowjcFAAAAAAAAAAAA1x0TAwBXq1/e37X1vQv+zXtYKzIyMtNYVqGN/Mjq+azWyWq8QoUKhVo7ICCgUM/nx8WLFx2uy5QpU2Trf/LJJ2rQoIEWLFjglCCIJMXHxzulDgAAAAAAAAAAwPWu2P4o/alTp7Rnzx5duHBBFy9etG8z/9JLL1ncGYCCaOlfSX/EXMx9YoHrV3ZZbbhWViENX1/fQtXMamePS5cuZTk3Ojra4drHx6dQaxe29/y4Ngzi7+9fJOt+8MEHGjNmTJ7muru7q2zZsvLwcPwrR3JycqYjZEzTdFqPAAAAAAAAAAAA17NiFQY5e/as3n33XX377bc6fvx4lnNyCoN8/vnnCg8Pt1936NBBrVq1cnabAAqgW2ANzT150GX1QwKru6w2SrcyZcooNTXVfp2cnFyoeoV9vrjbt2+fxo4dm2ncw8NDPXv2VJcuXdSyZUtVr15dVatWlc1my7LO/PnzNWjQIFe3CwAAAAAAAAAAcF0qFmGQtLQ0vfDCC/rggw+UnJyc7U8GG4aRY50zZ85o3Lhx9uuuXbvqp59+cmqvAAqmV1BtBZUpp/Ak5x8DEVSmnO4Lqu30uigaWR1rEhMTU6ia1+72IWV//Iu/v7/DMSeuWNtVKlasqDNnztivo6KiXL7muHHjHMIz0pXw5aJFi1SjRo0813HW0TIAAAAAAAAAAADIzM3qBi5cuKAuXbro7bffVlJSkkzTlGEYmV55MWzYMPv2/KZpav369Tp16pQr2weQR55u7nomuLFLaj8T3Fg2N3eX1IbrZRUGOXfuXKFqZvV8VutkNX7mzJlCHVdSlJ93Klas6HCdlJSU5bE7zhIVFaUff/zRYSw4OFgrV67MVxBEyv7YHgAAAAAAAAAAABSepWGQ5ORk3Xvvvfr1118dQiCmaTq88srHx0cPPvig/RnTNPXdd9+5qHsA+fVMncZq4VfJqTVb+lXSs3WaOLUmilbNmjUzjf3++++Fqrlnz55MY9mFFRo1auRwHRcXp0OHDjl1bVepU6dOprHt27e7bL2NGzdm2hXkqaeeUvny5fNd6++//3ZWWwAAAAAAAAAAALiGpWGQMWPGaOvWrQ4hkIoVK+rVV1/V7t27denSJTVt2jRfNR988EFJ/xwps3btWqf3DaBgbG7uWti8i3w9PJ1Sz8/DUwtbdJWHm+WbHKEQgoKCVKtWLYexo0ePFnh3kIiICB05csRh7MYbb1SVKlWynN+mTZtMY+vWrSvQ2gcOHCj0rib50bFjx0xj69evd9l6Z8+ezTR2++23F6jWr7/+Wth2AAAAAAAAAAAAkA3LvoN68OBBffLJJ/YQiCTdddddOnz4sMaPH69mzZrJ398/33U7d+7scFTML7/84sy2ARTSzb4VtOq2uwsdCPHz8NTK2+5WI5+sj/5AydKuXTuHa9M09cUXXxSo1meffZZpV6lr61+tQ4cOmcYWLlxYoLUXLFhQoOcKqkuXLpnG5s2bp+TkZJesl9XRLgX5XL1p0yYdP3688A0BAAAAAAAAAAAgS5aFQd544w2lpaVJurKLR8uWLbVixQp7kKOg3N3d1bx5c/s3AmNjY3Xy5MlC9wvAeW6vEKQtHe4r8JExLfwqaXOH+3R7hSAndwar9O7dO9PYtGnTlJSUlK86SUlJ+vjjj/NUP0OrVq0yHRWzZcsWrVy5Ml9rnzlzJsu1Xalp06Zq0sTxmKSIiAhNmzbNJev5+PhkGgsLC8t3nTfeeMMZ7QAAAAAAAAAAACAbloVBVqxY4bAryCeffCIPDw+n1G7ZsqXDdWhoqFPqAnCeRj4B2trhPr3ZsI2CypTL0zNBZcrpzYZttLXDfewIUsrcd999qlGjhsPY4cOHNWXKlHzVee211zIdEVO7dm3de++9OT735JNPZhobMWKEwsPD87RuamqqnnjiCcXFxeW9WSd5/vnnM4298MIL+uOPP5y+VrVq1TKN/fDDD/mq8cknn2jVqlXOagkAAAAAAAAAAABZsCQMsmfPHl28eFHSlV1B2rdvn+knmwujZs2aDtdnzpxxWm0AzmNzc9dzdZvp5F2PaMmtd+rRajdlmnOLT4AG12ygJbfeqZN3PaLn6jaTzc3dgm7hSu7u7ho7dmym8UmTJmnRokV5qrFgwQJNnjw50/jYsWPl7p7z75knnnhCderUcRg7ceKE7rzzTh06dCjHZ6Ojo/XQQw9p9erVeerT2R566KFMn0MTExN1xx13aMuWLfmut2fPHp04cSLLex07dpSbm+NfHaZNm6Y///wzT7UXL16skSNH5rsnAAAAAAAAAAAA5I8lYZBrv7F2xx13OLW+v7+/w3VMTIxT6wNwLpubu/reUEfv3XJ7pnvrbu+pT5p1Ut8b6hACKeVGjx6tjh07Ooylp6erf//+Gj16tKKiorJ8LjIyUiNHjtSgQYPsu01l6Nq1q0aMGJHr2uXKldMnn3wiwzAcxvfv368mTZromWee0datWxUfHy9JSk5OVmhoqKZMmaIGDRrom2++kSR5eHjkuguJs7m7u+urr77KdITLxYsX1alTJ40aNSrXUGRcXJw+//xzdevWTS1atNCxY8eynFepUiXdddddDmMJCQnq2rWrvv3222zrh4eHa+jQoXrkkUeUnJwsSapatWpe3h4AAAAAAAAAAAAKwDnnsuTT+fPnJUmmacowDNWuXdup9b29vSXJ/k29y5cvO7U+AFzPmjRpkml3iIJYtGiRevToYb92c3PTp59+qlatWikiIsI+np6ero8++kizZ8/WXXfdpUaNGqlixYq6ePGiDhw4oB9//NEeMLhaUFCQFi5cmOdeO3furLfeekv/+c9/HMYTExP1/vvv6/3335ckeXl5KSEhIcsar732muLj4/X99987jF8bMnG2evXq6dNPP1Xfvn2VkpJiH09JSdG0adP08ccfq1mzZmrTpo0CAwPl4+OjmJgYhYeHa8+ePdq3b5+SkpLytNarr76qn376Senp6fax8+fPq3fv3qpbt666du2qmjVrys3NTREREdq5c6c2b96stLQ0h36feuopjRo1ynm/CAAAAAAAAAAAALCzJAxy7U4d5cuXd2r96OhoSf+ETZxdHwCuZ7GxsU6pc3VoIUPNmjX122+/KSQkREePHnW4l5SUpOXLl2v58uW51q5bt67WrFmjatWq5aunsWPHys3NTf/5z38cwg5Xyy4I8vzzz+u5557ThAkTMt3LCCm6Uq9evfTTTz+pd+/eunTpksM90zS1Z88e7dmzp9DrtGrVSm+99VaWx/ocOnQo12N1brjhBq1atUobN24sdC8AAAAAAAAAAADImiXHxAQEBDhcZ4Q3nOXqnyiXpIoVKzq1PgDAdW666SZt3rxZ/fr1y/eOGoZh6NFHH9Vvv/2mG2+8sUDrP/PMM9q8ebOaNWuWp/k33HCDlixZoilTpkhSlsfZ+Pn5FaiX/OrUqZN27Nih3r17F3g3El9f30yfp6/17LPP6oMPPpDNZstX7Xbt2mn79u0KDg4uUG8AAAAAAAAAAADIG0vCIJUrV5b0z7b5p06dcmr9bdu2OVxXqlTJqfUBAK5VpUoVffHFF9qxY4ceffTRXEN9lSpV0r///W/t2rVLn332mf3zTEG1adNGu3bt0vr16zVixAi1aNFCQUFB8vDwUPny5dWgQQM9/PDDWrRokY4dO6a+ffvan712Vw4vL698hyYKIzg4WF9//bV27typQYMG5Wl3lPLly6tnz5765JNPdPbsWTVt2jTXZ0aPHq09e/bokUcekaenZ7bzDMNQ27ZttWjRIm3atCnfu7UAAAAAAAAAAAAg/wzTNM2iXnTnzp1q3bq1PQzSrVs3rVixIsu5zZs31969e+1HvqSlpeVYOykpSVWrVlV0dLT9mfDw8EJ/YxDXh9OnT6tGjRqSroSUqlev7pJ1Dh06pNTUVHl4eKhu3bouWaMkOp+UoMA1Cx3GIkL6q3IZL4s6QnGRnp6uXbt26fjx44qIiFBUVJT8/f0VGBioG2+8US1atJCbmyX5xkxuvvlmHThwwH5dr149HTx40MKOpAMHDujvv//W+fPndfHiRUmSj4+PgoKC1LBhQ9WrV08eHgU/OS4hIUFbtmzR4cOHdenSJZmmKV9fX9WpU0e33norocwC4PNEyTB95mpNn7Xa6XWHD+2m4U92c3pdAAAAAAAAAMivCxdj1LDJaIexv/Z+qEoVfS3qqHRyxfepC/6dn0Jo0aKF/P397YGNdevW6eLFi045zmXu3LmKioqyB00aNmxIEAQASjg3Nze1atVKrVq1srqVHEVGRio0NNRhrDj03KhRIzVq1Mhl9b28vNS1a1d17drVZWsAxVFsXILCwiNdUhcAAAAAAAAAgMKwJAzi5uamO++8U0uXLpUkJScn6+2339Ybb7xRqLphYWF65ZVXZBiGfVeQkJAQZ7QMAECu5s+fr/T0dIexW2+91aJuALiaT3kvVQ0KyPZ+erqpcxFRDmNVAv3l5mbkWhcAAAAAAAAAgMKwJAwiSUOHDtXSpUvtwY13331Xd999tzp27FigelFRUerdu7ciIiLsu4K4u7vrqaeecmbbAABkKSYmRu+//77DmGEY6tGjhzUNAXC54U/mfJxLVtsnblj7KtsnAgAAAAAAAABczs2qhe+880516dLFvoNHSkqK7rnnHn3zzTf5rrVhwwbdeuut2r59u8OuIA8//LBq1arlgu4BAKVRcnJygZ5LS0vT4MGDdfLkSYfxrl27qm7dus5oDQAAAAAAAAAAAMgzy8IgkvT+++/L29tb0pWfno6Li1Pfvn11xx136Msvv8z0TTVJSklJUXh4uLZt26a33npLbdu21R133KGjR4/KNE17raCgIP3vf/8r0vcDACjZRo8eraFDh+rw4cN5fiY8PFw9evSwH312tWeffdaZ7QEAAAAAAAAAAAB5YtkxMZLUuHFjff7557r//vvtu3mYpqkNGzZow4YN9nkZIQ/TNFW2bNlMdTKezfjYZrNp8eLFqlKlSpG8DwB58+6RvXr3yN5s76f///+vX63phqVy+////87Os3Wa6Nk6TQrdH5CUlKQFCxZo9uzZatu2rXr37q1WrVqpcePGCggIkGEYSktL0/nz57V161atXLlSn376qRITEzPVGjBggLp3727BuwAAAAAAAAAAAMD1ztIwiCT17NlTCxcu1NChQ5WQkOAQ6shKVuNXP+Pj46NFixapffv2rmsaQIHEpCTrTOLlfD0TlhSfp7qAs23ZskVbtmyxX7u5ucnLy0uXL+f+e7h58+b68MMPXdkeAAAAAAAAAAAAkC3LwyCS9Mgjj6hp06bq16+f9u/fL8Mw7AGPvDJNUw0aNNBXX32lm2++2UWdAigMX5unqpX1dkldwNXS09PzFATp2bOnvvjiC/sxaAAAAAAAAAAAAEBRKxZhEEm6+eabtXfvXi1dulT/+9//tGvXrkxzMo6RuVbdunU1fvx4/fvf/5abm1tRtAugADjOBcXdXXfdpW3btik0NDTfzzZu3Fgvvvii+vbtm+9AIwAAAAAAAAAAAOBMxSYMIl0Je/Tt21d9+/bViRMn9Msvv+i3337T6dOndfHiRUVGRsrLy0uVKlVSlSpV1KZNG911111q2LCh1a0DAEqBRx99VI8++qgOHjyoX3/9Vdu2bdOhQ4d04sQJXbp0SfHx8TIMQwEBAapQoYJq166tDh06qEuXLmrTpg0hEAAAAAAAAAAAABQLxSoMcrVatWqpf//+6t+/v9WtAACuM/Xr11f9+vU1ePBgq1sBAAAAAAAAAAAA8o0zVQAAAAAAAAAAAAAAAEoRwiAAAAAAAAAAAAAAAAClCGEQAAAAAAAAAAAAAACAUoQwCAAAAAAAAAAAAAAAQClCGAQAAAAAAAAAAAAAAKAUIQwCAAAAAAAAAAAAAABQihAGAQAAAAAAAAAAAAAAKEUIgwAAAAAAAAAAAAAAAJQihEEAAAAAAAAAAAAAAABKEcIgAAAAAAAAAAAAAAAApQhhEMAC7u7ukqS0tDSLOwEAFEcZnx8yPl8AAAAAAAAAAADkB2EQwAIZ39wzTZNACADAQVpamkzTlEQYBAAAAAAAAAAAFAxhEMACZcqUsX8cGxtrYScAgOLm8uXL9o89PT0t7AQAAAAAAAAAAJRUhEEAC/j5+dk/jo6OtrATAEBxExMTY//Y19fXwk4AAAAAAAAAAEBJRRgEsEDZsmXtP+0dHx+v5ORkizsCABQHaWlpiouLk3TliJhy5cpZ3BEAAAAAAAAAACiJPKxuALgeGYYhPz8/nT9/XpJ08uRJ1axZk+MAAOA6lp6ertOnT8s0TUmSj4+PDMOwuCsAAAAAVpo+c7Wmz1rt9LrDh3bT8Ce7Ob0uAAAAgOKDMAhgEX9/f0VFRSklJUUpKSk6fvy4qlevzk+BA8B1KC0tTadPn1Z8fLwkyc3NTQEBARZ3BQAAAMBqsXEJCguPdEldAAAAAKUbYRDAIh4eHqpVq5ZOnTqlpKQkpaWl6cSJE/L09JSPj4/Kly8vLy8vfiocAEqptLQ0Xb58WTExMYqLi7PvCOLm5qaaNWuqbNmyFncIAAAAwGo+5b1UNSj7oHh6uqlzEVEOY1UC/eXmlvPXk3zKezmjPQAAAADFGGEQwEI2m80eCElIuPITGcnJybp48aIuXrwo6cqRMu7u7la2CQBwsrS0NHv442oZQRAvL74wCwAAAEAa/mTOx7lcuBijhk1GO4xtWPuqKlX0dXVrAAAAAIo5wiCAxdzd3VWzZk1FRkYqLi7OfkRABtM0lZqaalF3AICi4O7uLh8fHwUEBLAjCAAAAAAAAAAAKDTCIEAx4ObmpooVK6pixYpKS0tTXFyc4uLilJKSovT0dKWlpVndIgDAidzd3eXu7i5PT0/5+vqqXLlyHAsGAAAAAAAAAACcptiGQc6cOaPo6GhFR0crJSWlULU6duzopK4A13N3d5efn5/8/PysbgUAAAAAAAAAAAAAUAIVmzBIWFiY5s2bpzVr1uj3339XXFycU+oahsERGwAAAAAAAAAAAAAA4LpheRgkPj5e48aN04wZM+xHYZimaXFXAAAAAAAAAAAAAAAAJZOlYZDz58+rU6dOOnjwoEMAxDAMp9QnVAIAAAAAAAAAAAAAAK43loVBUlNT1a1bN4WGhkpyDIAQ4gAAAAAAAAAAAAAAACgYy8IgM2fO1J49ezKFQMqWLavu3burdevWqlOnjvz8/GSz2axqEwAAAAAAAAAAAAAAoESxLAzy9ttv24MgGTuBDBkyRFOmTFFAQIBVbQEAAAAAAAAAAAAAAJRoblYsevDgQZ04cULSlSCIYRgaN26cZs6cSRAEAAAAAAAAAAAAAACgECwJg+zevdvh+sYbb9SkSZOsaAUAAAAAAAAAAAAAAKBUsSQMcv78efvHhmHogQcekIeHZSfWAAAAAAAAAAAAAAAAlBqWhEHi4uIkXTkiRpIaNmxoRRsAAAAAAAAAAAAAAACljiVhED8/P4fr8uXLW9EGAAAAAAAAAAAAAABAqWNJGKRu3bqSrhwRI0kXLlywog0AAAAAAAAAAAAAAIBSx5IwyG233SabzWa/3rdvnxVtAAAAAAAAAAAAAAAAlDqWhEF8fX3Vs2dPmaYp0zS1YsUKmaZpRSsAAAAAAAAAAAAAAACliiVhEEmaMGGC3N3dZRiGTp06pXnz5lnVCgAAAAAAAAAAAAAAQKlhWRikadOmGjdunH1HkGeffVZ//vmnVe0AAAAAAAAAAAAAAACUCpaFQSTp1Vdf1SOPPCLTNBUTE6MuXbpoxYoVVrYEAAAAAAAAAAAAAABQolkaBpGkTz/9VOPGjZNhGLp48aLuvfdede3aVV988YXOnj1rdXsAAAAAAAAAAAAAAAAliodVCwcHBztc22w2paSkyDRN/fLLL/rll18kSWXLllWFChVks9kKtI5hGDpy5Eih+wUAAAAAAAAAAAAAACgJLAuDHD9+XIZhyDRNGYZhH88Yy5CQkKAzZ84UeJ2rawMAAAAAAAAAAAAAAJR2loVBMmQV1nBWgOPqUAkAAAAAAAAAAAAAAMD1wNIwCGENAAAAAAAAAAAAAAAA57IsDDJgwACrlgYAAAAAAAAAAAAAACi1LAuDzJs3z6qlAQAAAAAAAAAAAAAASi03qxsAAAAAAAAAAAAAAACA8xAGAQAAAAAAAAAAAAAAKEUIgwAAAAAAAAAAAAAAAJQihEEAAAAAAAAAAAAAAABKEcIgAAAAAAAAAAAAAAAApQhhEAAAAAAAAAAAAAAAgFKEMAgAAAAAAAAAAAAAAEAp4uHMYidPnsxyvGbNmnme6wpZrQ8AAAAAAAAAAAAAAFAaOTUMUrt2bRmG4TBmGIZSU1PzNNcVslsfAAAAAAAAAAAAAACgNHJqGESSTNN0yVwAAAAAAAAAAAAAAADkzulhkKt3+8gt7OHqnUEImwAAAAAAAAAAAAAAgOsNO4MAAAAAAAAAAAAAAACUIk4Ng8ybN88lcwEAAAAAAAAAAAAAAJA3Tg2DDBgwwCVzAQAAAAAAAAAAAAAAkDduVjcAAAAAAAAAAAAAAAAA5yEMAgAAAAAAAAAAAAAAUIoQBgEAAAAAAAAAAAAAAChFCIMAAAAAAAAAAAAAAACUIoRBAAAAAAAAAAAAAAAAShHCIAAAAAAAAAAAAAAAAKUIYRAAAAAAAAAAAAAAAIBSxKlhkIcfflgnTpxwZkmXME1Tc+fO1SeffGJ1KwAAAAAAAAAAAAAAAE7l1DDI4sWL1aBBA40dO1YRERHOLO0033//vZo2baohQ4bo7NmzVrcDAAAAAAAAAAAAAADgVE4/JiY5OVnvv/++ateurVGjRhWLnULS0tK0aNEiNWnSRPfff7/+/PNPq1sCAAAAAAAAAAAAAABwCaeHQTIkJiZq+vTpuummm9SrVy+tXLlSpmm6arksnTx5UhMmTFDNmjXVv39//fnnnzJNU4ZhSJL9fwEAAAAAAAAAAAAAAEoLp4ZB1qxZo7p16zoELtLS0rR8+XL17NlT1atX1+jRo/XLL7+4LBhy+vRpTZ06VR07dlRwcLBef/11hYWFOfTk5uamUaNGacyYMS7pAQAAAAAAAAAAAAAAwCoezix21113ad++fXrnnXf0xhtvKDY21h7AME1TYWFh+vjjj/Xxxx/L19dX7du3V+fOnXXrrbeqSZMmCggIyNd6aWlpCg0N1R9//KFNmzZp/fr1OnTokP1+RuDEMAyZpinTNNWxY0d98MEHatKkifPeOAAAAAAAAAAAAAAAQDHh1DCIJNlsNo0bN05Dhw7V66+/ro8//liJiYkOoRBJio6O1sqVK7Vy5Ur7s0FBQapVq5aqVaumoKAgeXt7y8vLS+7u7kpMTFRCQoIuXbqk06dP6/Tp0zp27JhSUlLsz1+924hhGA4hkBYtWmjy5Mnq1q2bs98yAAAAAAAAAAAAAABAseH0MEiGChUq6O2339bYsWP1/vvva/bs2YqKirKHQiRlOiomLCxM4eHheaqf1TEzWdXu2LGjxo4dq549exbkbQAAAAAAAAAAAAAAAJQobq5eoGrVqnrzzTd16tQpffjhh2revLl9tw7pnx08Ml6S7Pdzel373NW7gPj4+Gjw4MHasWOHNmzYQBAEAAAAAAAAAAAAAABcN1y2M8i1vL29NXLkSI0cOVIHDhzQl19+qRUrVuj333/P8niX3Fy7M0iFChUUEhKi++67T/fee6/KlCnj9PcAAAAAAAAAAAAAAABQ3BVZGORqjRo10qRJkzRp0iSdO3dOGzdu1I4dO7Rz5079/fffCgsLy/IYmAw+Pj668cYb1aRJE7Vq1Uq33Xabbr311jyFSAAAAAAAAAAAAAAAAEozS8IgV6tSpYr69u2rvn372sdSUlJ05swZxcTEKD4+XmlpafLy8pK3t7cCAwMVEBBgYccAAAAAAAAAAAAAAADFl+VhkKzYbDbVrl3b6jYAAAAAAAAAoNhJTk7VqjW7tXLNrkz37u87RS2a11HXzo11d0gLeXoWyy8BAwAAAHAx/iUAAAAAAAAAACVASkqqZsxeo+mz1uj8+egs54QePKPQg2f0+ZcbFRjop2FDQjRsSIhsNr4UDAAAAFxP+BcAJEknTpzQ/v37dfLkSUVFRcnNzU0BAQG64YYb1Lp1a1WuXNnqFgEAAAAAAIDrVujB0xo5Zpb27juR52ciIqI16bUl+u77bZo2daga1K/uwg4BAAAAFCeEQVzINE0dPnxY27dv144dO7R9+3bt2bNHiYmJmeYVtYiICH333Xdau3at1q9frwsXLuQ4/+abb9awYcM0cOBAlS9fPt/rTZw4Ua+88kpB25UkderUSRs2bChUDQAAAAAAAKCk2b7jkPo99o5iYxMK9PzefSfUvddkffnpWLVuVdfJ3QEAAAAojgiDOFlcXJzeeOMN7dixQzt27FBUVJTVLTk4f/68Hn74YW3YsEFpaWl5fm7//v0aPXq0pkyZonnz5umuu+5yYZcAAAAlF+e3AwAAwJlCD54uVBAkQ2xsgvo99o5WfT9B9etVc1J3AAAAAIorvvrsZBcuXNDrr79udRvZunjxon7++ecc55QrV042m03R0ZnPHT1z5oxCQkI0c+ZMDRkyxFVtAgAAlDic3w4AAABnS0lJ1cgxswodBMkQG5ugEU/N1OofXuLvoAAAAEApx9/4oY4dO6p79+7q0qWLGjVqZD8G5vLly9q0aZM+/PBDrVy50j7fNE0NGzZM1apVU/fu3Qu0Zo8ePXTPPffk65kbbrihQGsBAAC4Gue3AwAAwBVmzF6Tr79j5sXefSc0Y/YajR7Rw6l1AQAAABQvhEFczNvbWy1atFCrVq3UqlUrHT58WBMmTLC6LZUrV05PPvmkhg0bpnr16mU5x9vbW926dVO3bt00b948DRkyxH60THp6ukaNGqUDBw6obNmy+V7/1ltv1bBhwwr1HgAAAIoDzm8HAACAKyQnX9l5zhVmzF7DDnUAAABAKedmdQOlTbly5TRs2DDNmTNHe/fuVXR0tDZu3Kh33nlH/fr1U/Xq1v7Ep81m08iRI3XkyBG9++672QZBrjVo0CD973//cxg7duyYlixZ4oo2AQAASgRnn99+8O8zTuoMAAAAJd2qNbsVEZH18YOFFRERrZWrd7ukNgAAAIDigTCIkwUGBmr69Ol6/PHH1bhxY7m7u1vdkoM6deroo48+UlBQUL6fHTNmjIKDgx3Gli1b5qzWAAAAShRXnd+ekpLqlHoAAAAo2dZt2OfS+ut/cW19AAAAlGzJyala9sN2jX95UaZ79/edojFj52jZD9uVnMzXM4srwiDIM3d3d/Xq1cth7I8//rCoGwAAAGu58vx2AAAA4I+9x0t0fQAAAJRMKSmp+vDjFWrW+lk9MWyavvl2a6Y5oQfP6PMvN+qJYdPUvM2z+vDjFfyQWzFEGAT5UqdOHYfr8PBwizoBAACwjqvPb+cfTgAAADhyNMy19Y/wdT0AAAA4Cj14Wt16TtKk15bo/Pm8HVkYERGtSa8tUbeekxR68LSLO0R+EAZBviQnJztcG4ZhUScAAADW4fx2AAAAuFpSkmsDwolJKS6tDwAAgJJl+45D6t5rcoF3Q96774S695qs7TsOObkzFBRhEOTL4cOHHa6DgoIs6gQAAMA6nN8OAAAAVytTxsOl9cuWsbm0PgAAAEqO0IOn1e+xdxQbm1CoOrGxCer32Ds6+PcZJ3WGwnDtvyhQqqSlpem7775zGGvZsmWB68XGxmrPnj0KDw9XXFycAgICVLFiRd18882qWLFiIbsFAABwHc5vBwAAgKvVCa6q/QdOuq5+HX7ICwAAAFJKSqpGjplV6CBIhtjYBI14aqZW//CSbDbiCFbiVx959v333+vs2bMOYz179ixQralTp2ry5MlKS0vLdM8wDDVs2FC9evXSU089xe4jAACg2OH8dgAAALha0ya1XRoGadqktstqAwAAoOSYMXtNgY+Gyc7efSc0Y/YajR7Rw6l1kT8cE4M8SUxM1PPPP+8wVrlyZfXu3btA9aKiorIMgkiSaZo6cOCA3njjDdWuXVsvvvhitnMBAACswPntAAAAcLWunRu7tH6XTq6tDwAAgOIvOTlVM2avcUntGbPXKCXFtV9HRc4IgyBPxo0bp0OHDjmMTZw4UV5eXi5dNykpSa+99po6d+6s6Ohol64FAACQV5zfDgAAAFe7O6SFAgP9XFI7MNBP3bu1cEltAAAAlByr1uxWRIRrvgcbERGtlat3u6Q28oYwCHL1zTffaOrUqQ5jt99+u4YNG5bvWsHBwRo1apSWLFmiAwcOKDIyUikpKbp06ZL27dunmTNnqmPHjpme+/XXX9W7d2+lpBTup2RPnz6d4ysszLVbvgMAgNKhTnBV19bn/HYAAIDrnqenh4YNCXFJ7WFDQji/HQAAAFq3YZ9L66//xbX1kTP+xo8c/fHHHxowYIDDmJ+fnz799FO5ueU9S9S2bVtt2LBBnTp1yvJ+QECAAgICdMstt2jo0KH68ccf1b9/f507d84+Z926dXr11Vc1adKkgr0ZSTVq1CjwswAAABk4vx0AAABFYdiQEH33/TannuHetEltDR/azWn1AAAAUHL9sfd4ia6PnLEzCLJ1/Phxde/eXXFxcfYxd3d3LVq0SMHBwfmqFRISkm0QJCv/+te/tHnzZlWuXNlh/N1333UIiAAAAFiB89sBAABQFGw2D02bOlQ+Ps45qtnXt5ymTR0qDw93p9QDAABAyXbkqGtPTThyJNyl9ZEzwiDIUkREhP71r3/p7NmzDuOzZs1Sjx49iqSH4OBgzZkzx2Hs8uXLWrBgQYFrnjp1KsfX9u3bC9s2AAC4DnB+OwAAAIpKg/rV9eWnYwsdCPH1LacvFj6r+vWqOakzAAAAlHRJSakurZ+YlOLS+shZsQuDXLhwQZ9++qkGDx6sFi1aqGbNmvL29pa7u7s8PDjVpihER0crJCREhw4dchh/66239PjjjxdpLz179lTz5s0dxtasWVPgetWrV8/xVbVq1cK2DAAArgOc3w4AAICi1LpVXa36foKaNK5VoOebNK6llcteVOtWdZ3cGQAAAEqyMmVc+3XIsmVsLq2PnBWbMMjZs2c1atQo1apVSwMHDtT8+fP1+++/6/Tp00pISJBpmjJNM8cajz76qHx9fe2v//u//yui7kuP+Ph49ejRQ7///rvD+Pjx4/Wf//zHkp569uzpcM3uHQAAoDgYNiSkwF+Mzw7ntwMAACA79etV0+ofXtJL4x/M8y51gYF+emn8g1r9w0vsCAIAAIBM6gS79gfl69QJcml95KxYhEFWrVqlJk2aaPr06Q7BD8Mw7K+8GDlypOLi4uyv+fPnKz093cXdlx7Jycm6//779dtvvzmMjx49WpMnT7aoK6lRo0YO13FxcUpISLCoGwAAgCs4vx0AAABFzWbz0OgRPfT79nf1yYyReuD+tpnmNGxQXY8+3FGfzBip37e/q9EjerDzHAAAALLUtEntEl0fObM8DDJv3jz17NlTly5dcgiASMrTbiBXu/3229WmTRv78xEREfrpp59c0ndpk5aWpn79+unHH390GB8wYICmTp1qUVdXVKhQIdNYZGSkBZ0AAAA44vx2AAAAWMFm81Cvnq01+ZVHMt37Zsnzev/twerVszUhEAAAAOSoa+fGLq3fpZNr6yNnloZBNm7cqGHDhik9Pd0eAjFNU+XLl9e9996rMWPGqEqVKvmq+fDDD9tDJZK0evVqV7ReqpimqYEDB+rbb791GO/Tp4/mzJmT551ZXCUqKirTmJ9f3rbCBAAAcDXObwcAAAAAAABQEt0d0iLPRxDmV2Cgn7p3a+GS2sgby8IgqampGjRokFJSUuwhEA8PD02ePFnnzp3Td999p/fee09BQfk7R+iBBx5w2Flk7dq1rmi/VBk5cqQ+++wzh7G7775bixYtkru79duUHzp0yOG6XLly8vb2tqgbAACAzDi/HQAAAAAAAEBJ4+npoWFDQlxSe9iQEHaqs5hlv/pz587VsWPH7EEQT09P/fDDD7rrrrsKVbdatWqqW7euPUBw4MABxcfHq1y5cs5ou9R5/vnnNX36dIexTp066euvv5anp6dFXTlauXKlw3WTJk0s6gQAACB7Gee3DxsSopWrd2vVmt36+tstDnMaNqiuFs2D1aVTY3Xv1oJ/DAEAAAAAAACw1LAhIfru+23au++E02o2bVJbw4d2c1o9FIxlO4N88sknkmQ/0mXSpEmFDoJkaNmypUzTtF+HhoY6pW5p8/rrr+t///ufw1irVq30ww8/yMurcOfeO8svv/yi3377zWGsWzf+4AAAAMUX57cDAAAAAAAAKClsNg9NmzpUPj7O+f6wr285TZs6VB4e1p9Acb2zJAwSGRmp3bt3249zqVy5ssaMGeO0+rfccovD9bXHjJQmhmE4vAYOHJin56ZNm6bx48c7jDVu3FirV6+Wj4+PU3u8OpiTH+fOncv0fmw2mx599FEndAUAAAAAAAAAAAAAaFC/ur78dGyhAyG+vuX0xcJnORa7mLAkDLJ161alp6dLuhJm6N69u8qUKeO0+hUrVnS4joyMdFrt0uCzzz7T6NGjHcbq1q2rn376SRUqVHD6el26dNHHH3+shISEPD/z+++/q0OHDjp+/LjD+NChQ3XTTTc5uUMAAAAAAAAAAAAAuH61blVXq76foCaNaxXo+SaNa2nlshfVulVdJ3eGgrJkb+pz585J+ueImFatWjm1vr+/vyTZdx6JjY11av3c7Ny5Uzt37szy3pYtWzKNzZgxI9tajz76qFN36ti8ebMGDRrksFuHYRjq27evvv322wLVvPfee3XDDTdke//48eMaOXKknnvuOd1zzz3q1q2bmjVrpgYNGqhs2bL2eZcuXdJvv/2mRYsWaenSpUpLS3Oo07RpU73++usF6hEAAAAAAAAAAAAAkL369app9Q8vacbsNZoxe40iIqJzfSYw0E/DhoRo2JAQjsYuZiz5r3H+/HmH60qVKjm1fsauI9ldu9ry5cv1yiuv5Hn+8OHDs73XrVs3p4ZB/v77b6WmpjqMmaZZqJBFgwYNcgyDZLh8+bIWL16sxYsX28fKli2r8uXLKzY2VklJSdk+27BhQ61atUq+vr4F7hMAAAAAAAAAAAAAkD2bzUOjR/TQsCEhWrl6t1at2a2vv3Xc8KBhg+pq0TxYXTo1VvduLQiBFFOW/Fdxc3M8nebacEJhXbx4UdI/O4+44ugTOEdiYqISExOzve/m5qbhw4frrbfekpdX4c6oAgAAAAAAAAAAAADkzmbzUK+erdXu9gaZwiDfLHlelSryQ/zFnSVhkMDAQIfrS5cuObX+oUOHHK4rVqzo1PrIn+nTp2v16tXatGmT9u/fr+Tk5FyfqVWrlvr27asRI0boxhtvLIIuAQAAAAAAAAAAAAAoHSwJg1SuXFmSZBiGJGnv3r1Orf/LL7/IMAyZpinpSrCgKE2cOFETJ04skrUy3mNeDRw4UAMHDnRNM9m4++67dffdd0uSUlJSFBoaquPHj+vs2bOKiYlRYmKiypUrp4CAAAUGBurWW29VUFBQkfYIAAAAAAAAAAAAAEBpYUkYpEWLFvYgiGmaWr9+vdNq79u3T3/88Ye9vo+Pj5o3b+60+igcm82mxo0bq3Hjxla3AgAAAAAAAAAAAABAqeRmxaKBgYFq1qyZ/frIkSNat26dU2q/8sor9o8Nw1D79u3l5mbJ2wQAAAAAAAAAAAAAAChylqUk7r33XpmmaT/O5emnn1Zqamqhas6aNUvffPONwxEx//73v53RLgAAAAAAAAAAAAAAQIlgWRhkzJgx8vf3t1/v379f/fr1U1paWoHqTZ06VaNHj7YfDyNJwcHBeuihhwrbKgAAAAAAAAAAAAAAQIlhWRjE399fzz33nMPuIN9++61at26tX3/9NU81TNPUmjVr1LlzZz377LNKSUmxjxuGoUmTJjmEQwAAAAAAAAAAAAAAAEo7DysXf+6557Rp0yatWrXKHgjZs2ePOnXqpLp16+r2229XeHi4/cgXSXrhhRd06dIlnThxQps3b1ZcXJykfwIgkmQYhh5//HE9/PDDlrwvAAAAAAAAAAAAAAAAq1gaBnFzc9PixYvVqVMn7dmzxx7mME1Tf//9tw4dOuQw3zRNvfnmmw7XGa5+tmPHjpo2bVoRvAMAAAAAAAAAAAAAAIDixbJjYjKUL19ev/76q/r3728PdxiGYd8p5OrAhyT7WMZOINfOHTRokH766Sd5enpa8XYAAAAAAAAAAAAAAAAsZXkYRJK8vLw0f/58ffnll2rUqFGWYY+sXtI/4ZCbbrpJixYt0pw5c2Sz2Sx+RwAAAAAAAAAAAAAAANYoFmGQDA8++KD27dunH374QQMGDFCtWrUcdgK59hUQEKC+ffvqs88+019//aWHH37Y6rcAAAAAAAAAAAAAAABgKQ+rG8hKjx491KNHD0lSWFiYTp8+rYsXLyoyMlJeXl6qVKmSqlSpoptuusm+QwgAAAAAAAAAAAAAAACKaRjkalWrVlXVqlWtbgMAAAAAAAAAAAAAAKBEKFbHxAAAAAAAAAAAAAAAAKBwCIMAAAAAAAAAAAAAAACUIpYdE/P444/bP65Zs6YmTpzotNoTJ07UyZMnJUmGYWjOnDlOqw0AAAAAAAAAAAAAAFCcWRYGmT9/vgzDkCQ1bdrUqWGQZcuWae/evTJNkzAIAAAAAAAAAAAAAAC4rlh+TIxpmiWqLgAAAAAAAAAAAAAAQHFmeRjEVTJ2HQEAAAAAAAAAAAAAALielNowCAAAAAAAAAAAAAAAwPWoVIZBUlNT7R/bbDYLOwEAAAAAAAAAAAAAAChapTIMcunSJfvH5cuXt7ATAAAAAAAAAAAAAACAolXqwiDnz59XWFiY/bpChQoWdgMAAAAAAAAAAAAAAFC0Sl0Y5L333rN/bBiGGjZsaGE3AAAAAAAAAAAAAAAARcvDVYU3btyY57lxcXH5mn+1tLQ0xcXF6ejRo1q5cqXWrl0rwzBkmqYMw9Ctt95aoLoAAAAAAAAAAAAAAAAlkcvCIJ07d5ZhGDnOMU1TknTkyBF16dLFKetmhEAy9OvXzyl1AQAAAAAAAAAAAAAASgKXhUEyZAQ+CjsnrzKCIIZh6JFHHlHdunWdVhsAAAAAAAAAAAAAAKC4c3kYJLvdQa4OgOS2g0h+ZNS94447NG3aNKfVBQAAAAAAAAAAAAAAKAlcGgbJ644fztoZxM/PT23bttXjjz+uBx54wKkhEwAAAAAAAAAAAAAAgJLAZWGQ9evXZ3vPNE117dpVhmHINE3ddNNNmj17doHW8fDwkI+PjwICAlSjRo2CtgsAAAAAAAAAAAAAAFAquCwM0qlTpzzNMwxD5cuXz/N8AAAAAAAAAAAAAAAAZM+lx8TkxlnHwwAAAAAAAAAAAAAAAOAKy8IgL7/8sv3joKAgq9oAAAAAAAAAAAAAAAAoVYpFGAQAAAAAAAAAAAAAAADO4WZ1AwAAAAAAAAAAAAAAAHAewiAAAAAAAAAAAAAAAAClCGEQAAAAAAAAAAAAAACAUoQwCAAAAAAAAAAAAAAAQCniYXUDWTl8+LC2bt2qkydPKioqStHR0UpJSSlQLcMwNGfOHCd3CAAAAAAAAAAAAAAAUDwVmzBIWFiYpk2bpjlz5igiIsIpNU3TJAwCAAAAAAAAAAAAAACuK8UiDDJjxgw9++yzSkpKkmmaTqlpGIZT6gAAAAAAAAAAAAAAAJQklodBRo4cqRkzZthDIIUNcTgrTAIAAAAAAAAAAAAAAFASWRoG+fjjjzV9+nRJ/4RAMo52CQwM1KVLl5Sammofq1mzphISEhQZGamUlBR7nasDJN7e3qpUqVLRvhEAAAAAAAAAAAAAAIBiws2qhS9evKjnnntOhmHIMAyZpikfHx999NFHioyMVFhYmBo1auTwzLFjxxQeHq6kpCSdPHlSixcvVu/eveXm5ibTNGWappKTk/XEE0/o2LFj9hcAAAAAAAAAAAAAAMD1wrIwyAcffKD4+HhJV3YD8fPz06ZNmzRixAj5+vrm+nz16tXVt29fLV26VKGhoerQoYMkKTU1VS+99JIGDhzoyvYBAAAAAAAAAAAAAACKJcuOifn888/tO4IYhqHJkyercePGBapVp04dbdiwQUOHDtWcOXMkSZ9++qlq1qypSZMmObNtAAAAAICFps9cremzVju97vCh3TT8yW5OrwsAAAAAAABYwZIwyLlz53TkyBEZhiFJ8vPz09ChQwtV0zAMzZo1SydOnNDatWtlmqamTJmivn37FjhkAgAAAAAoXmLjEhQWHumSugAAAAAAAEBpYUkYZOfOnfaPDcNQSEiIbDZboesahqEPP/xQjRs3VlpamtLS0vTWW29p4cKFha4NAAAAALCeT3kvVQ0KyPZ+erqpcxFRDmNVAv3l5mbkWhcAAACQ2I0OAACUDpaEQSIiIhyumzVrlqfnEhMTVbZs2Rzn1K9fXx06dND69eslSd9++61SUlKcEjYBAAAAAFhr+JM5fwH9wsUYNWwy2mFsw9pXVamir6tbAwAAQCnBbnQAAKA0sCQMEhl55S9RpmnKMAzdcMMNWc67NsCRlJSUaxhEku666y57GCQ+Pl47duzQ7bffXsiuAQAAAAAAAABAacdudAAAoDSwJAySlJTkcF2+fPks5/n6+so0Tfv1+fPn5efnl2v9atWqOVwfPHiQMAgAAAAAAAAAAMgVu9EBAIDSwJIwiI+Pj8N1QkLWW6NdO+/UqVO66aabcq2fsXuIYVxJ4V64cKEgbQIAAAAAAACAZabPXK3ps1Znez893cw01vnOCbnuTjB8aM7f6AYAAABQ8lkSBqlYsaLDdWxsbJbzqlev7nC9b98+denSJdf64eHhkv45hiY1NbWAnQIAAAAAAACANWLjEhQWHpmvZ649uiK7ugAAAABKN0vCIPXq1ZP0z84dp0+fznJe48aNHeZt3LhRTz31VK71f/31V4frgIDsz/YDAAAAAAAAgOLIp7yXqgY5/2ubPuW9nF4TAAAAQPFiSRikQYMG9oCHJB04cCDLeS1btrR/bJqmli9frnPnzqlKlSrZ1j558qSWLVsmwzBkmle2SaxZs6aTOgcAAAAAAACAojH8SY5zAQAAAFAwblYs6u3trcaNG8s0TZmmqT179mQ5r2XLlqpVq5b9OiUlRYMHD1ZaWlqW8+Pi4tSvXz8lJyfbx9zc3NS+fXvnvgEAAAAAAAAAAAAAAIBiypIwiCR17tzZ/vGJEyd05MiRLOf9+9//lmma9p0+Vq1apdtuu03ffvutzp8/r7S0NJ07d06ffvqpWrZsqW3bttnnGoahkJAQ+fr6FtG7AgAAAAAAAAAAAAAAsJZlYZAePXpIkv24mFWrVmU577///a/9WJiMkMeuXbvUp08fBQUFydPTUzfccIMGDhyoQ4cO2Y+GyZj/4osvuvidAAAAAAAAAAAAAAAAFB+WhUG6du2qSpUq2Y+K+eSTT7Kc5+vrqxkzZsjN7UqrGeGRjOeufhmGYb9vGIbGjx+v2267rWjeEAAAAAAAAAAAAAAAQDHgYdXC7u7umjZtmg4cOGAfi42NlY+PT6a5vXr10oIFCzR48GAlJSXZAx9ZydgZZNy4cXrllVec3zgAAAAAAAAAAAAAAEAxZlkYRJL69u2b57mPPPKIbrvtNj3//PNavny5kpKSspzXvn17vfLKK+rSpYuz2gQAAAAAAAAAAAAAACgxLA2D5FdwcLC++uorxcfHa+PGjTp16pQuXLggb29vVa1aVR06dFBQUJDVbQIAAAAAAAAAAAAAAFimRIVBMpQrV07dunWzug0AAAAAAAAAAAAAAIBix83qBgAAAAAAAAAAAAAAAOA8hEEAAAAAAAAAAAAAAABKEcuOidm4caP94/Lly6tFixZOq717927FxcXZrzt27Oi02gAAAAAAAAAAAAAAAMWZZWGQzp07yzAMSVLTpk21e/dup9UePHiw9u7dK0kyDEOpqalOqw0AAAAAAAAAAAAAAFCcWRYGkSTTNEtkbQAAAAAAAAAAAAAAgOLKzcrFDcOw7w7iitoAAAAAAAAAAAAAAADXG0vDIBI7eAAAAAAAAAAAAAAAADiT5WEQV7g6YOLmVirfIgAAAAAAAAAAAAAAQJZKZVLi8uXL9o/LlStnYScAAAAAAAAAAAAAAABFq9SFQVJTU3Xq1Cn7ta+vr4XdAAAAAAAAAAAAAAAAFK1SFwZZuXKlkpOTJUmGYSg4ONjijgAAAAAAAAAAAAAAAIqOh9UNOEt0dLRWrlypsWPHyjAMmaYpwzDUpEkTq1sDAAAAAAAAAAAAAAAoMi4Lg+RnR44DBw4UeAePtLQ0xcXFKSoqSpLsIZAM99xzT4HqAgAAAAAAAAAAAAAAlEQuC4McP37cvkNHdjLuJScn6/jx405ZNyMIYhiGbrrpJv3rX/9ySl0AAAAAAAAAAAAAAICSwOXHxFy9S8fVrg6JZDenoEzTlLe3txYuXOj02gAAAAAAAAAAAAAAAMWZmyuLm6aZ7Suv8/L7MgxD3bt31/bt29WmTRtXvj0AAAAAAAAAAAAAAIBix2U7gwwYMCDH+wsWLLAfI1OhQgX17NmzQOt4eHjIx8dHAQEBaty4sW677TYFBQUVqBYAAAAAAAAAAAAAAEBJ57IwyLx583K8v2DBAvvHNWvWzHU+AAAAAAAAAAAAAAAAcufSY2LywjAMq1sAAAAAAAAAAAAAAAAoNVy2M0huatasaQ+C3HDDDVa1AQAAAAAAAAAAAAAAUKpYFgY5fvy4VUsDAAAAAAAAAAAAAACUWpYfEwMAAAAAAAAAAAAAAADnsWxnEAAAAKAkmz5ztabPWp3t/fR0M9NY5zsnyM3NyLHu8KHdNPzJboXuDwAAAAAAAABw/SrRYZCUlBQdOXJE0dHRqly5smrVqiV3d3er2wIAAMB1IDYuQWHhkfl65lxEVJ7qAgAAAAAAAABQGCUyDHL48GFNmDBBy5cvV3x8vH3c399fDz30kCZOnKjAwEALOwQAAEBp51PeS1WDAlxSFwAAAAAAAACAwrAsDHLmzBn17dvXfl2mTBmtWrVKZcuWzfG5H3/8UX369NHly5dlmo5bb0dGRmrmzJlaunSpvv32W7Vr184lvQMAAADDn+Q4FwAAAAAAAABA8eRm1cJLly7V1q1btW3bNm3btk3VqlXLNQhy/PhxPfjgg4qLi5NpmjIMI9PLNE1duHBB9957rw4ePFhE7wYAAAAAAAAAAAAAAKB4sCwMsmLFCkmy7+4xaNCgXJ/573//q5iYGHvwI+P5jJck+3hkZKSefPJJV7QOAAAAAAAAAAAAAABQbFlyTIxpmtq+fbt9Jw9vb2917Ngxx2f+/vtvffPNNw4hEB8fHw0ePFgNGjRQWFiY5s+frxMnTtjrbtq0SStXrlT37t2L4m0BAAAAAAAAAAAAAABYzpIwyJEjRxx2+Gjbtq1sNluOzyxatMh+NIxpmgoICNCWLVtUr149+5xnnnlGd955p3bt2mUfW7BgAWEQAAAAAAAAAAAAAABw3bDkmJhjx445XN9yyy25PrN06VJ7EMQwDP3f//2fQxBEknx9fTVv3jxJss9dsWKF0tPTndc8AAAAAAAAAAAAAABAMWZJGOTUqVOSrhz1Ikk33XRTjvMjIiL0119/2a89PDw0ePDgLOfefPPNateunb12QkKCQkNDndE2AAAAAAAAAAAAAABAsWdJGCQmJsbh2tfXN8f5GzdutH9sGIbat2+vgICAbOd36NDB4Xr//v0F6BIAAAAAAAAAAAAAAKDksSQMEh8f73Bdrly5HOdv27ZN0j87iYSEhOQ4/9qdRi5cuJDfFgEAAAAAAAAAAAAAAEokS8Ig7u7uDteJiYk5zt+6davDdfv27XOcn7HTiGEYkqTY2Nj8tggAAAAAAAAAAAAAAFAiWRIGufZYmHPnzmU7NzExUTt27LAHOzw9PdWqVasc66empjpcp6enF7BTAAAAAAAAAAAAAACAksWSMEjlypUl/bNzx4EDB7Kdu27dOiUnJ9vnN2vWTDabLcf6UVFRkv45Vsbb27uwLQMAAAAAAAAAAAAAAJQIloRBGjdubP/YNE39+OOP2c5dsmSJfZ4kdezYMdf61+40UqFChYK0CQAAAAAAAAAAAAAAUOJYEgapW7eu/Pz87NenTp3SwoULM807ffq0lixZYt9BRJLuvPPOXOv/8ccfDte1a9cueLMAAAAAAAAAAAAAAAAliCVhEDc3Nz3wwAMyTVOGYcg0TY0cOVKfffaZ0tPTJUlHjx5V7969lZiYaH+uUqVKuuOOO3Ktv2fPHocAyU033eT8NwEAAAAAAAAAAAAAAFAMWRIGkaQRI0bIze3K8oZh6PLlyxowYIB8fX1VrVo11atXT7t27bKHRQzD0JAhQ+zPZOfgwYM6fvy4/bpatWqqUqWKK98KAAAAAAAAAAAAAABAsWFZGKRFixYaPHiwTNOUJHvoIz4+XmFhYUpPT7ffk67sCvKf//wn17rffPON/WPDMNS2bVvnNw8AAAAAAAAAAAAAAFBMWRYGkaQPP/xQXbt2dQiEXPsyTVNlypTRF198IX9//1xrfv755/bnJKlLly6ufAsAAAAAAAAAAAAAAADFiqVhEE9PT61atUovv/yyvL29ZZpmplfz5s21YcMGde3aNdd6a9eu1f79+x3GevTo4ar2AQAAAAAAAAAAAAAAih0Pqxuw2Wx6+eWXNW7cOP388886evSoYmNjVbFiRbVp00ZNmzbNc60///xTvXr1sl8HBQWpRo0armgbAAAAAAAAAAAAAACgWLI8DJKhTJky6t69e6FqPP3003r66aed0xAAAAAAAAAAAAAAAEAJZOkxMQAAAAAAAAAAAAAAAHAuwiAAAAAAAAAAAAAAAAClCGEQAAAAAAAAAAAAAACAUoQwCAAAAAAAAAAAAAAAQClCGAQAAAAAAAAAAAAAAKAUIQwCAAAAAAAAAAAAAABQihAGAQAAAAAAAAAAAAAAKEUIgwAAAAAAAAAAAAAAAJQihEEAAAAAAAAAAAAAAABKEcIgAAAAAAAAAAAAAAAApYiH1Q2geDl16pS2bdumEydOKCEhQeXLl1dwcLDatm2rypUrO3296Ohobd68WYcPH1ZMTIzKlCmjatWq6dZbb1XdunWdvh4AAAAAAAAAAAAAAKUdYRAXMk1Thw8f1vbt27Vjxw5t375de/bsUWJiYqZ5Vlu2bJmmTJmirVu3Znnfzc1Nd9xxh1588UV17Nix0Ov98ccfmjRpkn744QelpKRkOefmm2/Wf/7zHw0YMECGYRR6TQAAAAAAAAAAAAAArgeEQZwsLi5Ob7zxhnbs2KEdO3YoKirK6pZydPnyZQ0aNEhfffVVjvPS09P1008/6aefftJTTz2ld955Rx4eBfvt88Ybb+ill15SampqjvP279+vQYMGacGCBVqyZIlLdiYBAAAAAAAAAAAAAKC0IQziZBcuXNDrr79udRt5kpCQoO7du2vjxo2Z7hmGIV9fX0VHR2e698EHH+jcuXP64osv8r1jx3//+1+9/fbbWd7z8fHR5cuXlZ6e7jC+YcMGderUSZs2bVLFihXztR4AAAAAAAAAAAAAANcbN6sbgHWeeuqpTEGQ9u3ba/Xq1bp8+bKioqIUExOjxYsX65ZbbnGYt3jxYr3xxhv5Wm/RokWZgiC1a9fW7NmzFRkZqZiYGCUkJGjTpk3q0aOHw7y//vpLjzzySLE4UgcAAAAAAAAAAAAAgOKMMIiLeXt7q0OHDnr22Wf1xRdf6NVXX7W6JUnSjh079MknnziMDRw4UBs2bFBISIi8vLwkXdmt48EHH9TWrVt11113OcyfNGmSTp8+naf1Ll++rGeffdZhrHnz5tq+fbueeOIJ+fv7S5I8PT3Vvn17LV++XC+88ILD/B9//FFff/11ft4mAAAAAAAAAAAAAADXHcIgTlauXDkNGzZMc+bM0d69exUdHa2NGzfqnXfeUb9+/VS9enWrW5QkjR8/3uG6cePGmjVrltzd3bOc7+3trcWLFysoKMg+lpSUlOdwy9SpUxUREWG/LleunJYuXarKlStn+8xrr72mkJAQh7GXXnop0zEyAAAAAAAAAAAAAADgH4RBnCwwMFDTp0/X448/rsaNG2cbrrDSnj179NNPPzmMvf/++7LZbDk+FxAQoMmTJzuMzZ07V+fPn8/xudTUVL377rsOY2PHjlVwcHCuvX700UcyDMN+/ddff+n777/P9TkAAAAAAAAAAAAAAK5XHlY3gKL37bffOlzXrVtXXbt2zdOz/fr10zPPPKPY2FhJV4Iey5cv16BBg7J9ZuPGjbp48aL92s3NTUOGDMnTejfddJO6dOmidevWOfR/33335el5AAAAAAAAAAAAAEDWps9cremzVmd7Pz3dzDTW+c4JcnMzspj9j+FDu2n4k90K3R8KjjDIdWjZsmUO1w8++GCen/X29lbPnj31+eefO9TLKQxy7Xpt27ZVjRo18rxmv379HMIgK1asUFpaWrHcdQUAAAAAAAAAAAAASorYuASFhUfm65lzEVF5qgtrEQa5zly4cEF79+51GGvXrl2+atx+++0OYZCrgxpZufZ+Qda72sWLF/X777+rZcuW+aoDAAAAAAAAAAAAAPiHT3kvVQ0KcEldWMupYZCNGzc6s5zTdOzY0eoWio2//vor01ibNm3yVeO2225zuI6NjdXp06dVvXr1THPT0tL0999/F2q9Ro0aydfXVzExMfaxv/76izAIAAAAAAAAAAAAABTC8Cc5zqW0cmoYpHPnzjKMnM8GKmqGYSg1NdXqNoqN0NBQh2s/Pz9VqFAhXzWCg4OzrJtVGOTo0aNKTk7O9fmcGIah2rVrO+xocu37AAAAAAAAAAAAAAAAV7i5oqhpmsXqhX9cu0tHzZo1810jICBA3t7eDmMHDx7M03oFXbNGjRp5Wg8AAAAAAAAAAAAAgOudS8IghmEUixcyu3TpksN1UFBQgepUrVrV4ToyMjJP69lstnzvRJKf9QAAAAAAAAAAAAAAuN459ZgYSYXeiePqEEdeauV3/vUuLi7O4bpcuXIFquPl5ZVjXavWAwAAAAAAAAAAAADgeufUMMj69esL9Nz27ds1ceJEJSYmSroS6vD09FTnzp3VsmVLNWjQQH5+fvL29tbly5cVHR2t0NBQ7dq1Sxs2bFBycrI9FFKuXDm9/PLLat26tdPeV2ly+fJlh+uyZcsWqM614Yxr61q1Xm5Onz6d4/2wsLAC1QUAAAAAAAAAAAAAoLhwahikU6dO+X5m5syZGj9+vNLS0mSapvz9/TVhwgQNHDhQAQEBuT4fFRWl+fPn69VXX1VkZKTi4+M1fvx4ffTRRxo6dGhB3kaplpCQ4HDt6elZoDplypTJsa5V6+WmRo0aBXoOAAAAAAAAAAAAAICSws3KxRcuXKgRI0YoNTVVpmmqbdu2Cg0N1TPPPJOnIIgk+fv76+mnn1ZoaKjatWsnSUpNTdXw4cO1YMECV7ZfIl27M0dycnKB6iQlJeVY16r1AAAAAAAAAAAAAAC43jl1Z5D8OH78uEaMGCHTNGUYhlq2bKm1a9dmOg4krypXrqwff/xRnTp10q5du2SapkaOHKmOHTvqxhtvdHL3JVf58uUdrjOO5smva3fmuLauVevl5tSpUzneDwsL44ghAAAAAAAAAAAAAECJZlkY5LXXXlN8fLwkyd3dXXPnzi1wECSDl5eX5s6dq+bNmys9PV0JCQmaPHmy5syZ44yWS4VrQxQZ/w3yq6BhkIIe7+KsMEj16tUL9BwAAAAAAAAAAAAAACWFJcfEJCUl6csvv5RhGDIMQx07dtQtt9zilNq33HKLOnfuLNM0ZZqmFi9enOmIkevZtcfvhIeHF6jOtc9ld6zPtePJycm6dOlSvtcLCwvL03oAAAAAAAAAAAAAAFzvLAmDbN++XZcvX7Zfh4SEOLX+v/71L/vHCQkJ2rZtm1Prl2T16tVzuD558mS+a0RGRiouLi7HujmNF2TNa493yW49AAAAAAAAAAAAAACud5aEQUJDQyVJpmlKcv7RHdWqVctyPUgNGjRwuI6Ojs73Th3Hjh3LtW6G4OBgeXp6OowdPXo0X+uZpqnjx4/naT0AAAAAAAAAAAAAAK53loRBrg0fpKamOrV+enq6JMkwjCzXu541atQo01h+d07ZunWrw3X58uWzDfR4eHiobt26hVrvr7/+UkxMjMNYw4YN81UDAAAAAAAAAAAAAIDrhSVhEJvN5nB97REghZVRL2PnkWt3prieVapUSY0bN3YY++233/JV49r5Xbt2tQdvstK1a1enrlehQgU1a9YsXzUAAAAAAAAAAAAAALheWBIGueGGGyT9s3PHypUrnVr/2npVq1Z1av2SrlevXg7XS5YsyfOz8fHxWr58eY71cltvy5Yt+QoALV682OG6R48e8vDwyPPzAAAAAAAAAAAAAABcTywJg1x9bIhpmtq6dWu+jw7JzrZt27R582aHnSrq1avnlNqlxf333+9wfejQIa1bty5Pz3755ZcOR7Z4eHjonnvuyfGZTp06qUKFCvbr9PR0zZ49O0/rHT58OFNv9913X56eBQAAAAAAAAAAAADgemRJGKRly5aqWbOmpCu7g6Snp2vQoEG6dOlSoepeunRJgwYNsh8PI0k1atRQy5YtC1W3ODMMw+E1cODAXJ9p0aKF7rjjDoexp59+WikpKTk+FxUVpfHjxzuMDRw4UIGBgTk+5+HhoWeeecZh7J133tGxY8dy7XXUqFEO/z3r16+f604kAAAAAAAAAAAAAABczywJg0jSv//9b4dv8oeGhqpTp076+++/C1Tv0KFD6ty5s0JDQ2UYhkzTlGEY6t+/v7NaLlVee+01h+t9+/Zp6NChSktLy3L+5cuX9dBDDyk8PNw+VqZMGb300kt5Wu/pp59W5cqV7dfx8fHq06ePzp8/n+0zL774otasWeMwNmnSJLm7u+dpTQAAAADXj+TkVC37YbvGv7wo0737+07RmLFztOyH7UpOTrWgOwAAAAAAAKBoeVi18AsvvKDPPvtMp06dsh/psn//fjVp0kSjR4/WE088ofr16+da5++//9bs2bP10UcfKTk52T5uGIZq1KihcePGuew9ZGfnzp3auXNnlve2bNmSaWzGjBnZ1nr00Ufl4+PjtN4ytGnTRoMGDdK8efPsY/Pnz9fhw4c1YcIEdezYUWXLllVcXJxWrVqlSZMm6c8//3SoMX78eNWoUSNP65UvX15vv/22BgwYYB/bvXu3WrdurQkTJqh3797y9/dXcnKyduzYoSlTpmj58uUONe6880717du3EO8aAAAAQGmTkpKqGbPXaPqsNTp/PjrLOaEHzyj04Bl9/uVGBQb6adiQEA0bEiKbzbJ/EgMAAAAAAAAuZZhXb89RxH7++Wf16NHDfjxJRisZ4ZAGDRqoZcuWql+/vvz8/OTt7a3Lly8rOjpaBw8e1K5duxQaGprpWdM0VaZMGa1YsUJdu3Yt8vc1ceJEvfLKK06pdezYMdWuXTvb+xm/VhkGDBig+fPn56l2fHy8/vWvf+m3337Lsq6vr6+io7P+YmqfPn20ePFiubnlb3OZZ599Vu+9916W93x9fRUXF6f09PRM9+rXr69NmzY57C7iCqdPn7YHXE6dOqXq1au7dD0AAAAABRd68LRGjpmlvftO5PvZJo1radrUoWpQn7/zAwAAIH8uXIxRwyajHcb+2vuhKlX0tagjAABQ0rni+9SW/hjUHXfcoaVLl6pPnz5KSUmxBxsygh1//fWXPeyRlatzLFc/6+npqaVLl1oSBClJypUrp9WrV2vAgAH65ptvHO6ZppltEGTkyJF677338h0EkaR3331XFSpU0MSJEzMdSRMTE5PlMx06dNBXX33l8iAIAAAAgJJj+45D6vfYO4qNTSjQ83v3nVD3XpP15adj1bpVXSd3BwAAAAAAAFgr/9/Nd7J77rlH69evV7169Rx298h4maaZ7evqedKVAEP9+vW1YcMG9ejRw8q3VWKUL19eX3/9tb755hu1bt0623mGYeiOO+7Qhg0b9NFHH8lmsxV4zRdffFE7d+7UfffdJw+P7PNIjRo10pw5c7RhwwZVqVKlwOsBAAAAKF1CD54uVBAkQ2xsgvo99o4O/n3GSZ0BAAAAAAAAxYOlx8RcLSkpSW+++aZmzJih8PBwSZmPQMlKRvtVqlTRiBEj9Nxzz6lMmTIu7bU0O3nypLZu3aqTJ08qMTFR3t7eCg4OVtu2bRUYGOj09aKiorR582YdOnRIsbGx8vT0VPXq1e3HAxU1jokBAAAAireUlFR16zmpQEfDZKdJ41pa/cNLstks3TwTAAAAJQTHxAAAAGcrdcfEXK1MmTJ66aWX9MILL+i7777TqlWrtHXrVoWGhiqrvIphGGrQoIFuu+023X333bnuMoG8qVmzpmrWrFlk6/n7+6t79+5Fth4AAACAkm3G7DVODYJIV46MmTF7jUaPYIdJAAAAAAAAlA7FLj3h4eGhPn36qE+fPpKkhIQEnT9/XlFRUYqNjZWPj4/8/f1VuXJleXl5WdwtAAAAAKCoJCenasbsNS6pPWP2Gg0bEsLuIAAAAAAAACgViv1Xuby8vIp8twoAAAAAQPGzas1uRUREu6R2RES0Vq7erV49W7ukPgAAAAAAAFCU3KxuAAAAAACAvFi3YZ9L66//xbX1AQAAAAAAgKJCGAQAAAAAUCL8sfd4ia4PAAAAAAAAFBXCIAAAAACAEuHI0TDX1j8S7tL6AAAAAAAAQFEhDAIAAAAAKBGSklJdWj8xKcWl9QEAAAAAAICiQhgEAAAAAFAilCnj4dL6ZcvYXFofAAAAAAAAKCqu/UpaPiUmJmrLli3atWuXDh48qOjoaEVHRyslpeA/nWUYhn7++WcndgkAAAAAsEKd4Kraf+Ck6+rXCXJZbQAAAAAAAKAoFYswyMmTJzVlyhR98cUXiomJcVpd0zRlGIbT6gEAAAAArNO0SW2XhkGaNqntstoAAAAAAABAUbL8mJg5c+aocePGmjlzpqKjo2WapsMLAAAAAABJ6tq5sUvrd+nk2voAAAAAAABAUbF0Z5CZM2dqxIgR9tBHVrt4EAgBAAAAAEjS3SEtFBjop4iIaKfXDgz0U/duLZxeFwAAAAAAALCCZWGQ0NBQjRo1SpJjCCQj/OHt7a3atWvLz89PNpvNkh4BAAAAAMWHp6eHhg0J0aTXlji99rAhIbLZisVJqgAAAAAAAEChWfaVrvHjxystLc0eBDFNU15eXho9erT+/e9/6+abb85ypxAAAAAAwPVr2JAQfff9Nu3dd8JpNZs2qa3hQ7s5rR4AAAAAAABgNUvCIPHx8VqxYoVDEOTGG2/UTz/9pODgYCtaAgAAAACUADabh6ZNHaruvSYrNjah0PV8fctp2tSh8vBwd0J3AAAAAAAAQPHgZsWiv/76q5KTkyVdCYJ4eHho2bJlBEEAAAAAALlqUL+6vvx0rHx8vApVx9e3nL5Y+Kzq16vmpM4AAAAAAACA4sGSMMipU6fsHxuGoR49euiWW26xohUAAAAAQAnUulVdrfp+gpo0rlWg55s0rqWVy15U61Z1ndwZAAAAAAAAYD1LwiAXLlyQdGVXEEnq0qWLFW0AAAAAAEqw+vWqafUPL+ml8Q8qMNAvT88EBvrppfEPavUPL7EjCAAAAAAAAEotDysWdXd3PIu5atWqVrQBAAAAACjhbDYPjR7RQ8OGhGjl6t1atWa3vv52i8Ochg2qq0XzYHXp1FjdVjczkQABAABJREFUu7WQzWbJP4UBAAAAAACAImPJV8CCgoIcrhMTE61oAwAAAABQSthsHurVs7Xa3d4gUxjkmyXPq1JFX4s6AwAAAAAAAIqeJcfENG/eXJJkGIYk6cyZM1a0AQAAAAAAAAAAAAAAUOpYEga5+eabVbt2bfv1+vXrrWgDAAAAAAAAAAAgT5KTU7Xsh+0a//KiTPfu7ztFY8bO0bIftis5OdWC7gAAABxZdlDy6NGjNXbsWEnShg0bdPToUQUHB1vVDgAAAAAAAAAAQCYpKamaMXuNps9ao/Pno7OcE3rwjEIPntHnX25UYKCfhg0J0bAhIbLZLPs2DAAAuM5ZsjOIJI0cOVL169eXYRhKTU3VmDFjrGoFAAAAAAAAAAAgk9CDp9Wt5yRNem1JtkGQa0VERGvSa0vUreckhR487eIOAQAAsmZZGMTT01Nff/21fHx8JEkrV67UiBEjlJ6eblVLAAAAAAAAAAAAkqTtOw6pe6/J2rvvRIGe37vvhLr3mqztOw45uTMAAIDcWRYGkaRGjRrpp59+UsWKFWWapmbOnKn27dtr06ZNVrYFAAAAAAAAAACuY6EHT6vfY+8oNjahUHViYxPU77F3dPDvM07qDAAAIG8sO6xu4cKF9o/HjBmj1157TYmJidq6das6d+6sunXrqmPHjqpbt64qVKggm81W4LX69+/vjJYBAAAAAAAAAEApl5KSqpFjZhU6CJIhNjZBI56aqdU/vCSbzbJvywAAgOuMZX/rGDhwoAzDcBgzDEOmaco0Tf399986dMg5W6cRBgEAAAAAAAAAAHkxY/aaAh8Nk529+05oxuw1Gj2ih1PrAgAAZMfSY2Ik2cMfGS/DMOyva+8V5AUAAAAAAAAAAJAXycmpmjF7jUtqz5i9RikpqS6pDQAAcC3LwyBXhz+y2imkMC8AAAAAAAAAAIC8WrVmtyIiol1SOyIiWitX73ZJbQAAgGtZGgZxxs4f7AoCAAAAAAAAAACcYd2GfS6tv/4X19YHAADI4GHVwseOHbNqaQAAAAAAAAAAgEz+2Hu8RNcHAADIYFkYpFatWlYtDQAAAAAAAAAAkMmRo2GurX8k3KX1AQAAMlh6TAwAAAAAAAAAAEBxkZSU6tL6iUkpLq0PAACQgTAIAAAAAAAAAACApDJlXLuhetkyNpfWBwAAyEAYBAAAAAAAAAAAQFKd4KqurV8nyKX1AQAAMhAGAQAAAAAAAAAAkNS0Se0SXR8AACADYRAAAAAAAAAAAABJXTs3dmn9Lp1cWx8AACADYRAAAAAAAAAAAABJd4e0UGCgn0tqBwb6qXu3Fi6pDQAAcC3CIAAAAAAAAAAAAJI8PT00bEiIS2oPGxIim83DJbUBAACuZdnfOoKDg4tkHcMwdOTIkSJZCwAAAAAAAAAAlGzDhoTou++3ae++E06r2bRJbQ0f2s1p9QAAAHJjWRjk+PHjMgxDpmm6dB3DMFxaHwAAAAAAAAAAlB42m4emTR2q7r0mKzY2odD1fH3LadrUofLwcHdCdwAAAHlj+TExhmG47AUAAAAAAAAAAJBfDepX15efjpWPj1eh6vj6ltMXC59V/XrVnNQZAABA3lgaBjFNs1Cv3GoCAAAAAAAAAAAUROtWdbXq+wlq0rhWgZ5v0riWVi57Ua1b1XVyZwAAALmz7JiYAQMGFPjZlJQUXbx4UYcPH9aRI0ckyX7kjJeXlx544AG5u7PdGgAAAAAAAAAAKLj69app9Q8vacbsNZoxe40iIqJzfSYw0E/DhoRo2JAQ2WyWfRsGAABc5yz7W8i8efOcUufs2bOaOXOmPvzwQ0VFRSkxMVEnTpzQt99+qwoVKjhlDQAAAAAAAAAAcH2y2Tw0ekQPDRsSopWrd2vVmt36+tstDnMaNqiuFs2D1aVTY3Xv1oIQCAAAsJxhlpLzVE6ePKk+ffpo586dMgxDjRo10qZNm+Tv7291ayhBTp8+rRo1akiSTp06perVq1vcEQAAAID8uHAxRg2bjHYY+2vvh6pU0deijgAAAFDa8HdOAADgbK74PrVboSsUEzVr1tSPP/6o+vXryzRNHThwQA8//LDVbQEAAAAAAAAAAAAAABSpUhMGkSR/f399/PHHkiTT/H/s3Xd4VGX+/vH7JJmEJCQhlBB6rwILCdIEFVBpKliw4UpbFNaygIX9qruCrq4NUHcVRAQFCyqLoCBNEEV6B+lSDCAhgfTezu8PfhmZFEiZyZkM79d1zbXzPOecz/mcWWXZzJ3nMbVq1SotWLDA4q4AAAAAAAAAAAAAAAAqjkeFQSSpd+/e6tSpk6SLgZDXX3/d4o4AAAAAAAAAAAAAAAAqjseFQSSpX79+9vd79uzRb7/9ZmE3AAAAAAAAAAAAAAAAFccjwyDNmzd3GG/dutWiTgAAAAAAAAAAAAAAACqWR4ZBgoODJUmGYUiSTp06ZWU7AAAAAAAAAAAAAAAAFcYjwyDx8fEO48zMTIs6AQAAAAAAAAAAAAAAqFgeGQbZtm2bJMk0TUlSaGiole0AAAAAAAAAAAAAAABUGI8Lg8THx2vhwoX2LWIkqU6dOhZ2BAAAAAAAAAAAAAAAUHE8KgySm5ur4cOHKyEhwT5nGIZ69uxpXVMAAAAAAAAAAAAAAAAVyGPCIGvWrFG3bt20bNkyGYYh0zRlGIa6d++uGjVqWN0eAAAAAAAAAAAAAABAhfCx6sYvvvhiua7Pzs5WUlKSjh8/ru3btysmJkaS7CGQfFOmTCnXfQAAAAAAAAAAAAAAACoTy8IgkydPdghtlIdpmvb3l9YcM2aM+vTp45R7AAAAAAAAAAAAAAAAVAaWhUHyXRrkKKtLAyD59UaOHKkZM2aUuzYAAAAAAAAAAAAAAEBl4mV1A4ZhlPtlmqb91aZNG3399df68MMPnbbyCAAAAAAAAAAAAAAAQGVh6cog5VkVxMfHR8HBwapWrZpatWqlyMhIDRgwQN27d3dihwAAAAAAAAAAAAAAAJWLZWGQvLw8q24NAAAAAAAAAAAAAADgsSzfJgYAAAAAAAAAAAAAAADOQxgEAAAAAAAAAAAAAADAgxAGAQAAAAAAAAAAAAAA8CCEQQAAAAAAAAAAAAAAADwIYRAAAAAAAAAAAAAAAAAPQhgEAAAAAAAAAAAAAADAg/hY3UBRYmNjtW7dOm3YsEE7d+7U+fPnFRcXp+TkZAUFBal69eqqWbOmIiMj1aNHD/Xu3Vs1a9a0um0AAAAAAAAAAAAAAADLuVUYZOfOnZo2bZoWLlyo7Oxs+7xpmvb36enpiomJkWEY2rBhg9555x3ZbDbde++9Gj9+vDp16mRF6wAAAAAAAAAAAAAAAG7BLbaJyc7O1pNPPqkuXbro888/V1ZWlkzTtL8Mwyj0uvR4VlaWPvnkE1177bV6+umnHYIkAAAAAAAAAAAAAAAAVxPLwyAJCQnq0aOH3nrrLeXl5RUZ/pDkEP6QVGQ4JC8vT9OmTdN1112nxMREKx8LAAAAAAAAAAAAAADAEpZuE5OVlaXBgwdrx44dkmQPfkh/bA3j5eWlBg0aKDQ0VIGBgUpNTVVCQoKioqKUl5dnv+7S0MiOHTs0ePBgrVq1Sr6+vhX8VAAAAAAAAAAAAAAAANaxNAzyzDPPaP369YVCIKGhobr//vt1zz33KDIyUoGBgYWuTUtL044dO/Tll1/q888/V1xcnMMqIevXr9ekSZM0ffr0inwkAAAAAAAAAAAAAAAAS1m2Tczx48c1Y8aMQtvAjB07VsePH9d///tfXX/99UUGQSQpICBAvXr10n/+8x8dP35cf/3rX+3H8gMhM2bM0IkTJyrkeQAAAAAAAAAAAAAAANyBZWGQ1157TdnZ2ZIuBkG8vb31/vvv67333lNISEipagUHB+u///2vPvjgA4dVRrKzs/X66687tW8AAAAAAAAAAAAAAAB3ZlkYZNmyZfYVPAzD0FNPPaUxY8aUq+aoUaP09NNP22uapqlvv/3WSR0DAAAAAAAAAAAAAAC4P0vCIL/88ot+//13+7hGjRqaPHmyU2pPnjxZNWvWtI/Pnj2rX375xSm1AQAAAAAAAAAAAAAA3J0lYZAjR47Y3xuGoTvuuEN+fn5Oqe3n56c77rhDpmkWeT8AAAAAAAAAAAAAAABPZkkYJDY2VpLsgY0//elPTq3fsWNHh3FMTIxT6wMAAAAAAAAAAAAAALgrS8IgcXFxDuOwsDCn1s/fJsYwDElSQkKCU+sDAAAAAAAAAAAAAAC4K0vCICEhIQ7jguGQ8soPf+SvPBIcHOzU+gAAAAAAAAAAAAAAAO7KkjBIrVq1JP2xcsfBgwedWr9gvfz7AQAAAAAAAAAAAAAAeDpLwiBNmjSxvzdNU4sWLXJa7fx6+UETSWrcuLHT6gMAAAAAAAAAAAAAALgzS8IgERERCg0NtY9Pnz6td955xym133vvPUVFRdnHoaGh6ty5s1NqAwAAAAAAAAAAAAAAuDtLwiBeXl665ZZbZJqmDMOQaZp69tlntW7dunLVXb9+vf7+97/baxqGoVtuucVhlRAAAAAAAAAAAAAAAABPZkkYRJKeeuope0jDMAylpaVp0KBBeu+998pUb+bMmRowYIBSU1Ptc4Zh6KmnnnJKvwAAAAAAAAAAAAAAAJWBZWGQyMhIDR06VKZpSroY3EhPT9fjjz+ujh07aubMmYqJiblsjdjYWM2YMUOdOnXSo48+qrS0NIdVQYYOHaqIiIiKeBwAAAAAAAAAAAAAAAC34GPlzd99913t3LlTx44dkyR7kGPv3r169NFH9eijj6p+/fpq06aNqlWrpsDAQKWmpiohIUEHDx7U6dOnJckhUJL/n82bN9d///tfax4MAAAAAAAAAAAAAADAIpaGQWrUqKEVK1aoZ8+eio6OlmEY9kBIfsDj1KlT9tDHpfKP58sPgpimqTp16mjFihWqUaOG6x8CAAAAAAAAAAAAAADAjVi2TUy+pk2bas+ePerfv7/DCh+XvvLDIZe+ijtn4MCB2r17t5o0aWLxkwEAAAAAAAAAAAAAAFQ8y8MgklSrVi199913+uSTTxQREeEQ+pAKh0MuXQUk/9W5c2d99tlnWrp0qWrVqmXl4wAAAAAAAAAAAAAAAFjG0m1iCnrggQf0wAMPaMuWLVq9erU2bNignTt36sKFC8rLy7Of5+XlpZo1ayoiIkI9evRQv379dO2111rYOQAAAAAAAAAAAAAAgHtwqzBIvq5du6pr164Oc0lJSUpOTlZQUJCCg4Mt6gwAAAAAAAAAAAAAAMC9WRIGycjIUExMjMNc/fr15eVV/K41wcHBhEAAAAAAAAAAAAAAAACuwJIwyIIFCzR69Gj7ODw8XKdPn7aiFQAAAAAAAAAAAAAAAI9S/FIcLnTu3DmZpinTNCVJQ4cOlWEYVrQCAAAAAAAAAAAAAADgUSwJg+Tm5kqSPQDSsmVLK9oAAAAAAAAAAAAAAADwOJaEQYKCgiTJvjJIWFiYFW0AAAAAAAAAAAAAAAB4HEvCII0aNXIYx8fHW9EGAAAAAAAAAAAAAACAx7EkDNKpUydJf2wTc+zYMSvaAAAAAAAAAAAAAAAA8DiWhEEaNGig9u3bS7q4Vczy5cutaAMAAAAAAAAAAAAAAMDjWBIGkaSxY8fKNE1J0i+//KIVK1ZY1QoAAAAAAAAAAAAAAIDHsCwMMmbMGF1zzTUyDEOmaerRRx/VuXPnrGoHAAAAAAAAAAAAAADAI1gWBvHx8dGiRYsUGhoqSTpx4oT69OmjvXv3WtUSAAAAAAAAAAAAAABApWdZGESSWrRooQ0bNqhFixaSpIMHD+raa6/VmDFjtGnTJvs2MgAAAAAAAAAAAAAAACgZH6tuPGrUKPv7jh076vjx48rLy1N2drbmzJmjOXPmyN/fXx06dFBYWJiCg4Pl41P6dg3D0IcffujM1gEAAAAAAAAAAAAAANyWZWGQjz76SIZhFJo3DMO+IkhaWpq2bNlS5nuYpkkYBAAAAAAAAAAAAAAAXFUsC4Pkyw9+XBoMKRgSKct2MUUFTQAAAAAAAAAAAAAAADyd5WGQkoQ2CHYAAAAAAAAAAAAAAACUjGVhkIYNGxLyAAAAAAAAAAAAAAAAcDLLwiAnT5606tYAAAAAAAAAAAAAAAAey8vqBgAAAAAAAAAAAAAAAOA8hEEAAAAAAAAAAAAAAAA8CGEQAAAAAAAAAAAAAAAAD0IYBAAAAAAAAAAAAAAAwIP4WN3A1SIvL087duzQvn37FBMTI9M0VaNGDbVt21Zdu3aVzWazukUAAAAAAAAAAAAAAOABCIO4WEpKit544w3NnDlTMTExRZ4TEhKiESNG6LnnnlOtWrVc3pNhGE6t16hRI508efKy54wYMUIff/xxue4zfPhwffTRR+WqAQAAAKBym/H+Cs2YtaLY43l5ZqG5G2/6h7y8Lv//g8Y93F/jHulf7v4AAAAAAAAAd0AYxIW2b9+uu+66S1FRUZc9LzExUW+//bbmz5+vTz/9VP37V64fQPr48I8RAAAAgIqRnJKus9HxpbrmXExCieoCAAAAAAAAnsKyb/GvFJAoD29vbwUHBysoKMhl97iSLVu26KabblJKSkqhY35+fvLy8lJ6uuMPG+Pi4nTbbbfpf//7n26//faKarXcKlt4BQAAAEDlFVTVX3XCQ11SFwAAAAAAAPAUloVBGjdu7PTtSgoyDEPVqlVTu3bt1KVLF11//fUaOHCgvLy8XHrf2NhY3XHHHQ5BEB8fHz322GMaN26cmjdvLsMwFBUVpQ8//FDTpk1TamqqJCknJ0fDhg3Tjh071LJlS5f0N2PGjDJf+80332j58uUOcyNGjCh1nYceekjdu3cv1TWtWrUq9X0AAAAAeJZxj7CdCwAAAAAAAHAllu7vYZqF93J2dv24uDitX79e69ev19SpU1WvXj399a9/1cSJE+Xr6+uS+06ePFlnz561j/38/LRw4ULdeuutDuc1atRIL774ogYNGqQBAwYoPv7iUscpKSmaOHGili5d6pL+xo4dW+ZrZ86c6TBu166dOnfuXOo6vXv3LlOIBAAAAAAAAAAAAAAAXJ5rl8i4AsMwKuQlXQyGmKap06dP67nnnlPXrl118OBBpz/TyZMnNXv2bIe5KVOmFAqCXKpr16569913HeaWLVumTZs2Ob2/8ti1a5f27NnjMEegAwAAAAAAAAAAAAAA92JpGCQ/oHHp60rHy3rupeEQ0zS1Z88e9ezZU0ePHnXqM02fPl1ZWVn2cZMmTfTkk09e8br7779fPXv2dJh77bXXnNpbeX300UcOYx8fHz344IPWNAMAAAAAAAAAAAAAAIpk2TYxc+fOtb8/efKkXn/9dWVkZEi6GOzw8vJSRESEOnXqpCZNmigkJER+fn5KSkrShQsXtHfvXm3btk3nzp2TJPsKIN27d9df/vIX5ebmKj4+XtHR0dq8ebO2b9+urKwsh0BIfHy8br/9dm3btk1Vq1Z1ynMtXrzYYTx69Gj5+JTsY3744Yf1888/28erVq1SWlqaAgICnNJbeWRnZ+uzzz5zmBswYIBq165tUUcAAAAAAAAAAAAAAKAoloVBhg8fLunidihPPPGEMjIyZJqmgoKCNGnSJI0YMUJ169a9bA3TNLV69Wq98cYbWrNmjQzD0KZNm1SjRg19/vnnDiGKmJgYvfXWW5o6dapycnLsgZAjR47o7bff1nPPPVfuZ9q1a5eioqIc5u69994SX3/XXXdp1KhRysnJkSSlp6dr1apVGjJkSLl7K6+lS5fq/PnzDnMjR460qBsAAAAAAAAAAAAAAFAcS7eJWbVqle68804lJyfLNE316NFDhw4d0rPPPnvFIIh0cTWQW265RatXr9acOXPsK3AsXbpUt99+uz1UIUlhYWF65ZVX9MMPPyg4ONh+vWmaevvtt5Wenl7u51m7dq3DuHbt2mrevHmJrw8ICFDHjh0d5tasWVPuvpyh4BYxNWvW1K233mpNMwAAAAAAAAAAAAAAoFiWhUHOnz+vBx98UNnZ2TIMQ507d9aqVatUp06dMtUbMWKE5s+fL9M0ZZqmfvjhB7300kuFzuvRo4c+/vhjmaZpn7tw4YK+//77Mj9LvgMHDjiMu3TpUuoa3bp1cxgfPHiwXD05Q2xsrJYvX+4w98ADD8hms1nUEQAAAAAAAAAAAAAAKI5lYZDXX3/dvu2Il5eXZs+e7bCtS1ncc889uuuuuyRd3ELmjTfeUGxsbKHzbr/9dvXu3dshEPLTTz+V696SdOjQIYdx06ZNS12j4DUFa1rhk08+UXZ2tsOcM7aIuXDhgtauXasFCxZo7ty5WrJkiTZs2KCkpKRy1wYAAAAAAAAAAAAA4GplSRgkLy9Pc+bMkWEYMgxDPXv2VIcOHZxS+/HHH5d0cQuYzMxMzZ8/v8jzxo4daz9PkjZv3lzuex85csRh3LBhw1LXaNCggcP4zJkzSk1NLVdf5fXxxx87jP/0pz8V2s6mtJ588knVqlVLffv21f33369Ro0ZpyJAh6tmzp6pXr67IyEi9+uqrSkxMLNd9AAAAAAAAAAAAAAC42lgSBtm+fbvi4uLs4379+jmtds+ePeXv728fF7f9y/XXX29/b5qmoqOjy33v+Ph4h3F4eHipaxS1TU7BuhVp165d2rNnj8OcM1YFiYuLc1iZ5VK5ubnauXOn/u///k8NGjTQf/7zn3LfDwAAAAAAAAAAAACAq4UlYZD9+/dLkj0MUL9+fafV9vLysgcqTNO036ug2rVrq3r16vZxeQMX6enpys3NdZgry7Y3lwZZ8qWkpJS5r/L66KOPHMY2m03Dhg2rsPsnJyfriSee0F133aWsrKwKuy8AAAAAAAAAAAAAAJWVjxU3PX/+vGMTPs5tw9vbu9h7Xap69er2EEhSUlK57lnUVi5VqlQpdZ2iwiBWbROTnZ2tzz77zGFu0KBBqlmzZplrtmvXTgMHDlT37t3Vrl07hYWFKSAgQImJiYqKitL69es1d+5c7d692+G6RYsWacyYMYW2rCmt06dPX/b42bNny1UfAAAAAAAAAAAAAACrWRIGKej33393ar1Lt3wxDKPY8/z8/OzvbTZbue6Znp5eaM7X17fUdS7t6XK1K8LSpUsLhWnKukXMrbfeqieeeEIRERFFHq9Ro4Zq1KihTp066YknntBnn32msWPHKjk52X7OvHnzdMMNN2jUqFFl6kGSGjRoUOZrAQAAAAAAAAAAAACoDCzZJiZ/G5f8oMYPP/zgtNo7d+50CBCEh4cXe+6lq4EEBgaW675FrQJSlm1NMjMzS1S7IhTcIiYsLEwDBw4sU62777672CBIUR544AF9//33hVZKeeGFF5SRkVGmHgAAAAAAAAAAAAAAuBpYEgZp1KiR/b1pmvr+++916tQpp9SePXu2/b1hGA73ulReXp5iYmLs48uFRkqiatWqhebKElooahWQomq7WmxsrJYvX+4w9+CDDzp9S5/L6dKli1577TWHudOnT+ubb74pc81Tp05d9rV169bytg0AAAAAAAAAAAAAgKUs2Same/fuCg0NVUJCgqSLK2iMHTtWS5cuvey2LleyceNGzZo1S4ZhyDRNGYZR7EoWR44cUWZmpgzDkGEYaty4cZnvK0n+/v7y9vZWbm6ufS4tLa3UddwlDPLJJ58oOzvbYW7EiBEV3sfYsWP18ssv69y5c/a5lStX6p577ilTvfr16zurNRRhxvsrNGPWCqfXHfdwf417pL/T6wIAAAAAAAAAAACAJ7IkDOLj46MhQ4Zo7ty59uDGihUr9MADD+ijjz6Sn59fqWv+/PPPuv3222Wapn3Oy8tLd999d5Hnb9q0yWHcvn37Ut+zoGrVqunChQv2cXR0dKlrnD17tsi6Fe3jjz92GEdGRjrlMyotm82mfv36ad68efY5Vu9wX8kp6TobHe+SugAAAAAAAAAAAACAkrEkDCJJkydP1pdffqm0tDR7IOTLL7/Utm3b9O9//1tDhgyRzWa7Yp0TJ07ojTfe0AcffKDc3FyHVUHGjRtX7DYx+VuN5J/bvXv3cj9Ty5YtHUImUVFRpa5RcLucunXrVvjKILt27dKePXsc5qxYFSRf27ZtHcaXbu8D9xJU1V91wkOLPZ6XZ+pcTILDXO2wavLyuvyKQEFV/Z3RHgAAAAAAAAAAAABcFSwLgzRo0EAvv/yyxo8fb9+qxTRNHT9+XPfdd59CQ0PVt29fRUREqHHjxgoJCZGvr6+Sk5N14cIF7du3T5s3b7avEpEf6sjXqFEjvfzyy0Xe+8KFC1q5cqX9nr6+vrrhhhvK/UytW7d2CIMcP3681DVOnDhRqGZF++ijjxzGvr6+euCBByq8j3zVq1d3GMfHO3/lCTjHuEcuv53L+QtJatPhcYe5dd+/pJo1gl3dGgAAAAAAAAAAAABcNSwLg0jSE088oXPnzunf//63PRAiXQx2xMXFaeHChVq4cOFla+RvC3PptQ0aNNCaNWsUFBRU5DUzZ85URkaGfdy3b99izy2NgitYlGU7k82bNzuM27RpU66eSis7O1ufffaZw9ztt99eKJBRkRISEhzGISEh1jQCAAAAAAAAAAAAAEAl4GV1Ay+//LKmTZsmPz8/h2BH/qodV3oVDJF0795dP/74o5o0aVLsPR999FGdPXvW/vriiy+c8ix9+vRxGJ87d06//vpria9PS0vT7t27Heb69u3rjNZKbOnSpTp//rzDnJVbxEjS0aNHHcZhYWEWdQIAAAAAAAAAAAAAgPuzPAwiSePHj9fu3bvVr18/SSoU9LjcK//csLAwTZs2TT///LMaN2582ftVq1ZNtWvXtr8CAwOd8hwRERFq0KCBw1xpgiaLFi1Sdna2fVylShXdcsstTumtpApuEVOnTh3171/8th+ulpeXp5UrVzrMdejQwaJuAAAAAAAAAAAAAABwf24RBpGkli1bavny5Tpy5IieeeYZde7cWT4+PpddFaR27doaMmSIPv/8c0VFRWn8+PH2VUKsMmTIEIfxhx9+qJycnBJdO2vWLIfxzTff7LSgSknExsZq+fLlDnMPPvigvL29K6yHgubPn6+oqCiHOSvDKQAAAAAAAAAAAAAAuDsfqxsoqFmzZnr11VclSZmZmTp06JAuXLig+Ph4ZWZmKiQkRKGhoWrQoEGhVTjcwYQJEzRz5kz7Ch8nTpzQ1KlTNWnSpMtet2DBAq1fv95h7krXSCoUfhk+fHih1T1K6pNPPnFYmURyzhYx+au8lNahQ4c0YcIEh7nQ0FANHjy43D0BAAAAAAAAAAAAAOCp3C4Mcik/Pz/96U9/srqNUmnSpIlGjx6tmTNn2ucmT56sdu3aadCgQUVes3XrVj366KMOcwMGDNB1113n0l4L+vjjjx3GXbp0Udu2bctdt3379nr22Wc1dOhQ2Wy2El2zdu1aDRs2TPHx8Q7zzz77rKpVq1bungAAAAAAAAAAAAAA8FRus02MJ5kyZYrCw8Pt44yMDA0ZMkQTJkzQ0aNHZZqmJCkqKkovvPCC+vTpo7i4OPv5gYGBmjZtWoX2vGvXLu3Zs8dhzhmrgkjS/v37NWzYMIWHh2v06NH67LPPdODAAWVlZTmcFx0dra+++koDBw5U3759FR0d7XD85ptv1t/+9jen9AQAAAAAAAAAAAAAgKdy65VBKquwsDAtWrRIN998s1JTUyVJOTk5euutt/TWW2/Jz89PXl5eSk9PL3Stt7e35s+fr9atW1dozwW3lqlSpYruv/9+p94jLi5Oc+bM0Zw5c+xz/v7+CggIUHJycqFwyKV69eqlRYsWlXhlEQAAAAAAAAAAAAAArlasDOIi3bt319q1a1W/fv1CxzIzM4sMgoSGhmrJkiW64447KqJFu+zsbH322WcOc4MHD66Q7VjS09N14cKFYoMgvr6+mjJlin744QdVrVrV5f0AAAAAAAAAAAAAAFDZEQZxoS5duujAgQN6/vnnVatWrWLPCw4O1uOPP65Dhw5p0KBBFdjhRcuWLdP58+cd5py1RYwkff7553r44YfVtm1beXt7l+iaVq1aacqUKYqKitI///nPEl8HAAAAAAAAAAAAAMDVjm1iXCwoKEgvvfSSJk+erB07dmjv3r2KjY2VaZqqUaOG2rZtq65du8rX17dM9U3TLHePQ4YMcUqd4tx333267777JF1cCeTgwYOKiorS77//rpSUFGVmZqpq1aoKDQ1VnTp1dO2116p69eou6wcAAAAAAAAAAAAAAE9GGKSCeHt7q0uXLurSpYvVrVjK399fERERioiIsLoVAAAAAAAAAAAAAAA8EtvEAAAAAAAAAAAAAAAAeBDCIAAAAAAAAAAAAAAAAB6EMAgAAAAAAAAAAAAAAIAHIQwCAAAAAAAAAAAAAADgQQiDAAAAAAAAAAAAAAAAeBDCIAAAAAAAAAAAAAAAAB6EMAgAAAAAAAAAAAAAAIAHIQwCAAAAAAAAAAAAAADgQQiDAAAAAAAAAAAAAAAAeBDCIAAAAAAAAAAAAAAAAB6EMAgAAAAAAAAAAAAAAIAHIQwCAAAAAAAAAAAAAADgQQiDAAAAAAAAAAAAAAAAeBAfqxsoTnZ2tg4ePKjz58/rwoULSk9PlyQ99NBDFncGAAAAAAAAAAAAAADgvtwqDJKRkaHZs2fr66+/1ubNm5WRkVHonMuFQdasWaPExET7uEOHDmrevLlLegUAAAAAAAAAAAAAAHBHbhMGmTFjhiZPnqzz589LkkzTLHSOYRiXrbFu3Tq98sor9vFtt92mxYsXO7VPAAAAAAAAAAAAAAAAd2Z5GCQ9PV2jR4/WF198YQ+AGIZRKPhRVDikoCeeeEJTp05VZmamTNPU8uXLdf78edWsWdMlvQMAAAAAAAAAAM8y4/0VmjFrRbHH8/IKf19x403/kJfX5X+hddzD/TXukf7l7g8AAKAkLA2DmKap+++/X99++61M07QHQAoGP660Iki+WrVq6a677tKnn34qScrJydHixYv1l7/8xbmNAwAAAAAAAAAAj5Sckq6z0fGluuZcTEKJ6gIAAFQUS8MgkydP1jfffGNfCcQ0Tfn6+urPf/6zBg0apCZNmuiBBx7QoUOHSlxz6NCh+vTTT+0BktWrVxMGAQAAAAAAAAAAJRJU1V91wkNdUhcAAKCiGGZJ9l9xgTNnzqh58+bKysqSdHE1kA4dOujrr79WkyZN7Od16tRJe/futa8ckpube9m6mZmZql69ujIyMmSapmrWrKmYmBiXPgs8x+nTp9WgQQNJ0qlTp1S/fn2LO6pcph3bq2nH9hZ7PC8vT+fOJTjM1a5dTV5eXpetO7FZB01s1sEZLQIAAAAAAAAAAACAW3HF99SWrQzy6quvKjMz074iSPPmzbV+/XoFBQWVq66fn586duyoTZs2SZIuXLigs2fPqk6dOs5oG8BlJGVn6UxG6uVPCvVzGJ7NuvLSiEnZWeVpCwAAAAAAAAAAAACuKpaFQb7++mt7EMQwDM2ePbvcQZB8kZGR9jCIJB06dIgwCFABgm2+qlclsNjjObm5Oped4TBX21ZFPt7eV6wLAAAAAAAAAAAAACgZS8IgBw8e1O+//y7DMCRJERERuv76651Wv2nTpg7jqKgop9UGULwrbedyKDpGbbZ+7TC3rtMAtQ4Pc3VrAAAAAAAAAAAAAHDV8LLipgcOHLC/NwxDN998s1PrV6tWzWGclJTk1PoAAAAAAAAAAAAAAADuypKVQWJjYyXJvkVMixYtnFo/f7uZ/JVHUlJSnFofAAAAAAAAAAB4pmnH9mrasb1Or3ullZUBAACcyZIwSHx8vMM4JCTEqfXzwx/5YZMqVao4tT4AAAAAAAAAAPBMSdlZOpOR6pK6AAAAFcWSMEhwcLDDODk52an181ceyVejRg2n1gcAAAAAAAAAAJ4p2OarelUCiz2eZ5o6m5nmMFfHL0Be/3+18svVBQAAqCiWhEHCwsIk/bGNy9mzZ51af8eOHQ7jmjVrOrU+AAAAAAAAAADwTFfaziU2M11hK+c5zO258W7V8vN3dWsAAAAl5mXFTevVq+cw3rZtm9Nq5+bmat26dfagiSR16MAefAAAAAAAAAAAAAAA4OpgSRjk2muvVWDgxSXWTNPU6tWrlZKS4pTaX3zxhc6dO2cfN2nSRPXr13dKbQAAAAAAAAAAAAAAAHdnSRjEZrPpxhtvlGmakqTU1FTNmDGj3HWTkpL0wgsvyDAMmaYpwzB00003lbsuAAAAAAAAAAAAAABAZWFJGESShg8fLkn24MaUKVN04MCBMtfLzs7Wgw8+qGPHjjnMP/bYY+XqEwAAAAAAAAAAAAAAoDKxLAxy9913q1OnTpIuBkLS0tLUt29fbdu2rdS1jh07puuvv17Lli1zWBXk1ltvVbt27ZzdOgAAAAAAAAAAAAAAgNvysfLmb731lvr27avc3FwZhqFz586pR48eGj58uP7yl7+oc+fOxV577tw5/fTTT1q0aJH+97//KTc31x4CkaSgoCBNnTq1oh4FAAAAAAAAAJxq2rG9mnZsr9PrTmzWQRObdXB6XQAAAADuw9IwSK9evfTf//5XY8eOlWEYMgxDubm5mjt3rubOnSubzSZJMk3Tfk3dunUVHx+vrKws+1z+8UtXBZk7d66aN29esQ8EAAAAAAAAAE6SlJ2lMxmpLqkLAAAAwLNZGgaRpIcfflhxcXF6/vnn7UGO/HDHpYEP6WLoIzo6ulCN/NVATNOUj4+P3nnnHd1xxx2ubx4AAAAAAAAAXCTY5qt6VQKLPZ5nmjqbmeYwV8cvQF7//+ell6sLAAAAwLNZHgaRpL///e+69tpr9eCDD+rcuXP2cEdpmKapmjVrasGCBerTp48LugQAAAAAAACAinOl7VxiM9MVtnKew9yeG+9WLT9/V7cGAAAAwM15Wd1Avr59++ro0aN67bXXVKdOHZmmaX8V5dLjwcHBmjx5so4dO0YQBAAAAAAAAAAAAAAAXNXcYmWQfFWrVtXTTz+t8ePHa+PGjfrxxx+1YcMGnT59WhcuXFB8fLz8/f1Vs2ZN1a5dW127dtXNN9+sG264QQEBAVa3DwAAAAAAAAAAAAAAYDm3CoPks9lsuuGGG3TDDTdY3QoAAAAAAAAAAAAAAECl4pZhEAAAAMDdTTu2V9OO7XV63SvtCw8AAAAAAAAAwJUQBgEAAADKICk7S2cyUl1SFwAAAAAAAACA8iAMAgAAAJRBsM1X9aoEFns8zzR1NjPNYa6OX4C8DOOKdQEAAAAAAAAAKA/CIAAAAEAZXGk7l9jMdIWtnOcwt+fGu1XLz9/VrQEAAAAAAAAArnJeVjcAAAAAAAAAAAAAAAAA5yEMAgAAAAAAAAAAAAAA4EEs2yamT58+FXIfwzC0Zs2aCrkXgKJlZeVo+cqd+nr5VlXbsV/e5zKknDzJx0sjm5xQl4gW6nNjew3oFyFfX3avAgAAAAAAAAAAAIDysOxb13Xr1skwDJfewzRNl98DQPGys3M084OVmjFrpWJjEyUV+EMnO0+/HjmrX4+c1WcLflJYWIjGjumnsWP6yWYjFAIAAAAAAAAAAAAAZVGpt4kxTbPIFwDrHTp8Wv1ve1EvvvylPQhyJTExiXrx5S/V/7YXdejwaRd3CAAAAAAAAAAAAACeyfIwSHGBjiu9pItbwBR8XVoTgDW2bjuqgYP/pb37fivT9Xv3/aaBg/+lrduOOrkzAAAAAAAAAAAAAPB8lu3DcP3115d5C5fs7GxduHBBUVFRSk9Pl3QxGGKapvz9/dWlSxdntgqgFA4dPq37/jxVycnp5aqTnJyu+/48Vcu/+YdataznpO4AAAAAAAAAAAAAwPNZFgZZt25duWvk5ORo69atev/997VgwQLl5OQoIyNDdevW1Zw5c+Tn51f+RgGUWHZ2jh7926xyB0HyJSen669PvK8V3/5TNptlf1wBAAAAAAAAAAAAQKVi+TYx5eHj46MePXro448/1saNG9WkSROZpqkFCxZowIABysrKsrpF4Koy84OVZd4apjh79/2mmR+sdGpNAAAAAAAAAAAAAPBklToMcqnIyEitXbtWderUkWma+vHHH/Xwww9b3RZw1cjKynFZaGPmByuVnZ3jktoAAAAAAAAAAAAA4Gk8JgwiSQ0bNtR//vMfSZJpmpo/f75WrVplcVfA1WH5yp2KiUl0Se2YmER9t2KnS2oDAAAAAAAAAAAAgKfxqDCIJN15551q1aqVDMOQaZp65ZVXrG4JuCqsXbfPpfV/+NG19QEAAAAAAAAAAADAU3hcGESSBg4cKNM0JUk///yzzp07Z3FHgOfbs/dkpa4PAAAAAAAAAAAAAJ7CI8MgrVu3tr83TVObN2+2sBvg6nDs+FnX1j8W7dL6AAAAAAAAAAAAAOApPDIMEhoaKkkyDEOSdOLECSvbAa4KmZk5Lq2fkZnt0voAAAAAAAAAAAAA4Ck8MgySnJzsME5LS7OoE+Dq4efn49L6VfxsLq0PAAAAAAAAAAAAAJ7CI8Mgu3fvlnRxixhJqlatmnXNAFeJZk3ruLZ+s3CX1gcAAAAAAAAAAAAAT+FxYZD09HQtXLjQvkWMJIWFhVnYEXB1+FOHxpW6PgAAAAAAAAAAAAB4Co8Lg/ztb3/T2bNnHea6d+9uUTfA1aPPje1dWr/3Da6tDwAAAAAAAAAAAACewmPCIL/++quGDBmiDz/8UIZhyDRNGYahDh06qF69ela3B3i8Af0iFBYW4pLaYWEhGtg/wiW1AQAAAAAAAAAAAMDT+Fh143nz5pXr+uzsbCUlJen48ePaunWrtm/fLkn2EEi+5557rlz3AVAyvr4+Gjumn158+Uun1x47pp9sNsv+uAIAAIAbmXZsr6Yd2+v0uhObddDEZh2cXhcAAAAAAACwgmXfro4YMcIhtFEepmna3+fXNAxDt956q+6++26n3APAlY0d00+Lv9mivft+c1rNP3VorHEP93daPQAAAFRuSdlZOpOR6pK6AAAAAAAAgKew/FftLw1ylFXBUIlpmurbt6++/NL5KxQAKJ7N5qN3335YAwf/S8nJ6eWuFxwcoHffflg+Pt5O6A4AAACeINjmq3pVAos9nmeaOpuZ5jBXxy9AXlf4ZYRgm69T+gMAAAAAAADcgeVhEGevDhIaGqoXXnhBjz/+uNNqAyi51q3qa8H8J3Xfn6eWKxASHBygz+dNVKuW9ZzYHQAAACq7K23nEpuZrrCVjtuS7rnxbtXy83d1awAAAAAAAIDbsDQM4oxVQby9vdWyZUtFRkZqwIABuvPOO+Xn5+eE7gCUVZdrW2j5N//QX594v0xbxnRo30jvvfMIQRAAAAAAAAAAAAAAKAPLwiAnTpwo1/U2m03BwcGqWrWqkzoC4EytWtbTim//qZkfrNTMD1YqJibxiteEhYVo7Jh+Gjumn2w2yxcuAgAAAAAAAAAAAIBKybJvWxs1amTVrQFUEJvNR4//dZDGjumn71bs1NfLt2nJjv3yPpcu5eRJPl5q2TRcXSKaq/cN7TWwfwQhEAAAAAAAAAAAAAAoJ751BeByNpuPBt/WRa2ubayPtzr+sTOnyx1qHR5mUWcAAAAAAAAAAAAA4Hm8rG4AAAAAAAAAAAAAAAAAzmPJyiAHDhzQwoUL7WPDMDRp0iT5+vpa0Q4AAAAAAAAAAAAAAIDHsCQM8sMPP2jy5MkyDEOS1K1bN/3jH/+wohUAAAAAAAAAAAAAAACPYsk2MYmJiZIk0zQlSQMGDLCiDQAAAAAAAAAAAAAAAI9jSRjEx8dxQZL69etb0QYAAAAAAAAAAAAAAIDHsSQMUr16dYexv7+/FW0AAAAAAAAAAAAAAAB4HEvCIC1atJAkGYYhSYqJibGiDQAAAAAAAAAAAAAAAI9jSRikS5cu8vPzs4+3bdtmRRsAAAAAAAAAAAAAAAAex5IwiL+/vwYMGCDTNGWappYvX6709HQrWgEAAAAAAAAAAAAAAPAoloRBJOnpp5+WYRgyDENxcXF6/fXXrWoFAAAAAAAAAAAAAADAY1gWBunevbvGjRsn0zQlSS+//LIWLVpkVTsAAAAAAAAAAAAAAAAewbIwiCS99dZbuu2222SapnJycnTvvfdq0qRJSktLs7ItAAAAAAAAAAAAAACASsvSMIiPj4++/vprPfvss/L29lZubq7efPNN1a1bV4888ogWLFigI0eOKCEhQXl5eVa2CgAAAAAAAAAAAAAAUCn4WHVjb2/vQnOGYcg0TSUlJWn27NmaPXt2ue9jGIZycnLKXQcAAAAAAAAAAAAAAKAysCwMYppmoTnDMGQYRrHHAQAAAAAAAAAAAAAAcHmWhUEk2YMfpT1WUgRKAAAAAAAAAAAAAADA1cbSMAhhDQAAAAAAAAAAAAAAAOeyLAzywgsvWHVrABUsKy9XS6JPasHJo4WO3fHLWvWIDlf/sAYaHN5Yvl7eFnQIAAAAAAAAAAAAAJ6DMAgAl8nOy9X0Y/s07fhenctML/KcQ2mJOhSVqDlRhxXuF6AJTdtrQrP2shEKAQAAAAAAAAAAAIAy8bK6AQCeaX9SnLqtX6xJB7cUGwQpKDozTZMOblG39Yu1PynOxR0CAAAAAAAAAAAAgGciDALA6TbGRavHz0u0M/F8ma7fmXhePX5eoo1x0U7uDAAAAAAAAAAAAAA8H2EQAE61PylOAzYvV1JOVrnqJOVkacDm5TqQHO+kzgAAAAAAAAAAAADg6kAYBIDTZOfl6qFdP5Q7CJIvKSdLf965Vtl5uU6pBwAAAAAAAAAAAABXAx+rbtynTx/7++bNm2vWrFlOq/3www/r119/lSQZhqE1a9Y4rTaA4k0/tq/MW8MUZ2fieU0/tk/PtOjo1LoAAAAAAAAAAAAA4KksC4OsW7dOhmFIkhISEpxae9u2bdq7d69M07TfA4BrZeXlavrxfS6pPf34Pk1o1l42L2+X1AcAAAAAAAAAAAAAT2L5NjGmaVrdAgAnWBJ9UtGZaS6pHZ2ZpsXRJ11SGwAAAAAAAAAAAAA8jeVhEACeYUXMKZfWXxlz2qX1AQAAAAAAAAAAAMBTEAYB4BQ7Es67uH6sS+sDAAAAAAAAAAAAgKfwyDBIdna2/b2vr6+FnQBXj8MpCa6tn5ro0voAAAAAAAAAAAAA4Ck8MgwSG/vHCgJBQUEWdgJcPTLzcl1aPyM3x6X1AQAAAAAAAAAAAMBTeFwYJCoqyiEMUrNmTQu7Aa4efl7eLq1fxdvHpfUBAAAAAAAAAAAAwFN4XBhkypQp9veGYeiaa66xsBvg6tGqajXX1g8McWl9AAAAAAAAAAAAAPAULvtV+3nz5pX43Li4uFKdf6nc3FylpKTo+PHjWrlypQ4fPizDMGSapgzDULdu3cpUF0DpRFarqT1JF1xYv5bLagMAAAAAAAAAAACAJ3FZGGTEiBEyDOOy55imKUk6deqURo4cWe575tfLv6+Xl5fuu+++ctcFcGX9wxpoTtRhl9XvF1bfZbUBAAAAAAAAAAAAwJO4LAySLz+gUd5zSuLS8IlhGHr88cdVr149p9QGcHmDwxsr3C9A0ZlpTq8d7hegIeGNnV4XAAAAAAAAAAAAADyRl6tvYBhGka+SnFPal3QxWGKapoYPH67XXnvN1Y8H4P/z9fLWhKbtXVJ7QtP2snl5u6Q2AAAAAAAAAAAAAHgal64MUtIVP5yxMoiPj4/atm2rHj16aNSoUercuXO5awIonQnN2uuL349pZ+J5p9WMDKmpic06OK0eAAAAAAAAAAAAAHg6l4VBTpw4Uewx0zTVtGlTGYYh0zTVtm1bLVu2rEz38fHxUVBQkIKCggqtOAKgYtm8vDWvU2/1+HmJknKyyl0vxMdX8yL6yMfL5YsYAQAAAAAAAAAAAIDHcFkYpFGjRiU6zzAM+fr6lvh8AO7tmuDqWt5tgAZsXl6uQEiIj6++6zZAbYNCndgdAAAAAAAAAAAAAHg+S3/d3jRNp2wRA8C99Kgerk29higipGaZro8IqamNvYaoR/VwJ3cGAAAAAAAAAAAAAJ7PZSuDXMncuXPt76tXr25VGwBcpG1QqDb3GqLpx/Zp+vF9is5Mu+I14X4BmtC0vSY0ay+bl3cFdAkAAAAAAAAAAAAAnseyMMjw4cOtujWACmLz8tYzLTpqQrP2Whx9Ul/8dlT/i/3N4Zw2ASHqUbOO+oXV15DwxoRAAAAAAAAAAAAAAKCcLAuDALh62Ly8NbRuM7X3CioUBlnUro9ah4dZ1BkAAAAAAAAAAAAAeB4vqxsAAAAAAAAAAAAAAACA8xAGAQAAAAAAAAAAAAAA8CBsE1NB8vLytGPHDu3bt08xMTEyTVM1atRQ27Zt1bVrV9lsNqtbtERiYqI2btyoX3/9VUlJSfLz81O9evXUuXNntWjRwur2AAAAAAAAALeTlZerJdEntfjsyULHem/8Vl1Dw9Q/rIEGhzeWr5d3xTcIAAAAwHKEQVwsJSVFb7zxhmbOnKmYmJgizwkJCdGIESP03HPPqVatWhXSV+PGjfXbb7+Vq8bcuXM1YsSIMl27Z88evfjii/r222+VnZ1d5DnXXHONnnrqKQ0fPlyGYZSjUwAAAAAAAKDyy87L1fRj+zTt+F6dy0wv8pz9yfHanxyvOVGHFe4XoAlN22tCs/ayEQoBAAAAripsE+NC27dv1zXXXKMXX3yx2CCIdHF1jLffflutW7fWihUrKrBDa/z73/9W586dtWjRomKDIJK0f/9+jRw5Un369FFsbGwFdggAAAAAAAC4l/1Jceq2frEmHdxSbBCkoOjMNE06uEXd1i/W/qQ4F3cIAAAAwJ0QBnGRLVu2qHfv3oqKiip0zM/PT/7+/oXm4+LidNttt+mbb76piBYt8fTTT+vZZ59VTk5OoWNBQUHy8ir8j+S6det0ww036MKFCxXRIgAAAAAAAOBWNsZFq8fPS7Qz8XyZrt+ZeF49fl6ijXHRTu4MAAAAgLtimxgXiI2N1R133KGUlBT7nI+Pjx577DGNGzdOzZs3l2EYioqK0ocffqhp06YpNTVVkpSTk6Nhw4Zpx44datmyZYX1/K9//Us1atQo1TXdu3cv1fmffvqp3nzzTYe5xo0b67nnntPdd9+tatWqKSsrS1u3btWrr76qZcuW2c87ePCgHnjgAa1YsYItYwAAAAAAAHDV2J8UpwGblyspJ6tcdZJysjRg83Jt6jVEbYNCndQdAAAAAHdFGMQFJk+erLNnz9rHfn5+WrhwoW699VaH8xo1aqQXX3xRgwYN0oABAxQfHy9JSklJ0cSJE7V06dIK63nYsGFq3Lixy+qnpqZq4sSJDnOdOnXSypUrVatWLfucr6+vevbsqaVLl+q5557TK6+8Yj+2atUq/e9//9Pdd9/tsj4BAAAAAAAAd5Gdl6uHdv1Q7iBIvqScLP1551pt7jVENi9vp9QEAAAA4J7YJsbJTp48qdmzZzvMTZkypVAQ5FJdu3bVu+++6zC3bNkybdq0ySU9WuHtt99WTEyMfRwQEKCFCxc6BEEKevnll9WvXz+HuX/+85/Ky8tzWZ8AAAAAAACAu5h+bF+Zt4Ypzs7E85p+bJ9TawIAAABwP4RBnGz69OnKyvojqd+kSRM9+eSTV7zu/vvvV8+ePR3mXnvtNaf3Z4WcnBxNmzbNYe7JJ59U06ZNr3jtf//7X4dtYQ4ePKhvvvnG6T0CAAAAAAAA7iQrL1fTj7smtDH9+D5l5+W6pDYAAAAA98A2MU62ePFih/Ho0aPl41Oyj/nhhx/Wzz//bB+vWrVKaWlpCggIcGaLFe6nn37ShQsX7GMvLy+NGTOmRNc2b95cvXv31tq1a+1zX3/9tYYMGeLsNgEAAAAAAAC3sST6pKIz01xSOzozTYujT2po3WYuqQ8AQFnMeH+FZsxa4fS64x7ur3GP9Hd6XQBwd4RBnGjXrl2KiopymLv33ntLfP1dd92lUaNGKScnR5KUnp6uVatWVfrgw5IlSxzG3bt3V4MGDUp8/X333ecQBlm2bJlyc3Pl7c2+pgAAAAAAAPBMK2JOubT+ypjThEEAAG4lOSVdZ6PjXVIXAK5GhEGc6NLAgiTVrl1bzZs3L/H1AQEB6tixo7Zv326fW7NmTaUPgxT8XK677rpSXd+jRw+H8YULF7R7925FRkaWuzcAAAAAAADAHe1IOO/i+rEurQ8AQGkFVfVXnfDQYo/n5Zk6F5PgMFc7rJq8vIwr1gWAqxFhECc6cOCAw7hLly6lrtGtWzeHMMjBgwfL3ZeVcnNzdeTIEYe5rl27lqpG27ZtFRwcrKSkJPvcwYMHCYMAAAAAAADAYx1OSXBt/dREl9YHAKC0xj1y+e1czl9IUpsOjzvMrfv+JdWsEezq1gCgUiIM4kSHDh1yGDdt2rTUNQpeU7CmK508eVIHDx5UbGysDMNQjRo1VLt2bXXo0EE2m61MNY8fP66srCyHudJ+LoZhqHHjxtq7d699riI/FwAAAAAAAKCiZeblurR+Rm6OS+sDAAAAsBZhECcquAJGw4YNS12jQYMGDuMzZ84oNTVVgYGB5ertSjp37qwLFy4Ueczf31/du3fX6NGjdc8998jHp+T/2BT8TKSyfy6XhkEOHz5c6hoAAAAAAABAZeHn5a0MFwZCqnjzo2EAAADAk/E3fieKj493GIeHh5e6Rp06dYqs6+owSHFBEElKT0/X2rVrtXbtWj333HOaM2eOevfuXaK6cXFxDmObzabq1auXur+Cn0vBzxruYcb7KzRj1opij2dV8ZImtXKYG3LXq/LNyLts3XEPX35pOAAAAAAAAE/Tqmo17Ukq/md25a4fGOKy2gAAAACs55ZhkFOnTmndunXatWuXzp8/rwsXLig9PV2GYWjNmjVWt1ek9PR05eY6JvUDAgJKXcff37/QXEpKSpn7craTJ0/qpptu0r///W8988wzVzy/YO9l+Uykwp+LO30m+ENySrrORhcf1MmrWviPnNjzifJKufyypMkp6eXuDQAAAAAAoDKJrFbTpWGQyGq1XFYbAAAAgPXcKgyycOFCvfrqq9q1a1ehY6ZpyjCMy17//PPPO2wlcu+992rYsGFO77MoqampheaqVKlS6jpFhUGKqu0M3t7euu666zRgwABFRkaqTZs2Cg0Nlc1mU1xcnA4dOqQffvhBH3zwgc6ePWu/Li8vT5MmTVKNGjU0evToy96jYO9l+Uykwp9LWT+T06dPX/b4pc+J0guq6q864aHFHs8J8FZcgbnaYdXkU/XyS54GVS387wUAAO4qKy9XS6JPavHZk4WO9d74rbqGhql/WAMNDm8sXy/vim8QAAAAlUL/sAaaE+W6rZL7hdV3WW0AAAAA1nOLMMiZM2d09913a+vWrZIuBj8udaUQSL527drplVdesZ9//PjxCguDpKcXXrnA19e31HX8/PxKVLu8nnnmGQ0ePFj16tUr8nh4eLjCw8N144036rnnntM//vEPvfHGGw7/3YwdO1Y9e/ZUq1atiqxRVO9l+Uykwp9LWT+TBg0alOk6lMy4Ry6/nUtsZrrCVs5zmPvx+3+plh9hDwBA5Zedl6vpx/Zp2vG9OpdZ9N9V9ifHa39yvOZEHVa4X4AmNG2vCc3ay0YoBAAAAAUMDm+scL8ARWemOb12uF+AhoQ3dnpdAAAAAO7Dy+oGtm/froiICG3dutUeNDAMw+FVUvfcc48aN24s6WKg5ODBg9q5c6cr2i6kqBUvsrKySl0nMzOzRLXL669//WuxQZCCfH199dprr+mdd95xmM/JydFzzz132WsL9l6Wz0Qq/Lm44jMBAAAoq/1Jceq2frEmHdxSbBCkoOjMNE06uEXd1i/W/qSCa2cBAADgaufr5a0JTdu7pPaEpgSSAQAAAE9naRjkzJkzuv322xUbG2vfBsY0TZmmqZCQEHXo0EEBAQElrufl5aVhw4Y5rF6xdOlSV7ReSNWqVQvNZWRklLpOUSteFFXbCo899pjuvPNOh7lFixbp3LlzxV5TsPeyfCZS4c+lrJ/JqVOnLvvKX50GAACgpDbGRavHz0u0M/F8ma7fmXhePX5eoo1x0U7uDAAAAJXdhGbtFRFS06k1I0NqamKzDk6tCQAAAMD9WBoGefDBBxUdHW1fAcQ0Td18881av369Lly4oF27dql58+alqjl06FBJf2wt8/333zu976L4+/vL29sxTZ+WVvolHN05DCJJL7zwgsPYNE2tWrWq2PML9l7W7V2cFQapX7/+ZV916tQpU10AAHB12p8UpwGblyspp2yrn+VLysnSgM3LdSA53kmdAQAAwBPYvLw1r1NvBfuUbevlgkJ8fDUvoo98vCxfMBoAAACAi1n2t/7Vq1frxx9/tIdAJGny5MlauXKlrrvuulJtD3OpDh062L/QN01TW7duVW5urtP6vpxq1ao5jKOjS//bnWfPnr1iXSt16NBBDRs2dJi73GoaoaGhDuOsrCzFxZV+GfSCn0vBugAAABUtOy9XD+36odxBkHxJOVn68861ys6rmL+7AgAAoHK4Jri6lncbUO5ASIiPr77rNkBtg/i5GgAAAHA1sCwMMm3aNEmybw/z4IMP6p///KdTakdGRtoDJtnZ2Tp69KhT6l5Jy5YtHcZRUVGlrnHq1CmHcd26dd1qZRBJatu2rcM4Jiam2HMLfiaScz6XouoCAABUpOnH9pV5a5ji7Ew8r+nH9jm1JgAAACq/HtXDtanXkDJvGRMRUlMbew1Rj+rhTu4MAAAAgLuyJAySmZlpXxVEkvz8/PTGG284rX7Hjh0dxocPH3Za7ctp3bq1w/j48eOlrnHixInL1nQH1atXdxjHxxe/nHnTpk3l6+v4Wwul/VxM09TJkycd5tzxcwEAAFePrLxcTT/umtDG9OP7WB0EAAAAhbQNCtXmXkP0WpuuCvcLKNE14X4Beq1NV23uNYQVQQAAAICrjCVhkC1btigjI0OSZBiGBgwYoLCwMKfVDw93TLhfbuUKZyq4Ysbltk8pzubNmx3Gbdq0KVdPrpCQkOAwDgkJKfZcHx8ftWjRwmFuy5YtpbrfwYMHlZSU5DDnjp8LAAC4eiyJPqnozDSX1I7OTNPi6JMuqQ0AAIDKzeblrWdadFTUzQ/oy843aVi95oXOaRcUqtENW+vLzjcp6uYH9EyLjrJ5eVvQLQAAAAArWRIGKbjlR48ePZxav1q1apJkX3kkOTnZqfWL06dPH4fxuXPn9Ouvv5b4+rS0NO3evdthrm/fvs5ozakKbrtzpSBPwc9lw4YNpbpfwfOrV69eaPUXAACAirQi5tSVTyqHlTGnXVofAAAAlZvNy1tD6zbT9HaFf666tsdtmt3xBg2t24wQCAAAAHAVsyQMEhsbK+ni9h+SVKdOHafWL7gtSf4qJK4WERGhBg0aOMx98cUXJb5+0aJFys7Oto+rVKmiW265xWn9OcOvv/5aKAzSoUOHy14zePBgh/GmTZsKBYIup+BnOGjQIPn4+JT4egAAAGfbkXDexfVjXVofAAAAAAAAAODZLAmDZGZmOowLhjfKKy4uTtIfYZP8lUIqwpAhQxzGH374oXJyckp07axZsxzGN998swIDA53VmlO8/PLLheb69+9/2WtuuOEGVa9e3T7Oy8vTBx98UKL7/frrr1q7dq3DXMHPGAAAoKIdTklwbf3URJfWBwAAAAAAAAB4NkvCIDVr1nQYx8fHO7X+6dOOy2rXqFHDqfUvZ8KECbLZbPbxiRMnNHXq1Ctet2DBAq1fv95hbtKkSVe8zjAMh9eIESMue35+QKYsFixYoI8//thh7sYbb1SjRo0ue52Pj48mTJjgMDd16lSdOHHiivd87LHHHHpu1apVoZVGAAAAKlpmXq5L62fklixMDAAAAAAAAABAUSwJg4SFhUm6GGSQpMOHDzu1fsFQhbO3obmcJk2aaPTo0Q5zkydP1rJly4q9ZuvWrXr00Ucd5gYMGKDrrrvO6f399NNPGjhwYKHP6ErefvttPfTQQw7BDMMw9Prrr5fo+vHjx6tWrVr2cVpamu6++277lkFFef7557Vy5UqHuRdffFHe3ux1CgAArOXn4r3Xq3izJR4AAAAAAAAAoOwsCYO0atXKYbxhwwan1T537pw2bdpkD5r4+Pjo2muvdVr9kpgyZYrCw8Pt44yMDA0ZMkQTJkzQ0aNH7YGKqKgovfDCC+rTp499axtJCgwM1LRp01zSm2maWr58ua6//no1a9ZMkyZN0jfffKOoqCjl5eU5nHfkyBHNnDlT7du31/jx45Wdne1Q64UXXijxZ1u1alW9+eabDnM7d+5Uly5dNGfOHCUkJEiSsrKytGHDBt12222FtqS56aabNHTo0DI8NQAAgHO1qlrNtfUDQ1xaHwAAAAAAAADg2Sz5lcOWLVuqUaNGioqKkmma2rp1q44cOaKWLVuWu/b06dOVlZVl3zbl2muvlb+/vxO6LrmwsDAtWrRIN998s1JTUyVJOTk5euutt/TWW2/Jz89PXl5eSk9PL3Stt7e35s+fr9atW7u8z+PHjzus7GEYhqpWrSqbzaaEhASHcEhB48eP1wsvvFCq+z300EPavXu3pk+fbp87efKkRo8erdGjRys4OFgpKSlF3rdVq1b67LPP7CEfAAAAK0VWq6k9SRdcWL/WlU8CAAAAAAAAAKAYlqwMIkn9+/eXaZr2L/efeeaZctfctGmTpk+fLsMw7KtvDB48uNx1y6J79+5au3at6tevX+hYZmZmkUGQ0NBQLVmyRHfccUdFtFiIaZpKTk5WXFxcsUGQWrVqadGiRQ6BjtKYNm2aXnrppSK3eklKSiryvr169dKPP/7osM0MAACAlfqHNXBp/X5hhf8OCQAAAAAAAABASVkWBpk4caI9EGCapr799ltNnTq1zPW2bdumO++802Erk5CQEI0dO7bcvZZVly5ddODAAT3//POXDTIEBwfr8ccf16FDhzRo0CCX9tSxY0e99957uueee9SgQcm+xLDZbOrevbtmz56t3377rdxhleeff17bt2/XkCFD5ONT/OI0bdu21Ycffqh169apdu3a5bonAACAMw0Ob6xwvwCX1A73C9CQ8MYuqQ0AAAAAAAAAuDpYsk2MJLVo0ULDhw/XnDlz7Ct5PPPMM/rtt9/073//W4GBgSWqEx8fr7fffluvvfaaMjMz7bUMw9ATTzyhoKAgFz/J5QUFBemll17S5MmTtWPHDu3du1exsbEyTVM1atRQ27Zt1bVrV/n6+papfv4KKCVVrVo1jRs3TuPGjZMkxcXF6dChQzp16pTOnTun1NRU5eXlKTg4WKGhoWrSpIkiIyNVpUqVMvVXnI4dO+rrr79WQkKCNm7cqKNHjyo5OVm+vr6qX7++IiMj1apVK6feEwAAwFl8vbw1oWl7TTq4xem1JzRtL5tX4VXUAAAAAAAAAAAoKcvCIJL0+uuv68cff9Tx48ftIY53331X8+fP17333qsePXooJSXFIfCwevVqXbhwQb/99pt++ukn/fTTT0pLS3PYcsYwDHXt2lXPP/+8VY9WiLe3t7p06aIuXbpY3YqD6tWrq0ePHpbdv1q1aho4cKBl9wcAACirCc3a64vfj2ln4nmn1YwMqamJzTo4rR4AAAAAAAAA4OpkaRikevXqWrZsmbp3766EhAR7ICQxMVEffPCBPvjgA4fzTdNU//79C81JsgdBTNNUeHi4vvrqq8tuQQIAAACUh83LW/M69VaPn5coKSer3PVCfHw1L6KPfLws28kRAAAAAAAAAOAhLP9Jc8uWLbV+/Xq1bt3avrpHfigk/3WpS+cvPT//WPv27bVp0ybVq1fPiscBAADAVeSa4Opa3m2Agn3KtuVfvhAfX33XbYDaBoU6qTMAAAAAAAAAwNXM8jCIJLVt21bbtm3T2LFjZbPZHEIeV3pJF0Mg3t7eGjNmjDZu3KhGjRpZ/EQAAAC4WvSoHq5NvYYoIqRmma6PCKmpjb2GqEf1cCd3BgAAAAAAAAC4WrlFGESSAgIC9N577+n48eOaOHGiGjZsWGgVkKJetWrV0l/+8hcdOnRI77//vgIDA61+FAAAAFxl2gaFanOvIXqtTVeF+wWU6JpwvwC91qarNvcawoogAAAAAAAAAACn8rG6gYLq1q2rN998U2+++aaioqK0YcMGnT59WhcuXFB8fLz8/f1Vs2ZN1a5dW127dlWHDh2sbhkAAACQzctbz7ToqAnN2mtx9EktOXtSn5751eGcdkGh6hpaW/3C6mtIeGPZvLwt6hYAAAAAAAAA4MncLgxyqYYNG6phw4ZWtwEAAACUmM3LW0PrNtONNeoWCoOs7XGbavn5W9QZAAAAAAAAAOBq4TbbxAAAAAAAAAAAAAAAAKD8CIMAAAAAAAAAAAAAAAB4EMvCIHl5eVbdGgAAAAAAAAAAAAAAwGNZFgZp0KCBnn32WR05csSqFgAAAAAAHiIrL1df/X5M43/ZWOhY743favTudfrq92PKysu1oDsAAAAAAACgYlkWBjl79qxee+01tWnTRtddd53mzJmjlJQUq9oBAAAAAFRC2Xm5ev3objVc/anu2f69Pjvza6Fz9ifHa07UYd2z/Xs1Wv2ZXj+6W9mEQgAAAAAAAODBLAuD5DNNU5s3b9aYMWMUHh6uESNG6Mcff7S6LQAAAACAm9ufFKdu6xdr0sEtOpeZXqJrojPTNOngFnVbv1j7k+Jc3CEAAAAAAABgDcvDIIZhyDRNmaaptLQ0zZ8/X3369FGzZs30r3/9S6dOnbK6RQAAAACAm9kYF60ePy/RzsTzZbp+Z+J59fh5iTbGRTu5MwAAAAAAAMB6loVBWrVqZQ+BGIZhf+XPnThxQi+88IKaNGmiW265RQsWLFBmZqZV7QIAAAAA3MT+pDgN2LxcSTlZ5aqTlJOlAZuX60ByvJM6AwAAAAAAANyDZWGQgwcPauPGjfrLX/6i4ODgYoMheXl5WrNmjYYNG6Y6dero0Ucf1bZt26xqGwAAAABgoey8XD2064dyB0HyJeVk6c871yo7L9cp9QAAAAAAAAB3YOk2Md26ddOsWbN09uxZzZ8/XzfddJM9BCKp0GohCQkJmjlzprp166b27dtr+vTpio2NtfIRAAAAAAAVaPqxfWXeGqY4OxPPa/qxfU6tCQAAAAAAAFjJ0jBIvipVqmjYsGFatWqVTpw4oSlTpqhp06aX3UZm//79euqpp1S/fn3dcccd+uabb5Sby29yAQAAAICnysrL1fTjrgltTD++j9VBAAAAcFlZebn66vdjGv/LxkLHem/8VqN3r9NXvx9TFn+vBAAAbsAtwiCXatCggf7xj3/o6NGj+vHHHzVixAgFBgYWGwzJzs7WN998ozvuuEP169fXM888owMHDlj9GAAAAAAAJ1sSfVLRmWkuqR2dmabF0SddUhsAAACVW3Zerl4/ulsNV3+qe7Z/r8/O/FronP3J8ZoTdVj3bP9ejVZ/pteP7iZsDAAALOV2YZBL9erVS3PmzFF0dLTmzp2rG264QZKK3Ubm3Llzmjp1qtq3b6+uXbtq1qxZSkpKsvIRAAAAAABOsiLmlEvrr4w57dL6AAAAqHz2J8Wp2/rFmnRwi85lppfomujMNE06uEXd1i/W/qQ4F3cIAABQNLcOg+QLCAjQ8OHD9cMPP+jXX3/VP/7xDzVs2PCy28hs375d48aNU926da1uHwAAAADgBDsSzru4fqxL6wMAAKBy2RgXrR4/L9HOxLL9PXRn4nn1+HmJNsZFO7kzAACAK6sUYZBLNWnSRFOmTNGJEye0Zs0aDRs2TP7+/oWCIdLFFUTS00uW1AUAAAAAuLfDKQmurZ+a6NL6AAAAqDz2J8VpwOblSsrJKledpJwsDdi8XAeS453UGQAAQMlUujDIpXr37q358+crOjpas2bNUo8ePexbyAAAAAAAPEumi/dcz8jNcWl9AAAAVA7Zebl6aNcP5Q6C5EvKydKfd65Vtov/PgsAAHApH6sbcIaqVavqz3/+s/z9/RUfH6+DBw/aVwcBAAAAAHgGPy9vZbjwB+hVvD3i/yIDAACgnKYf21fmrWGKszPxvKYf26dnWnR0al0AAMpr2rG9mnZsr9PrTmzWQRObdXB6XZRcpf9J1+bNm/XRRx/piy++UFJSktXtAAAAAABcpFXVatqTdMF19QNDXFYbAAAAlUNWXq6mH9/nktrTj+/ThGbtZfPydkl9AADKIik7S2cyUl1SF9aqlGGQs2fPat68efr44491+PBhSXLYHoZVQQAAAADA80RWq+nSMEhktVouqw0AAIDKYUn0SUVnprmkdnRmmhZHn9TQus1cUh8AgLIItvmqXpXAYo/nmabOFvjfxjp+AfK6wnfywTZfp/SHsqs0YZDs7GwtXrxYc+fO1erVq5WXl1dsACR/vn379ho5cmSF9woAAAAAcL7+YQ00J+qwy+r3C6vvstoAAACoHFbEnHJp/ZUxpwmDAADcypW2c4nNTFfYynkOc3tuvFu1/Pxd3RrKye3DIDt27NDcuXO1YMECxcfHS/oj7FFUACQ0NFT333+/Ro0apYiIiIpvGAAAAADgEoPDGyvcL8Alv6kZ7hegIeGNnV4XAAAAlcuOhPMurh/r0voAAAD53DIMEhMTo08++UQfffSR9u/fL6n4bWBM05SXl5duvvlmjRo1SkOGDJGvL0vOAAAAAICn8fXy1oSm7TXp4Ban157QlL3bAQAAIB1OSXBt/dREl9YHAADI5zZhkNzcXH377beaO3euVqxYoZycnCtuA9OsWTONHDlSDz30kOrXZzlfAAAAAPB0E5q11xe/H9POROf9xmZkSM3LLocKAACAq0dmXq5L62fk5ri0PgAAQD7LwyB79uzRRx99pM8++0znz1/8Yd7ltoEJDAzU0KFDNXLkSPXq1aviGwZQrGnH9mrasb3FHs+7JOCV70/rFsrrkn/Xi3KlvcoAAABw9bB5eWtep97q8fMSJeVklbteiI+v5kX0kY+XlxO6AwAAQGXn5+WtDBcGQqp4W/61DAAAuEpY9reOd955Rx999JH27Nkj6fLbwEhSz549NXLkSN1zzz0KDAys2GYBlEhSdpbOZKSW6pqzJdjvPSm7/D/kBwAAgOe4Jri6lncboAGbl5crEBLi46vvug1Q26BQJ3YHAACAyqxV1Wrak3TBdfUDQ1xWGwAA4FKWhUHGjx8vwzAuuwpIvXr19NBDD2nkyJFq3ry5JX0CKLlgm6/qVXF+WCvY5uv0mgAAAKjcelQP16ZeQ/TnnWvLtGVMREhNzY/oQxAEAAAADiKr1XRpGCSyWi2X1QYAALiU5euR5YdA8gMgfn5+uv322zVy5Ejdcsst8mKpXqDSYDsXAAAAVKS2QaHa3GuIph/bp+nH9ym6BKvOhfsFaELT9prQrL1sXt4V0CUAAAAqk/5hDTQn6rDL6vcLq++y2gAAAJeyPAySHwLp1KmTRo4cqWHDhik0lN/MAgAAAABcmc3LW8+06KgJzdprcfRJLTl7Up+e+dXhnHZBoeoaWlv9wuprSHhjQiAAAAAo1uDwxgr3CyhR0Li0wv0CNCS8sdPrAgAAFMXSMEj16tU1bNgwjRo1Sh06sJoAAAAAAKBsbF7eGlq3mW6sUbdQGGRtj9tUy8/fos4AAABQmfh6eWtC0/aadHCL02tPaMrqdAAAoOJYFgZZuHChbrvtNtlsNqtaAAAAAAAAAAAAcDChWXt98fsx7Uw877SakSE12WIbAABUKC+rbnznnXcSBAEAAAAAAAAAAG7F5uWteZ16K9jH1yn1Qnx8NS+ij3y8LPtKBgAAXIX4mwcAAAAAAAAAAMAlrgmuruXdBpQ7EBLi46vvug1Q26BQJ3UGAABQMoRBAAAAAAAAAAAACuhRPVybeg1RREjNMl0fEVJTG3sNUY/q4U7uDAAA4Mp8rG7gSrKzsxUfH6+4uDglJycrKChI1atXV/Xq1eXj4/btAwAAAAAAAACASqptUKg29xqi6cf2afrxfYrOTLviNeF+AZrQtL0mNGsvm5d3BXQJAABQmNulKUzT1JIlS7R69Wpt2LBB+/fvV15eXqHzvLy81K5dO/Xo0UO33HKLbr/9dhmGYUHHAAAAAAAAAADAU9m8vPVMi46a0Ky9Fkef1JKzJ/XpmV8dzmkXFKquobXVL6y+hoQ3JgQCAAAs5zZhkLy8PL399tt65513FBUVJeliMKQ4ubm52rNnj/bu3auZM2eqUaNGGj9+vB577DF5ebH7DQAAAAAAAAAAcB6bl7eG1m2mG2vULRQGWdvjNtXy87eoMwAAgMLcIjVx4sQJXXfddXrqqaf022+/yTRNexDEMIxiX5Ls5548eVITJkxQz549deLECSsfBwAAAAAAAAAAAAAAwDKWh0H27dunyMhIbd26VaZpFgp85Ic9inoVde7mzZvVuXNn/fLLL1Y/GgAAAAAAAAAAAAAAQIWzdJuYU6dOacCAAUpISCi02ock+fn5qUOHDmrbtq1CQ0MVGBio1NRUJSQk6MCBA9q7d68yMjIkySEQEh8fr4EDB2rjxo2qX7++Zc8HAAAAAAAAAAAAAABQ0SwNg4wbN06///67PQQiXQyC3HjjjfrrX/+qwYMHy2azFXt9dna2vvnmG82YMUNr1651CIScOXNGY8eO1dKlSyviUQAAAAAAAAAAAAAAANyCZdvE/Pjjj/ruu+8cVgMJCgrSggULtHbtWt19992XDYJIks1m01133aXvv/9eX375pYKDgyXJHghZvny5fvrpJ5c/CwAAAAAAAAAAAAAAgLuwLAzy9ttv29+bpqnQ0FCtWbNG99xzT5nq3X333Vq7dq2qVatW7H0AAAAAAAAAAAAAAAA8nSVhkJycHK1Zs8a+godhGJo2bZoiIyPLVbdTp06aPn26vaZpmvr++++Vk5PjpM4BAAAAAAAAAAAAAADcmyVhkK1btyo5Odk+bt68uYYPH+6U2g899JBatGhhH6ekpGjr1q1OqQ0AAAAAAAAAAAAAAODuLAmDnDp1yv7eMAzdcccdTq1/5513yjRN+zgqKsqp9QEAAAAAAAAAAAAAANyVJWGQmJgYSbIHNi5dycMZmjdv7jCOjY11an0AAAAAAAAAAAAAAAB3ZUkYJDU11WEcHBzs1Pr59QzDKPJ+AAAAAAAAAAAAAAAAnsqSMEiNGjUcxtHR0U6tf+7cOUl/rDxS8H4AAAAAAAAAAAAAAACeypIwSFhYmKQ/Vu7YunWrU+tv27bNYVyrVi2n1gcAAAAAAAAAAAAAAHBXloRB2rZta39vmqa+/fZbJScnO6V2cnKyvvnmG3vQRJKuueYap9QGAAAAAAAAAAAAAABwd5aEQVq0aKHGjRvbx8nJyXrmmWecUvv//u//lJiYaB83btxYLVq0cEptAAAAAAAAAAAAAAAAd2dJGESSbr/9dpmmKcMwZJqmZs2apVdffbVcNd98802999579pqGYej22293UscAAAAAAAAAAAAAAADuz7IwyKRJkxQQECBJ9vDGc889p3vuuUdnz54tVa3o6Gjdd999mjRpksO8v7+/01YcAQAAAAAAAAAAAAAAqAwsC4PUqVNHEydOlGmakv4IhPzvf/9T06ZNde+99+qrr77SiRMnirz+xIkT+uqrr3TvvfeqadOm+uqrrxxWGjEMQ08++aTq1KlTkY8FAAAAAAAAAAAAAABgKR8rbz558mTt3r1bS5culWEY9iBHZmamFi5cqIULF0qSfH19FRISosDAQKWmpioxMVFZWVn2OpcGSvL/89Zbb9XkyZMr/JkAAAAAAAAAAAAAAACsZNnKIJLk5eWlL774Qn379nUIdOSHQvJfmZmZiomJ0YkTJxQTE6PMzEyH4/nXSBeDIX379tUXX3xhnwMAAAAAAAAAAAAAALhaWBoGkSR/f3+tWrVKr7zyinx8fAqFQkryki6GQHx8fPTaa69p5cqVqlKlipWPBQAAAAAAAAAAAAAAYAnLwyDSxeDH3//+dx05ckQTJ05USEiIw8of+S9JRc6HhIToqaee0tGjR/X000+zIggAAAAAAAAAAAAAALhq+VjdwKUaNWqkN998Uy+//LK2bdumDRs2aOfOnTp//rzi4+OVnJysoKAghYaGqlatWoqIiFCPHj3UpUsX+fr6Wt0+AAAAAAAAAAAAAACA5dwqDJLPz89PPXv2VM+ePa1uBQAAAAAAAAAAAAAAoFJxi21iAAAAAAAAAAAAAAAA4ByEQQAAAAAAAAAAAAAAADwIYRAAAAAAAAAAAAAAAAAPQhgEAAAAAAAAAAAAAADAg/hY3UBxcnNztXv3bu3YsUMxMTFKSEhQcnKygoKCVK1aNYWFhSkyMlIdO3aUt7e31e0CAAAAAAAAgFNNO7ZX047tLfZ4nmkWmvvTuoXyMozL1p3YrIMmNutQ7v4AAAAAuC+3C4N89913mjlzptasWaOMjIwrnl+lShX17dtX48aN04ABAyqgQwAAAAAAAABwvaTsLJ3JSC3VNWcz00pUFwAAAIBnc5swyE8//aSHH35YR48elSSZRaTai5Kenq5ly5Zp2bJlatGihWbNmqXrr7/ela0CAAAAAAAAgMsF23xVr0qgS+oCAAAA8GxuEQaZMGGC/vOf/ygvL88+Z1xhKcNL5QdHjhw5oj59+uiJJ57QtGnTnN4nAAAAAAAAAFQUtnMBAAAAUFaWhkFM09TIkSM1f/58maZZKABSktVBDMNwuC4vL09vv/224uLiNHfu3FKFSgAAAAAAAAAAAAAAACo7S8Mgzz//vObNm1co0GGapurXr6/BgwcrIiJCrVu3VkhIiAIDA5WamqrExEQdPnxYO3bs0JIlS3T69Gn79YZhyDRNzZ8/X/Xq1dPLL79s1eMBAAAAAAAAAAAAAABUOMvCIPv27dMbb7xRKATSsmVLTZ06VQMHDrzsqh7du3fXiBEj9M477+i7777T008/rUOHDtmDJaZp6s0339R9992n9u3bV8QjAQAAAAAAAAAAAAAAWM7Lqhu/+OKLysnJkfTHdjD333+/9u3bp0GDBpV4exfDMDRo0CDt3btXDz74oMPWMjk5OXrppZec3zwAAAAAAAAAAAAAAICbsiQMkpqaqu+++86+godhGLr11lv16aefymazlammj4+P5s2bp9tvv91e0zRNLVu2TKmpqU5+AgAAAAAAAAAAAAAAAPdkSRhkw4YNSk9Pt4+rVKmi999/3ym1Z86cKX9/f/s4IyNDGzZscEptAAAAAAAAAAAAAAAAd2dJGOT06dP294ZhaODAgQoPD3dK7fDwcA0aNMhhu5hL7wcAAAAAAAAAAAAAAODJLAmDxMTESJI9sNGrVy+n1u/Zs2eR9wMAAAAAAAAAAAAAAPB0loRBfH19HcbOWhWkYD3DMCRJNpvNqfUBAAAAAAAAAAAAAADclSVhkDp16jiMU1JSnFo/v17+yiN169Z1an0AAAAAAAAAAAAAAAB3ZUkYpGPHjpL+WLnj2LFjTq1fsN6f/vQnp9YHAAAAAAAAAAAAAABwV5aEQdq0aaMmTZpIurh6x6JFi5xa/+uvv7YHTRo2bKi2bds6tT4AAAAAAAAAAAAAAIC7siQMIkmPPfaYfRuXI0eO6JNPPnFK3U8//VSHDh2SdHHlkccee8wpdQEAAAAAAAAAAAAAACoDS8Mgbdu2lWEYMk1Tf/vb37Rz585y1dy1a5eeeOIJ+6ogbdq00RNPPOGMdgEAAAAAAAAAAAAAACoFy8IgNptNS5YsUa1atSRJ8fHx6tOnT5lXCPn000/Vp08fJSQkyDRNhYWFafHixbLZbM5sGwAAAAAAAAAAAAAAwK1ZFgaRpGbNmmnz5s3q2LGjJCkpKUnDhw9X165dNXv2bMXGxl72+vPnz2v27Nnq1q2bHnroISUmJso0TXXs2FGbN29W8+bNK+ApAAAAAAAAAAAAAAAA3IePM4uNGjWqTNe1bdtWhw4dUmZmpkzT1LZt27R9+3Y98sgjqlevnlq1aqWQkBAFBgYqNTVViYmJOnLkiE6fPi1JMk3TXsvf31/XXHONpkyZIkkyDEMffvhh+R8OAAAAAAAAAAAAAACgEnBqGOSjjz6SYRjlqmEYhkzTtAc8Tp8+rTNnzhQ679IASP51kpSRkaHPPvvMfg5hEAAAAAAAAAAAAAAAcDVxahgkX8GgRklcGiIpGCgpqt7lQidluT8AAAAAAAAAAAAAAIAncEkYpLyrg5S3Xv75hEIAAAAAAAAAAAAAAMDVxqlhkIYNGzo9CAIAAAAAAAAAAAAAAICSc2oY5OTJk84sBwAAALitacf2atqxvcUezytilbo/rVsoryuEpyc266CJzTqUuz8AAAAAAAAAwNXLJdvEAAAAAJ4uKTtLZzJSS3XN2cy0EtUFAAAAAAAAAKA8CIMAAAAAZRBs81W9KoEuqQsAAAAAAAAAQHkQBgEAAADKgO1cAAAAAAAAAADuysvqBgAAAAAAAAAAAAAAAOA8rAwCAAAAAAAAAAAAwC1lZeVo+cqd+m7ljkLH7hj6qiI6NVOfG9trQL8I+fry1ScA5ONPRAAAAAAAAAAAAABuJTs7RzM/WKkZs1YqNjaxyHMOHT6jQ4fP6LMFPyksLERjx/TT2DH9ZLPxFSgAsE0MAAAAAAAAAAAAALdx6PBp9b/tRb348pfFBkEKiolJ1Isvf6n+t72oQ4dPu7hDAHB/bh+LS0tLU2JiorKzs8tco2HDhk7sCAAAAAAAAAAAAIArbN12VPf9eaqSk9PLdP3efb9p4OB/acH8J9Xl2hZO7g4AKg+3CoMkJibq888/188//6zNmzfr1KlTysnJKVdNwzDKXQMAAAAAAAAAAACAax06fLpcQZB8ycnpuu/PU7X8m3+oVct6TuoOACoXtwiDpKSk6Nlnn9VHH32k1NRUSZJpmhZ3BQAAAAAAAAAAAKAiZGfn6NG/zSp3ECRfcnK6/vrE+1rx7T9ls7nFV6IAUKG8rG5g3759ioyM1LvvvquUlBR7CMQwjHK/AAAAAAAAAAAAALi/mR+s1N59vzm15t59v2nmByudWhMAKgtLwyBnzpzRLbfcoqNHj8o0TXuIwzTNEr0KutJxAAAAAAAAAAAAAO4lKyvHZaGNmR+sVHZ2jktqA4A7s3RNpHvvvVfnzp2zr+JhmqYaNGigoUOHqkWLFnrllVd0+vRpe1Bkzpw5Sk9PV1xcnI4fP65Nmzbp4MGDkmSvERISoueff141a9a07LkAAAAAAAAAAAAAlMzylTsVE5PoktoxMYn6bsVODb6ti0vqA4C7siwMsnr1am3cuNG+EohhGBo1apTeffdd+fn5SZJmzpyp06dP268ZPnx4oTq//PKLpk6dqnnz5skwDCUmJmrq1KlatmyZOnXqVGHPAwAAAAAAAAAAAKD01q7b59L6P/y4jzAIgKuOZdvEvPXWW/b3hmHo5ptv1uzZs+1BkJJq166d5s6dq5UrV6pGjRoyDEPR0dHq27evDh065OSuAQAAAAAAAAAAADjTnr0nK3V9AHBHloRBcnNz9eOPP9pXBZGk6dOnl6vmTTfdpBUrVigoKEiGYSghIUF33XWXcnLYAwwAAAAAAAAAAABwV8eOn3Vt/WPRLq0PAO7IkjDIzp07lZaWZh9HRkaqTZs25a4bERGhl19+2b7tzKFDhzRr1qxy1wUAAAAAAAAAAADgGpmZrv3l7ozMbJfWBwB3ZEkY5NixY/b3hmGoZ8+eJbquJKt8jBs3TnXr1pUkmaap9957r2xNAgAAAAAAAAAAAHA5Pz8fl9av4mdzaX0AcEeWhEHi4+Mlyb5FTOvWrYs8zzAMh3FGRsYVa3t5eWnw4MH22gcPHlRUVFR52gUAAAAAAAAAAADgIs2a1nFt/WbhLq0PAO7IkjBIQkKCwzgkJKTI8wIDA+2hDklKTU0tUf127do5jHfv3l2q/gAAAAAAAAAAAABUjD91aFyp6wOAO7IkDOLr6+sw9vEpeumnoKAgh/Hp06dLVL9WrVoO499++60U3QEAAAAAAAAAAACoKH1ubO/S+r1vcG19AHBHrt2AqxjBwcEO4+Tk5CLPCw0NdRifPHlSkZGRV6yfnp4u6Y9tZoqrX5Hy8vK0Y8cO7du3TzExMTJNUzVq1FDbtm3VtWtX2WzW7lX222+/af/+/YqKilJCQoK8vLwUGhqqunXrqkuXLoUCNgAAAAAAAAAAAIAzDOgXobCwEMXEJDq9dlhYiAb2j3B6XQBwd5aEQRo2bCjpj7BGfHx8kee1adPG4bxNmzbprrvuumL9AwcOSJJM05RhGPL39y93z2WVkpKiN954QzNnzlRMTEyR54SEhGjEiBF67rnnKix0ERMTo8WLF+v777/XDz/8oPPnz1/2/GuuuUZjx47ViBEjVLVq1VLfb/LkyZoyZUpZ25Uk3XDDDVq3bl25agAAAAAAAAAAAMC9+Pr6aOyYfnrx5S+dXnvsmH6y2Sz5ShQALGXJNjGtW7d2GB8+fLjI89q3/2PJJtM0tXTp0hLV//rrr+0BEkmqWbNmGbosv+3bt+uaa67Riy++WGwQRJISExP19ttvq3Xr1lqxYoVLe4qNjdVNN92kunXr6pFHHtFXX311xSCIJO3fv1+PP/64WrdurdWrV7u0RwAAAAAAAAAAAFxdxo7ppw7tGzm15p86NNa4h/s7tSYAVBaWhEEaNWrksAVM/koeBfXq1cth+5SjR49qwYIFl609Y8YMHTlyxGGuY8eOZW+2jLZs2aLevXsrKiqq0DE/P78iVyuJi4vTbbfdpm+++cZlfV24cEFr1qxRbm5usecEBAQoJCSkyGNnzpxRv3799MEHH7iqRQAAAAAAAAAAAFxlbDYfvfv2wwoKcs6K/8HBAXr37Yfl4+PtlHoAUNlYtiZSr1697KGH7du3KzMzU35+fg7nVK9eXbfccouWLVsmwzBkmqYeeeQR+fv7a/DgwYVqzpw5U3/7298cVgUJDw93WGGkIsTGxuqOO+5QSkqKfc7Hx0ePPfaYxo0bp+bNm8swDEVFRenDDz/UtGnTlJqaKknKycnRsGHDtGPHDrVs2bJC+r3++us1cOBA9e7dW23btrVvA5Oamqr169frP//5j7777jv7+aZpauzYsapXr54GDhxYpnsOGjRIt956a6muqVu3bpnuBQAAAAAAAAAAAPc27dheTfttr/IebydN3yWl55S9mL+P0h+7Rn1P/qCJ3h00sVkH5zUKAJWEZWGQvn372sMgmZmZ+umnn3TzzTcXOm/8+PFatmyZJMkwDCUnJ+vOO+/UNddco169eql69eo6f/68vv/+ex0/flymadqDI4Zh6PHHH6/Q55KkyZMn6+zZs/axn5+fFi5cWCj80KhRI7344osaNGiQBgwYoPj4eElSSkqKJk6cWOJtccoiICBAjzzyiMaOHVts6CQwMFD9+/dX//79NXfuXI0ZM8a+okheXp4ee+wxHThwQFWqVCn1/Tt37qyxY8eW6xkAAAAAAAAAAADgGZKys3QmI1VqYJP30+0UNPeofE6llrpOToNAJY9sodw6NikjVUnZWS7oFgDcn2VhkDvvvFPjx4+3jxcsWFBkGKRv374aOnSovvrqKxmGYQ96/PLLL9q/f7/9PNM0Jcm+KohhGGrVqpWeeOIJ1z5IASdPntTs2bMd5qZMmXLZVTC6du2qd999Vw888IB9btmyZdq0aZO6d+/u1P5sNpseffRRPf/88woPDy/xdSNHjlR8fLyefPJJ+9yJEyf05Zdf6qGHHnJqjwAAAAAAwL3MeH+FZsxa4fS64x7ur3GPsIc7AAAApGCbr+pVCbw4aBIo8581lLsqSrmrfpMSSxDoCPGV9y2N5HtLQwX6eDnUBYCrkWVhkHr16qlHjx7asGGDJOnLL7/UW2+9paCgoELnzp49W1FRUdqyZYs9ECL9EQCR5LA1jGmaql27thYtWqSAgAAXP4mj6dOnKyvrj/9BatKkiUOAojj333+/3nvvPf3888/2uddee02LFy92an/NmjXTf//73zJd+7e//U3vvvuujh8/bp9bsmQJYRAAAAAAADxcckq6zkbHu6QuAAAAIEkTmxWxnctAKTs7R9+t2Kmvl2/Tkh375X0uXcrJk3y81LJpuLpENFfvG9prYP8I2WyWffUJAG7H0j8R169fX6LzgoKCtGrVKk2YMEFz584ttApIvvz566+/XvPnz1eDBg2c23AJFAxvjB49Wj4+JfuYH374YYcwyKpVq5SWllbhgZbieHt7a/DgwZo+fbp9bs+ePRZ2BAAAAAAAKkJQVX/VCQ8t9nhenqlzMQkOc7XDqsnLyyj6gkvqAgAAAJdjs/lo8G1d1Oraxvp4q+N3bnO63KHW4WEWdQYA7q3SxOOCgoI0e/ZsjR8/Xl988YVWr16tU6dO6fz58woMDFSdOnXUq1cv3XPPPerTp48lPe7atUtRUVEOc/fee2+Jr7/rrrs0atQo5eTkSJLS09O1atUqDRkyxJltlkuzZs0cxtHR0RZ1AgAAAAAAKsq4Ry6/ncv5C0lq0+Fxh7l137+kmjWCXd0aAAAAAAAoQqUJg+Rr166d2rVrp5deesnqVgpZu3atw7h27dpq3rx5ia8PCAhQx44dtX37dvvcmjVr3CoMcukWOFLh1VkAAAAAAAAAAAAAAIC1vKxuwJMcOHDAYdylS5dS1+jWrZvD+ODBg+Xqydl+/fVXh3F4eLhFnQAAAAAAAAAAAAAAgKJUupVB3NmhQ4ccxk2bNi11jYLXFKxppdzcXC1evNhhLjIyssz1kpOTtWvXLkVHRyslJUWhoaGqUaOGrrnmGtWoUaOc3QIAAAAAAAAAAAAAcHUiDOJER44ccRg3bNiw1DUaNGjgMD5z5v+xd9/xVdTZ/8ffNxUIJNQQegkoIL2LUhVpsgIK6tpQFkWx4frVXQui2F1QXAuiWBBcEQVRFNCVooD0Kr2FHgg1jfT5/eEvd5nctHszN3Pvzev5eOQhM3c+53MmyRk/Sc6dOaaUlBRFRESUKDcrfPfddzp+/Lhp3+DBgz2KNWXKFL344ovKzs52ec3hcKh58+a64YYb9PDDD3P3EQAAAABOk/dv1eT9Wwt8PccwXPa1Wfa1gop4xOVjsa31WGzrEucHAAAAAAAA+AKaQSx07tw507YnTQy1atXKN67dzSBpaWl68sknTftq1KihYcOGeRTv/PnzBb5mGIZ27NihHTt2aPLkyXr88cf1/PPPKzg42KO5AAAAAASOxMwMHUtLcWvMifTUYsUFAAAAAAAAAgXNIBa5ePGiy10uKlSo4Hac8uXLu+xLTk72OC+r/OMf/9DevXtN+yZMmJBvvlZKT0/XSy+9pOXLl2vBggWKiory6nwAAAAAfFtkaJjqlLO+WT4yNMzymAAAAAAAAIBdaAaxSEqK6zvTypUr53ac/Jor8otdmubOnaspU6aY9nXr1k1jxoxxO1bjxo01cOBA9ejRQy1btlStWrVUsWJFJSUl6dixY1q1apVmzZqlX3/91TRuxYoVGjZsmBYtWqTQ0FCPz+Xo0aOFvn7ixAmPYwMAAADwPh7nAgAAAAAAABSNZhCLXLx40WVfWJj77ywLDw8vVuzSsmXLFt11112mfVFRUfr8888VFBRU7DhXXnmlli1bpp49e+b7epUqVVSlShW1bNlS9957r3766SfdeeedOnnypPOYJUuWaOLEiXrhhRc8OxlJ9erV83gsAAAAAAAAAAAAAAD+oPh/zUeh8rsLSEaG+8+cTk9PL1bs0hAXF6eBAweaHlMTHBysWbNmqXHjxm7F6tevX4GNIPm57rrrtGrVKtWoUcO0f/LkyaYGEQAAAAAAAAAAAAAAYEYziEUqVqzosi8tLc3tOPndBSS/2N526tQpXXfddTp+/Lhp/7Rp0zRo0KBSyaFx48aaPn26aV9KSoo+++wzj2MeOXKk0I+1a9eWNG0AAAAAAAAAAAAAAGzFY2IsUr58eQUHBys7O9u5LzU11e04vtAMcuHCBfXr10979+417X/jjTd0zz33lGougwcPVrt27bRp0ybnvsWLF+uJJ57wKF7dunWtSg0AAAAAAAAAAAAAAJ/EnUEsVLlyZdN2fHy82zFOnDhRZFxvSk1N1aBBg7R582bT/qefflqPP/54qeVxqcGDB5u2uXsHAAAAAAAAAAAAAAAFoxnEQpdddplp+/Dhw27HOHLkiGm7du3apXZnkIyMDA0dOlQrV6407X/ooYf04osvlkoO+WnRooVpOzk5Od87qAAAAAAAAAAAAAAAAJpBLNWsWTPT9oEDB9yOcfDgwUJjekt2drZuueUW/fTTT6b9d911l6ZMmVIqORSkatWqLvvOnTtnQyYAAAAAAAAAAAAAAPg+mkEslPcOFp48zmT16tWm7ebNm5cop+IwDEMjR47UvHnzTPtvuukmTZ8+XQ6Hw+s5FOb8+fMu+6Kioko/EQAAAAAAAAAAAAAA/ADNIBbq06ePafvkyZPat29fscenpqZq8+bNpn3XXHONFakVauzYsZo5c6Zp34ABAzRr1iwFBwd7ff6i7N2717RdoUIFRURE2JQNAAAAAAAAAAAAAAC+jWYQC7Vv31716tUz7Zs9e3axx8+dO1eZmZnO7XLlyum6666zLL/8PPnkk3r//fdN+3r27KlvvvlGYWFhXp27uH788UfTduvWrW3KBAAAAAAAAAAAAAAA30cziMWGDBli2p4+fbqysrKKNXbatGmm7b59+3r1Dhgvv/yyXn/9ddO+Tp066fvvv1f58uW9Nq87li9frpUrV5r29e/f36ZsAAAAAAAAAAAAAADwfTSDWGzcuHEKDQ11bh88eFCTJk0qctyXX36p3377zbTvySefLHKcw+EwfYwcObJYeb777rt6+umnTftatWqlRYsWqVKlSsWKUVyGYXg07uTJky7nExoaqttuu82CrAAAAAAAAAAAAAAACEw0g1isUaNGGjVqlGnfhAkT9MMPPxQ4Zu3atRo7dqxp34ABA3TVVVd5JceZM2fqoYceMu1r2rSpfv75Z1WtWtXy+Xr37q333ntPFy9eLPaYzZs3q3v37oqLizPtv/fee9WkSROLMwQAAAAAAAAAAAAAIHCE2DXxv//9b911112KjIy0KwWvef755/Xtt98qPj5ekpSWlqYhQ4bowQcf1AMPPKAmTZrI4XDo8OHDmj59uiZNmqSUlBTn+IiICE2ePNkrua1atUp333236W4dDodDw4cP17x58zyK+Ze//EW1a9cu8PW4uDiNHTtWTzzxhK6//nr1799fbdu2VbNmzVSuXDnncWfPntXKlSs1a9Ysff3118rOzjbFadOmjV5++WWPcgQAAAAAAAAAAAAAoKywrRnkkUce0VNPPaVbb71VY8aMUfv27e1KxXLR0dGaO3eu+vbt62zyyMrK0ltvvaW33npL4eHhCgoKyvdOGcHBwfr888/VrFkzr+S2Z88eZWVlmfYZhlGiJotmzZoV2gySKyUlRbNnz9bs2bOd+8qVK6eKFSsqKSlJ6enpBY5t3ry5Fi5cGJDNQwAAAAAAAAAAAAAAWMnWx8SkpqZq+vTp6tSpk7p06aLPPvtMaWlpdqZkmSuvvFJLlixR3bp1XV5LT0/PtxGkSpUqmj9/voYOHVoaKfqEtLQ0nT59usBGkKCgII0dO1YbNmxQrVq1Sjk7AAAAAAAAAAAAAAD8j63NINKfd6UwDEPr1q3TPffcozp16uixxx7T7t277U6txDp37qwdO3bomWeeUY0aNQo8LjIyUg899JB27dqlQYMGlWKGpeP999/Xww8/rHbt2iksLKxYYxo0aKDHH39c+/bt0zvvvKPy5ct7OUsAAAAAAAAAAAAAAAKDbY+JyeVwOCT9rynk3LlzmjJliqZMmaJevXrpgQce0JAhQxQcHGxzpp6pVKmSJk6cqAkTJmjDhg3aunWrEhISZBiGqlWrphYtWqhLly7FbpLIyzAMt44fOXKkRo4c6dFcnhowYIAGDBggScrMzNSuXbsUFxen48ePKzExUWlpaapQoYKqVKmi6OhodezYUTExMaWaIwAAAAAAAAAAAAAAgcK2ZpC5c+dq6tSp+vnnn2UYhrMpRPpfg8OyZcu0bNky1axZU6NHj9bo0aPzfeyKPwgODlbnzp3VuXNnu1OxVWhoqFq1aqVWrVrZnQoAAAAAAAAAAAAAAAHJtsfEDBkyRIsWLdKePXv097//XdWqVXPeHcThcMjhcDi34+Pj9eKLL6pRo0YaMmSIFi9ebFfaAAAAAAAAAAAAAAAAPs22ZpBcsbGxeuONN3T06FHNmDFD3bp1c2kKyW0Myc7O1vfff6+BAwc6x50+fdruUwAAAAAAAAAAAAAAAPAZtjeD5AoLC9Ptt9+uFStWaMuWLRozZowqVqxY4N1CDh48qH/84x+qV6+e7rjjDq1cudLuUwAAAAAAAAAAAAAAALCdzzSDXKpVq1Z67733dPz4cb333ntq06ZNgXcLSU9P1xdffKEePXqodevWev/995WcnGz3KQAAAAAAAAAAAAAAANjCJ5tBckVERGjMmDHatGmTVq1apdtvv13h4eEyDEOSXO4W8scff+jBBx9U7dq1df/992vLli02nwEAAAAAAAAAAAAAAEDp8ulmkEt17dpVM2bM0NGjR/X6668rNjbW5W4hkmQYhpKTkzVt2jS1b99e3bp108yZM5WRkWHzGQAAAAAAAAAAAAAAAHif3zSD5Kpataoef/xx7dmzR4sXL9aQIUMUHByc7yNkDMPQmjVrdNddd6l27dp68skndfjwYbtPAQAAAAAAAAAAAAAAwGv8rhnkUn379tXcuXN16NAh3Xjjjc7Hx0iuj5A5e/as/vWvfyk2Nla33HKLdu/ebWPmAAAAAAAAAAAAAAAA3uHXzSCZmZmaNWuWRowYoblz5zqbPy6V924h2dnZmjNnjlq1aqVHHnlEFy9etCl7AAAAAAAAAAAAAAB8T0ZOtuYc369H/1jl8lrvVd9r1OZlmnN8vzJysm3IDsURYncCnjhw4IA++OADffLJJzpz5owkmR4Tk7stSaGhocrMzJQk02tZWVl65513tGTJEv3888+KiYmx4UwAAAAAAAAAAAAAAPANmTnZenP/Nk0+sFUn0/O/scL2pHPannROHx/erZjwChrXuJXGxbZSaFBwKWeLwvjNnUEMw9D8+fPVv39/XXbZZfrXv/6l06dPO5s+Lm30CAkJ0S233KIVK1bo7Nmzmjp1qtq3b+98ZMyldwrZvn27/vKXvygnJ8fO0wMAAAAAAAAAAAAAwDbbE8+q62/f6smdawpsBMkrPj1VT+5co66/favtiWe9nCHc4fPNICdOnNALL7ygBg0aaNiwYfr555+Vk5Pj0tRhGIZq1aql559/XocPH9YXX3yhbt26KSIiQvfee6/Wr1+vFStWaMCAAS4NJBs2bNCXX35p52kCAAAAAAAAAAAAAGCLVWfj1W3FfG28cNqj8RsvnFa3FfO16my8xZnBUz7bDPLLL7/opptuUsOGDfX888/r6NGj+d7ZwzAMde/eXbNnz9ahQ4f07LPPqmbNmvnG7Natm3744QfNnz9fFStWNL02e/bs0jgtAAAAAAAAAAAAAAB8xvbEsxqweqESszJKFCcxK0MDVi/UjqRzFmWGkvCpZpBz585p8uTJuvzyy3Xddddp3rx5yszMNDWA5DaBlC9fXqNHj9aWLVu0fPlyDR8+XMHBxXsG0eDBg/XGG2844xqGoY0bN3r57AAAAAAAAAAAAAAA8B2ZOdm6c9PSEjeC5ErMytAdG5coMyfbknjwXIjdCUjS6tWrNXXqVM2ZM0dpaWnOx7hI/3uUS+6+Jk2a6IEHHtDdd9+tqKgoj+e855579NBDDykrK0uSdPq0Z7e7AQAAAAAACHST92/V5P1bC3w9JydHZ1/uYNrXet23Cgoq/H1Ij8W21mOxrS3JEQAAAADgvjf3b/P40TAF2XjhtN7cv01PNG1raVy4x7ZmkJSUFM2aNUvvv/++tm7985cJuQ0fuQ0gufuCgoI0YMAAPfjgg+rfv78l84eEhKh+/fo6cOCAJCkjw5pOJwAAAAAAgECTmJmhY2kphR9UJdy0eSLjYrHiAgAAAADskZGTrTcPbPNK7DcPbNO42FYKDSre0z1gPduaQWrVqqWUlJRC7wJSpUoV3XPPPXrggQfUqFEjy3OoWLGi5TEBAAAAAAACTWRomOqUiyjw9azsbJ3MTDPtqxlaTiFFPNI3MjTMkvwAAAAAAO6bHx+n+PRUr8SOT0/Vt/FxGl471ivxUTTbmkGSk5PlcDhc7gIiSW3bttXYsWN12223qVy5cl7N49JmFAAAAAAAALgq6nEuu+JPqfnaeaZ9y9oNULOYaG+nBgAAAADw0KJTR7waf/GpozSD2Mi2ZpBLGYah0NBQ3XjjjRo7dqyuuuqqUpl3zJgxio+PL5W5AAAAAAAAAAAAAADwFRvOn/Zy/ASvxkfhbG0GMQxDtWrV0n333af77rtPNWvWLNX577vvvlKdDwAAAAAAAAAAAAAAX7A7+bx346dc8Gp8FM62ZpDu3btr7NixGjZsmEJCfOIGJQAAAAAAAAAAAAAAlAnpOdlejZ+WneXV+CicbV0Yy5cvt2tqAAAAAAAAAAAAAADKtPCgYKV5sSGkXDA3hbBTkN0JAAAAAAAAAAAAAACA0nV5xcrejR8R5dX4KBzNIAAAAAAAAAAAAAAAlDEdKlf3cvwaXo2PwtEMAgAAAAAAAAAAAABAGdM/up5X4/eLruvV+CgczSAAAAAAAAAAAAAAAJQxN8Q0VEx4Ba/EjgmvoCExDb0SG8VDMwgAAAAAAAAAAAAAAGVMWFCwxjVu5ZXY4xq3UmhQsFdio3hC7Jo4ONh7X/igoCBFRkYqKipKVatWVcuWLdW5c2f16NFDLVu29Nq8AAAAAAAAAAAAAAD4i3GxrTT7+H5tvHDaspgdoqrrsdjWlsWDZ2y7M4hhGF77yM7O1rlz5xQXF6eNGzfq888/10MPPaQ2bdqoW7du+vLLL+06bQAAAAAAAAAAAAAAfEJoULBmtOutyJAwS+JFhYRpRvs+CgniISV2s+3OIJLkcDhKZR7DMJz/Xr16tdasWaMZM2bo008/VXR0dKnkAAAAAAAAAAAAfN/k/Vs1ef/WAl/PueRvDrnaLPtaQUX8zeOx2Na8SxoA4JOuiKyqhV0HaMDqhUrMyvA4TlRImH7sOkAtKlWxMDt4ytZmECOfBVPeBpH8jsnvWHeOMwxDixYtUufOnbVmzRrVrFnTnbQBAAAAAAAAAECASszM0LG0FLfGnEhPLVZcAAB8VbeqMfq9+xDdsXGJR4+MaR9VXZ+370MjiA+xrRnkueeec/77woUL+uCDD5SWlibpf40d1apVU7t27dSoUSNFRUUpPDxciYmJOnPmjLZu3apdu3YpKytLDofD2fDRtWtXXXfddcrKytK5c+cUHx+vNWvW6NixY5L+1xhiGIYOHz6soUOHavny5QoNDS3N0wcAAAAAAAAAAD4oMjRMdcpFeCUuAAC+rEWlKlrdfYje3L9Nbx7YpvhiNDvGhFfQuMatNC62lUKDgkshSxSX7c0gGzZs0JAhQ5SWlibDMBQcHKy7775bo0aNUpcuXQqNkZiYqC+//FJvv/22duzYIYfDodWrV6tDhw566623FHTJc4i2bNmi1157TV9++aWzecQwDK1Zs0bTpk3T2LFjvXq+AAAAAAAAAADA9/E4FwBAWRYaFKwnmrbVuNhW+jY+TvNPxGnWsX2mY1pWqqIuVWqqX3RdDYlpSBOIjwoq+hDv2bhxo3r37q3jx4/LMAxddtllWr9+vaZNm1ZkI4gkRUZG6t5779XmzZs1fvx45x1F3n33Xd15552mY9u0aaMvvvhCs2fPVljYn923uQ0hb7zxhrKzs60/QQAAAAAAAAAAAAAA/ExoULCG147Vmy27uby2pNtgfdS2p4bXjqURxIfZ1gySmpqqG2+8UcnJyTIMQ02aNNHy5cvVpk0bt2OFhIRowoQJmjRpkgzDkGEY+s9//qN///vfLscOHz5cb7/9trNxRJKOHDmiJUuWlOh8AAAAAAAAAAAAAAAAfIFtzSCTJ0/WoUOHJP15h46PPvpINWvWLFHMcePGqXfv3pIkwzA0fvx4JSUluRw3evRodejQwdQQ8uuvv5ZobgAAAAAAAAAAAAAAAF9gWzPI1KlT5XA45HA41LFjR/Xo0cOSuI8//rikPxtMEhMT9cUXX+R73NixY53HSdKqVassmR8AAAAAAAAAAAAAAMBOtjSDbNmyRcePH3duDxo0yLLY1157rcLDw53bCxcuzPe4Pn36OP9tGIaOHj1qWQ4AAAAAAAAAAAAAAAB2saUZZNu2bZLkfExLgwYNLIsdGhqqmJgYZ/zcufKqX7++oqKinNvnzp2zLAcAAAAAAAAAAAAAAAC72NIMEh8fb9ouX768pfEvjXfy5MkCj6tWrZrz3xcuXLA0BwAAAAAAAAAAAAAAADvY0gySnZ1t2s7bHFJSl8bLO9elKlSo4Px3cHCwpTkAAAAAAAAAAAAAAADYIcSOSXMf4+JwOCRJq1at0sMPP2xJ7N27d+v8+fPO2DVr1izw2KSkJOe/IyIiLJkfAIDS9v4Hi/T+tEWWx73/3v66/77+lscFAAAAAAAAAACAd9nSDFK3bl3nvw3D0I8//qizZ8+qatWqJY792WefOf/tcDhMc+WVkJDg/HeNGjVKPDcAAHZISr6oE/HnvBIXAAAAKExGRpYWLt6oeQvXqvKG7Qo+mSZl5UghQbq70UF1bt9UfXq10oB+7RUWZsuvoQAAAAAAKJNs+Sn8qquuUkREhFJTUyVJKSkpGjdunKmRwxO7d+/Wm2++KYfDIcMw5HA4dN111+V77IEDB5SamiqHwyGHw6GGDRuWaG4AAOxSqWJ51YqpUuDrOTmGTp46b9pXM7qygoIcRcYFAAAA8pOZmaWpHy7W+9MWKyHhgqQ8v2TKzNG+PSe0b88JffHlr4qOjtKY0f00ZnQ/hYbSFAIAAAAAgLfZ8tN3uXLlNGDAAH399dfOxo2ZM2eqZs2aev311z2KuXfvXl133XVKT093PiJGkoYPH57v8WvXrjVtt2jRwqN5AQCw2/33Ff44l9NnEtW89UOmfcv+O1HVq0V6OzUAAAAEoF27j2rsI9O0dduhYo85deqCXnjpK3373Rq9O+VeNbu84Du5AgAAAACAkguya+IJEyYoJOTPXpTchpBJkyape/fuWrduXbHjpKSk6PXXX1f79u115MgR011Bbr75ZjVv3jzfcd9//72kPx9TI0lXXnllCc8IAAAAAAAgsK1dt1cDb3jRrUaQS23ddkgDb3hRa9fttTgzAAAAAABwKdvuy9miRQs9/vjjevXVV52PajEMQytXrlTXrl3VokULDRw4UO3bt1fDhg0VFRWlsLAwJSUl6cyZM9q2bZtWr16tBQsWKDU11dkAkqtKlSp688038507OTlZCxYscM4ZFBSkXr16ldKZAwAAAAAA+J9du4/qljsmKSnpYoniJCVd1C13TNLC757V5ZfVsSg7AAAAAABwKVsf0vrSSy/p6NGjmjlzpqkhxDAMbd++XTt27CgyRu6dPXIbQQzDUOXKlbVo0SLVrFkz3zGffPKJkpKSnNvdu3dXtWrVLDgjAAB8R0ZGlhYu3qgfF29weW3o8FfVvl2s+vRqpQH92issjOe2AwAAoGCZmVka+8i0EjeC5EpKuqgHHv5Ai74fr9BQ1qIAAAAAAFjN1p+2HQ6HPv30U1WtWlX//ve/nfty5TZ6FBXj0uMbN26s2bNnq0OHDgWO6devn37//Xfndu3atT1JHwAAn5SZmaWpHy7W+9MWKyHhQr7H7Np9TLt2H9MXX/6q6OgojRndT2NG9+MX8QAAAMjX1A8Xe/xomIJs3XZIUz9crIceGGRpXAAAAAAAIAXZnkBQkN566y0tWbJEl19+ufPOIJKcdwsp7CP3+NDQUD388MPaunVroY0gknTZZZepS5cuzo969eqVxqkCAOB1u3YfVf/BL+iFl74qsBEkr1OnLuiFl75S/8EvaNfuo17OEAAAAP4mI+PPZmNvmPrhYmVmZnklNgAAAAAAZZntzSC5evbsqR07dui///2vRowYoWrVqjkbPQr6CAoKUtu2bfXKK6/o6NGjeuutt1ShQgW7TwUAAFusXbdXA2940eN3bG7ddkgDb3hRa9fttTgzAAAA+LOFizfq1KniNRq769SpC/px0UavxAYAAAAAoCzzuXvB9+nTR3369JEkHThwQNu2bdOZM2d07tw5paenKyoqSlWqVFG9evXUoUMHmj8AANCfdwS55Y5JJX6Ge1LSRd1yxyQt/O5ZXX5ZHYuyAwAAgD9bsmybV+MvXb5NNwzu7NU5AAAAAAAoa3yuGeRSjRs3VuPGje1OAwAAn5aZmaWxj0wrcSNIrqSki3rg4Q+06PvxCg316aUCAAAASsGWrXF+HR8AAAAAgLLIlr/w7NixQ19//bVz2+Fw6Mknn1RYWJgd6QAA4NemfrjY40fDFGTrtkOa+uFiPfTAIEvjAgAAwP/sP3DCu/H3x3s1PgAAAAAAZZEtzSBLly7VhAkT5HA4JEldu3bVs88+a0cqAAD4tYyMLE39cLFXYk/9cLHGjO7H3UEAAADKuPT0LK/GT0vP9Gp8AAAAAADKoiA7Jr1w4YIkyTAMSdKAAQPsSAMAAL+3cPFGnTp1wSuxT526oB8XbfRKbAAAAPiP8HDvNgeXCw/1anwAAAAAAMoiW5pBQkLMv0SoW7euHWkAAOD3lizb5tX4S5d7Nz4AAAB8X2zjWt6NHxvj1fgAAAAAAJRFtjSDVK1a1bRdvnx5O9IAAMDvbdka59fxAQAA4PvatG7o1/EBAAAAACiLbGkGadq0qSTJ4XBIkk6dOmVHGgAA+L39B054N/7+eK/GBwAAgO/r06uVV+P37und+AAAAAAAlEW2NIN07txZ4eHhzu1169bZkQYAAH4vPT3Lq/HT0jO9Gh8AAAC+b0C/9oqOjvJK7OjoKA3s394rsQEAAAAAKMtsaQYpX768BgwYIMMwZBiGFi5cqIsXL9qRCgAAfi08PMSr8cuFh3o1PgAAAHxfWFiIxozu55XYY0b3U2iod9e0AAAAAACURbY0g0jS//3f/8nhcMjhcOjs2bN6/fXX7UoFAAC/Fdu4lnfjx8Z4NT4AAAD8w5jR/dS6VQNLY7Zp3VD339vf0pgAAAAAAOBPtjWDXHnllbr//vtlGIYk6aWXXtLcuXPtSgcAAL/UpnVDv44PAAAA/xAaGqJ3p9yrSpXKWxIvMrKC3p1yr0JCgi2JBwAAAAAAzGxrBpGkt956S4MHD5ZhGMrKytLNN9+sJ598UqmpqXamBQCA3+jTq5VX4/fu6d34AAAA8B/NLq+rLz//e4kbQiIjK+g/Mx7T5ZfVsSgzAAAAAACQl63NICEhIZo3b56eeuopBQcHKzs7W//6179Uu3Zt3Xffffryyy+1Z88enT9/Xjk5OXamCgCATxrQr72io6O8Ejs6OkoD+7f3SmwAAAD4p86dmmrhd896/MiY1q0a6Mf5z6hzp6YWZwYAAAAAAC4VYtfEwcGutwF1OBwyDEOJiYn66KOP9NFHH5V4HofDoaysrBLHAQDAF4WFhWjM6H564aWvLI89ZnQ/hYbatlQAAACAj7r8sjpa9P14Tf1wsaZ+uFinTl0ockx0dJTGjO7HGhMAAAAAgFJi20/fhmG47HM4HHI4HAW+DgAAXI0Z3U/ffrdGW7cdsixmm9YNdf+9/S2LBwAAgMASGhqihx4YpDGj++nHRRs1b+E6zd+wXcEnL0pZOVJIkC5rHKPO7Zuod89WGti/PU0gAAAAAACUIlt/Cs9t/HD3teKioQQAUBaEhobo3Sn3auANLyop6WKJ40VGVtC7U+5VSIjrXbwAAACAS4WGhuiGwZ11eaeG+myt+ddMH3ceqmYx0TZlBgAAAABA2RZk5+SGYXj1AwCAsqLZ5XX15ed/V6VK5UsUJzKygv4z4zFdflkdizIDAAAAAAAAAABAabPtziDPPfecXVMDABCQOndqqoXfPasHHv7Ao0fGtG7VQO+9fR+NIAAAAAAAAAAAAH6OZhAAAALI5ZfV0aLvx2vqh4s19cPFOnXqQpFjoqOjNGZ0P40Z3Y/nuAMAAAAAAAAAAAQA/uIDAECACQ0N0UMPDNKY0f3046KNWrh4o76Z97vpmObN6qp9u8bq3bOVBvZvTxMIAAAAAAAAAABAAOEvPwAABKjQ0BDdMLizrurWzKUZZO5XT6p6tUibMgMAAAAAAAAAAIA3BdmdAAAAAAAAAAAAAAAAAKxDMwgAAAAAAAAAAAAAAEAA4TExAAD4ufc/WKT3py0q8PWcHMNlX69rn1VQkKPQuPff21/339e/xPkBAAAAAAAAAACgdPlsM0hmZqZ27typ06dP68yZM7p48aIk6c4777Q5MwAAfEtS8kWdiD/n1piTp84XKy4AAAAAAAAAAAD8j081g6Slpemjjz7SvHnztHr1aqWlpbkcU1gzyC+//KILFy44t1u3bq0mTZp4JVcAAHxFpYrlVSumilfiAgAAAAAAAAAAwP/4TDPI+++/rwkTJuj06dOSJMNwvaW9w1H47eyXLVuml19+2bk9ePBgffvtt5bmCQCAr7n/Ph7nAgAAAAAAAAAAgP+xvRnk4sWLGjVqlGbPnu1sAHE4HC6NH/k1h+T18MMPa9KkSUpPT5dhGFq4cKFOnz6t6tWreyV3AAB8weT9WzV5/1bL4z4W21qPxba2PC4AAAAAAAAAAAC8y9ZmEMMwdOutt+r777+XYRjOBpC8jR9F3REkV40aNXTjjTdq1qxZkqSsrCx9++23+tvf/mZt4gAA+JDEzAwdS0vxSlwAAAAAAAAAAAD4nyA7J58wYYK+++47SX82fBiGodDQUI0aNUpz587Vpk2b1Lx5c7diDh8+3BlPkn7++WdrkwYAwMdEhoapTrmIAj9qhVdwGVMrvEKhY+qUi1BkaJgNZwMAAAAAAAAAAICSsu3OIMeOHdPrr79uuhtI69atNW/ePDVq1Mh5XFiYe3+I6tevn8qXL6+0tDQZhqGlS5damjcAAL6mqMe5JKRfVPTiGaZ9W3rdpBrh5b2dGgAAAAAAAAAAAGxg251BXn31VaWnp0v6sxGkSZMm+u2330yNIJ4IDw9X27ZtnY+aOXPmjE6cOFHifAEAAAAAAGCWkZOtOcf36+kDG11eG/rHEo3avExzju9XRk62DdkBAAAAAFB22XZnkHnz5jkfDeNwOPTRRx+pUqVKlsTu0KGDfv/9d+f2rl27VKtWLUtiAwAAAAAAlHWZOdl6c/82TT6wVSfTL+Z7zK7UC9p1+II+PrxbMeEVNK5xK42LbaXQoOBSzhYAAAAAgLLHlmaQnTt36vjx485HxLRv3149evSwLH7jxo1N24cPH7YsNgAA/iIjJ1vz4+P07Yk4l9d6r/peXapEq390Pd0Q01Bh/EIeAAAAxbQ98azu3LRUGy+cLvaY+PRUPblzjWYf368Z7XrrisiqXswQAAAAAADY0gyyY8cO578dDof69u1rafzKlSubthMTEy2NDwCALyvOuzS3J53T9qRzvEsTAAAAbll1Nl4DVi9UYlaGR+M3Xjitbivma2HXAepWNcbi7AAAAAAAQK4gOyZNSEiQJBmGIUlq2rSppfFzHzeTe+eR5ORkS+MDAOCrtieeVdffvtWTO9cU2AiSV+67NLv+9q22J571coYAAADwV9sTz5aoESRXYlaGBqxeqB1J5yzKDAAAAAAA5GVLM8i5c+Yf9qOioiyNn9v8kdtsUq5cOUvjAwDgi1adjVe3FfPdul33pXLfpbnqbLzFmQEAAMDfZeZk685NS0vcCJIrMStDd2xcosycbEviAQAAAAAAM1uaQSIjI03bSUlJlsbPvfNIrmrVqlkaHwAAX8O7NAEAAOBNb+7f5nHTcUE2XjitN/dvszQmAAAAAAD4ky3NINHR0ZL+9xiXEydOWBp/w4YNpu3q1atbGh8AAF/CuzQBAADgTRk52XrzgHeaNt48sI11JwAAAAAAXmBLM0idOnVM2+vWrbMsdnZ2tpYtW+ZsNJGk1q1bWxYfAABfw7s0AQAA4E3z4+MUn57qldjx6an6Nj7OK7EBAAAQGDJysjXn+H49fWCjy2tD/1iiUZuXac7x/cqgyRgATGxpBunUqZMiIiIkSYZh6Oeff1ZycrIlsWfPnq2TJ086txs1aqS6detaEhsAAF/DuzQBAADgbYtOHfFq/MWnjno1PgAAAPxTZk62Xt+7WfV/nqUR6/+ruacPuRyzK/WCPj68WyPW/1cNfv5Cr+/dzO80AeD/s6UZJDQ0VL169ZJhGJKklJQUvf/++yWOm5iYqOeee04Oh0OGYcjhcOjaa68tcVwAAHwV79IEAACAt204b+1d6FzjJ3g1PgAAAPzP9sSz6vrbt3py5xqdTL9YrDHx6al6cucadf3tW21PPOvlDAHA99nSDCJJd911lyQ5Gzeef/557dixw+N4mZmZuv3227V//37T/gcffLBEeQIA4Mt4lyYAAAC8bXfyee/GT7ng1fgAAADwL6vOxqvbivkePxp744XT6rZivladjbc4MwDwL7Y1g9x0001q166dpD8bQlJTU3XNNddo3bp1bsfav3+/evTooR9++MF0V5Drr79eLVu2tDp1AAB8Bu/SBAAAgLele/k222nZWV6NDwAAAP+xPfGsBqxeqMSsjBLFSczK0IDVC7Uj6ZxFmQGA/7GtGUSS3nrrLQUHB0v6syHk5MmT6tatm/72t79p9erVysoq+JcBJ0+e1Jw5c3TrrbeqefPmWrt2rfOxM5JUqVIlTZo0yevnAACAnXiXJgAAALwtPCjYq/HLBYd4NT4AAAD8Q2ZOtu7ctLTEjSC5ErMydMfGJcr0cnMzAPgqW5tBunfvrnfeecfZxOFwOJSdna1PPvlEV111lSpWrKidO3eamjxq166t8uXLq3bt2rrlllv01VdfKSsry3k3kNz/fvLJJ2rSpIldpwYAQKngXZoAAADwtssrVvZu/Igor8YHAACAfxjxxdcePxqmIBsvnNaIL762NCYA+Atbm0Ek6d5779XLL78sh8MhSc6GDsMwlJGRoYyM/3X/GYah+Ph4paenO4/Jbf7IHRcSEqJ3331XQ4cOteuUAAAoNbxLEwAAAN7WoXJ1L8ev4dX4AAAA8H0ZOdn6pUKiV2L/UiGRu4MAKJNsbwaRpH/84x9avHixoqOjTc0dxf2Q/mwUqV69uhYtWqQxY8bYfEYAAJQO3qUJAAAAb+sfXc+r8ftF1/VqfAAAAPi++fFxSgrJ8UrspJAcfRsf55XYAODLfKIZRJKuueYa7d27V6+99ppq1apluvNHfi59PTIyUhMmTND+/fvVp0+fUs4cAAD78C5NAAAAeNsNMQ0VE17BK7FjwitoSExDr8QGAACA/1h06ohX4y8+ddSr8QHAF/nUvd8rVqyo//u//9Ojjz6qVatWafny5Vq5cqWOHj2qM2fO6Ny5cypfvryqV6+umjVrqkuXLurbt6969uypChW880sJAAB8Wf/oevr48G6vxeddmgAAAAgLCta4xq305M41lsce17iVQr386EMAAAD4vg3nT3s5foJX4wOAL/KpZpBcoaGh6tmzp3r27Gl3KgAA+LTcd2nGp6daHpt3aQIAACDXuNhWmn18vzZesO6X9B2iquux2NaWxQMAAID/2p183rvxUy54NT4A+CKfeUwMAABwX+67NL2Bd2kCAAAgV2hQsGa0663IkDBL4kWFhGlG+z4KCeJXUwAAAJDSc7K9Gj8tO8ur8QHAF/ETNwAAfm5cbCu1j6puaUzepQkAAIC8roisqoVdB5S4ISQqJEw/dh2gFpWqWJQZAAAA/F24l9+UVi7YJx+WAABeRTMIAAB+jndpAgAAoLR0qxqj37sP8bgZuX1Uda3qPkTdqsZYnBkAAAD82eUVK3s3fkSUV+MDgC/irzwAAAQA3qUJAACA0tKiUhWt7j5ErzXvopjwCsUaExNeQa8176LV3Yew1gQAAICLDpWtvfOxa/waXo0PAL6IZhAAAAIE79IEAABAaQkNCtYTTdvqcN+/6quO1+rGGg1cjmleIUqj6jfTVx2v1eG+f9UTTdsq1Mu3/wYAAIB/6h9dz6vx+0XX9Wp8APBFPCALAIAAkvsuzTf3b9ObB7YpPj21yDEx4RU0rnErjYttxS/nAQAA4JbQoGANrx2rVkGV9E3CIdNrc1v2UbOYaJsyAwAAgD+5IaahYsIrFOv3me6KCa+gITENLY8LAL7Op5pBVq1apcWLF2vDhg3avXu3Lly4oAsXLigrK8vjmA6Ho0TjAQDwN7nv0hwX20rfxsdp/ok4zTq2z3RMy0pV1KVKTfWLrqshMQ1pAgEAAAAAAABgm7CgYI1r3EpP7lxjeexxjXkTHICyySeaQebOnatnn31Wu3btcu4zDMPGjAAA8H+579LsVa22SzPIkm6DVSO8vE2ZAQAAAAAAAIDZuNhWmn18vzZeOG1ZzA5R1fVYbGvL4gGAPwmyc/Ls7GzdeeedGj58uHbt2iXDMJwfDoejxB8AAAAAAAAAAAAAfF9oULBmtOutyJAwS+JFhYRpRvs+Cgmy9c+hAGAbW69+f/vb3zRz5sx8G0AubQzx9AMAAAAAAAAAAACAf7gisqoWdh1Q4oaQqJAw/dh1gFpUqmJRZgDgf2x7TMyiRYv02Wefme7gkdvAUaNGDXXo0EGxsbGKiopSaGioXWkCAODzJu/fqsn7txb4ek4+DZJtln2toCLuovVYbGtuoQgAAAAAAACgVHWrGqPfuw/RHRuXePTImPZR1fV5+z40ggAo82xrBpkwYYLz37lNIC1bttTrr7+u6667TkHcsgkAgGJJzMzQsbQUt8acSE8tVlwAAAAAAAAAKG0tKlXR6u5D9Ob+bXrzwDbFF+P3mTHhFTSucSuNi22l0KDgUsgSAHybLc0gp06d0rp165yPg3E4HOrXr5++/fZbhYVZ8xwwAADKisjQMNUpF+GVuAAAAAAAAABgh9CgYD3RtK3GxbbSt/Fxmn8iTrOO7TMd07JSFXWpUlP9outqSExDmkAA4BK2NIOsXLnS2QQiSVFRUfr8889pBAEAwAM8zgUAAAAAAABAoAoNCtbw2rHqVa22SzPIkm6DVSO8vE2ZAYBvs+VZLCdPnnT+2+FwaNiwYapWrZodqQAAAAAAAAAAAAAAAAQUW+4McvbsWUly3h2kS5cudqRRqnJycrRhwwZt27ZNp06dkmEYqlatmlq0aKEuXbooNDTU7hQlSUeOHNGaNWt06NAhXbx4URUrVlTjxo115ZVXqkaNGpbPd+HCBa1atUr79u1TYmKiwsPDVadOHXXs2FFNmza1fD4AAAAAAAAAAAAAAAKdLc0gFSpUMG1XrVrVjjRKRXJyst544w1NnTpVp06dyveYqKgojRw5Uk8//bRXGi6KY/78+Xr11Ve1evXqfF8PCgrSNddco2eeeUY9evQo8XxbtmzRCy+8oO+//16ZmZn5HnPFFVfo8ccf11133eV8pBAAAAAAAAAAAAAAACicLY+JadCggWn7/PnzdqThdevXr9cVV1yhF154ocBGEOnPu2NMmTJFzZo106JFi0oxQyklJUUjRozQkCFDCmwEkf68s8nPP/+snj176pFHHlFWVpbHc77yyivq2LGj5s6dW2AjiCRt375dd999t/r06aOEhASP5wMAAAAAAAAAAAAAoCyxpRmkU6dOkuS828OBAwfsSMOr1qxZo969e+vw4cMur4WHh6t8+fIu+8+ePavBgwfru+++K40UdfHiRQ0cOFBz5sxxec3hcCgqKirfcW+//bZuv/12GYbh9pz/93//p6eeeirfZpJKlSopKMj1W3LZsmXq2bOnzpw54/Z8AAAAAAAAAAAAAACUNbY0g9StW1ddu3Z1NhMsXrzYjjS8JiEhQUOHDlVycrJzX0hIiB599FHt3r1bqampSklJUVxcnJ599llFREQ4j8vKytJtt92mPXv2eD3Phx9+WL/++qtp39VXX61FixYpJSVF58+fV2JiombPnq2WLVuajps9e7ZeeeUVt+abNWuW/vWvf5n2NWzYUB9++KHOnTunxMREXbx4Ub/99psGDRpkOm7nzp3661//6lEDCgAAAAAAAAAAAAAAZYktzSDSn3eIkCTDMLRp0yYtX77crlQsN2HCBJ04ccK5HR4ernnz5unNN9/UZZddpqCgIDkcDjVo0EAvvPCCfvnlF1WpUsV5fHJysh577DGv5rhu3Tp99NFHpn0jR47UsmXL1K9fP+edSypVqqQRI0Zo9erV6tu3r+n4F154QUePHi3WfCkpKS7n1K5dO61du1Z/+9vfVLlyZUlSWFiYrr76ai1YsEBPPfWU6fiffvpJ33zzjTunCQAAAAAAAAAAAABAmWNbM8jQoUN1/fXXO7fvv/9+nT9/3q50LBMXF+fSZPH888+bzjWvLl266N133zXt++GHH/T77797JUdJevrpp03brVq10rRp0xQcHJzv8REREZo9e7ZiYmKc+9LT0zVx4sRizTdlyhSdOnXKuV2hQgV9/fXXqlGjRoFjXnrpJfXr18+0b/z48crJySnWnAAAAAAAAAAAAAAAlEW2NYNI0syZM3XFFVfIMAzt3r1bAwYM0LFjx+xMqcTefPNNZWRkOLcbNWqkv//970WOu/XWW3X11Veb9r322muW5ydJmzZt0s8//2za99Zbbyk0NLTQcVWqVNGLL75o2vfxxx8rISGh0HFZWVmaPHmyad/f//53NW7cuMhc33nnHTkcDuf2zp079d133xU5DgAAAAAAAAAAAACAssrWZpDIyEgtX75cV199tQzD0Nq1a9W6dWtNnDjR9JgVf/Ltt9+atkeNGqWQkJBijb333ntN2z/99JNSU1OtSs1p3rx5pu2mTZuqT58+xRp7yy23qFKlSs7trKwsLViwoNAxv/76q86cOePcDgoK0ujRo4s1X5MmTdS7d2/Tvrz5AwAAAAAAAAAAAACA/ylel4IX3HPPPc5/N2jQQOvXr1d6errOnTunCRMmaMKECYqNjVXTpk1VtWrVIu9aURCHw6Hp06dblXahNm3apMOHD5v23XzzzcUef+ONN+qee+5RVlaWJOnixYv66aefNGTIECvT1Pz5803bI0aMKPbYiIgIDR48WF988YUp3t13313s+a688krVq1ev2HPecsstWrJkiXP7hx9+UHZ2doGPtAEAAAAAAAAAAAAAoCyzrRnk008/NT3+I5fD4ZBhGJKkffv2af/+/R7PYRhGqTaDXNqwIEk1a9ZUkyZNij2+QoUKatu2rdavX+/c98svv1jaDHL69Glt3brVtO+qq65yK0a3bt1MzSB5zzuvvK97Mt+lzpw5o82bN6tDhw5uxQEAAAAAAAAAAAAAoCyw9TEx0p8NG7nNH7kcDofzI/d1dz/ssGPHDtN2586d3Y7RtWtX0/bOnTtLlFNe+cXr0qWLWzHy5piUlKSjR4/me2x2drb27NlTovlatGihyMhI0z6rPy8AAAAAAAAAAAAAAAQK25tBcps+inrd3Q877Nq1y7TduHFjt2PkHZM3ZknljRcVFaWqVau6FSO/8yoozwMHDigjI6PI8YVxOBxq2LBhseYDAAAAAAAAAAAAAKCss+0xMfXr17etacNb8t4Bo379+m7HqFevnmn72LFjSklJUURERIlyy2VFjlWqVFFERIRSUlKc+3bv3q1rr722yPk8nbNevXqmx9vs3r3b7RgAAAAAAAAAAAAAAJQFtjWDxMXF2TW115w7d860HRMT43aMWrVq5RvXqmaQs2fPmrY9yVH6M899+/Y5t/Oee0HzhYaGun0nktz5LlXQfFb6y1/+ovDwcEti3XLLLXrkkUcKPWbKlCn68ssvLZkv1++//17o66dOndINN9xg6ZwPP/ywbr311kKPefrpp7VkyRLL5qxRo4a+++67Qo/Ztm2b7r33XsvmlKQXX3xR11xzTaHHjB49Wn/88Ydlc7Zs2VIffvhhocf88ssveuaZZyybU5KmTZumVq1aFXrMX/7yFyUkJFg2Z58+ffTSSy8Vesx//vMfvf3225bNKUnz589XdHR0ocdceeWVls7JNcKMa4TnuEaYcY0oGa4R/8M1omS4RphxjfAc1wgzX7tGXMzMlJLNvwO4peKHKh8aWmhMrhFmXCM8xzXCzNeuEZ7iGmHGNcJzXCPMuEZ4jmuEmR3XCJ1PlF5+37k54OWPFeoo2YMQuEaYcY3wXKBeIzKNHOm8+fM0bW+Snv7744WOYx3hnvT09BKNz49tzSCB5uLFi8rOzjbtq1Chgttxypcv77IvOTnZ47yKiuVJjpJrngXlWNrzFeXo0aOFvn7ixAnnvzdt2uTRHPkpzgX20KFDWr16tWVzFkdGRoblcw4fPrzIY/bs2WPpvHXq1CnymOTkZMvPNW+zU37++OOPUv+6nj171vI5i1NzGzdu1LFjxyybs27dukUec+LECcvPNe+jrfJj9ZxcI8y4RngX14iS4RrxP1wjSoZrhBnXCM9xjTDjGuFd7l4jtuhgkcdwjTDjGuE5rhFm/nCNKA6uEWZcIzzHNcKMa4TnuEaY2XGNUFa2tPt/68wNxVhzFoVrhBnXCM+VpWvEkcOHizyGdYT9aAaxyKWPTMlVrlw5t+Pk1wySX2xP5Y3lSY6Sa54F5Vja8xUl72N4AAAAAAAAAAAAAAAINCW7bxKcLl686LIvLCzM7Tj5PZYkv9ieyhvLkxwl1zwLyrG05wMAAAAAAAAAAAAAoKzjziAWye+OF8W5JU9e+T0LyNO7aeQnbyxPcpRc8ywox9KeryhHjhwp9PUTJ06oc+fOHsUGAAAAACBQvf/BIr362qeWx5377WrLn28PAAAAAABoBrFMxYoVXfalpaW5HSe/O17kF9tTeWN5kqPkmmdBOZb2fEUpzrO6crVr1y7fO7V4okGDBsU6pmvXrpbMV1xhYWGWz1mrVq0ij7nsssssnbdGjRpFHlOxYkXLz7Vq1apFHtOyZUtL5yxOvKpVq1p+rsWpufbt21v6KKbLLrusyGNq1apl+bkW5w5GVs/JNcKMa4TnuEaYcY3wLq4RJcM1woxrhOe4RphxjfBcUfGSki/qfGKmQkKr5/u6EexQdgNzvQcfSpYj2yg0bla2o8jcuEZ4jmuEGdcIz7GOMOMa4V1cI0qGa4QZ1wjP+eo1QiHB0uWNnJsdKtdQqKNkD0LgGmHGNcJzgXqNyDRytOF8gmlfvfr1ixzHOsI96enp2rRpU4li5OUwDKPwn8pRbCEhIcrOznZuz5o1S3/961/dirFy5UpdffXVpn1Hjhxxq4mhMKNGjdLHH3/s3O7bt69++uknt+M0bdpU+/btc25PnDhRzzzzjMtxn3/+ue68807ndlhYWL53PynK6NGj9dFHHzm3r7nmGv33v/91O05Rjh496rzoW/l5BwAAAADAn73/wSK9P21Rga9nVQjWzv8z/+Kz+Rt7FJKaXcCIP91/b3/df19/S3IEAABAYEtIv6joxTNM+071u1M1wsvblBFQNlB7pcMbf6cOyDuDLFiwQGfPnnVuX9qM4E2VK1fWmTNnnNvx8fFuxzhx4kS+ca1SpUoV07YnOeY3Lm/cgvZnZGTo7Nmzxeo8vFTez0tB8wEAAAAAAOvdf1/hTRv5/XJw+X9f5JeDAAAAAADYxCvNIJf+ob9169ZatmxZscfu3bvX9EiQ1q1buz3/s88+q61btzq3S6sZ5LLLLtPvv//u3D58+LDbMY4cOWLarl27tqWPicl7eyJPcjx37pySk5MLjVvY/sOHD7vdDJL381Kc2ywBAAAAAAAAAAAAAFAWlewhWgU4f/688yMxMdGtsSNGjFC7du3Url07tW/f3uMcDMNQaT8Bp1mzZqbtAwcOuB3j4MGDhcYsqbzxLly4YLqLSnHkzTG/uLkaN27s8pwqdz8vhmEoLi6uWPMBAAAAAAAAAAAAAFDWeaUZRJIcDofHY3MbOUrSzFGS+T3VokUL0/batWvdjrF69WrTdvPmzUuUU155c5SkNWvWuBUjb44VK1Ys8JlFISEhatq0aYnm27lzp0tTkdWfFwAAAAAAAAAAAAAAAoXXmkFKwo5GDiv06dPHtH3y5Ent27ev2ONTU1O1efNm075rrrnGitScqlevrlatWpn2rVy50q0YeY/v06dPoV+zvJ+Xks5XtWpVtW3b1q0YAAAAAAAAAAAAAACUFT7ZDOKv2rdvr3r16pn2zZ49u9jj586dq8zMTOd2uXLldN1111mWX64bbrjBtP3VV18Ve2xqaqoWLFhQaLyi5vv999915MiRYs+Z93M4aNAghYSEFHs8AAAAAAAAAAAAAABlCc0gFhsyZIhpe/r06crKyirW2GnTppm2+/btq4iICKtScxo6dKhpe+/evVqyZEmxxn755ZemR7aEhITo+uuvL3RMz549VbVqVed2Tk6OPvzww2LNt2/fPpfc8n6OAQAAAAAAAAAAAADA/9AMYrFx48YpNDTUuX3w4EFNmjSpyHFffvmlfvvtN9O+J598sshxDofD9DFy5Mgix7Rv397l8TOPPvqo6a4k+Tl//ryefvpp076RI0cqOjq60HEhISEaN26cad+kSZN08ODBInN98MEHZRiGc/vyyy8v8k4kAAAAAAAAAAAAAACUZTSDWKxRo0YaNWqUad+ECRP0ww8/FDhm7dq1Gjt2rGnfgAEDdNVVV3klR0l66aWXTNvbtm3Tvffeq+zs7HyPT0lJ0c0336z4+HjnvvDwcI0fP75Y8z366KOqUaOGczs1NVU33XSTEhISChzzzDPPaPHixaZ9L7zwgoKDg4s1JwAAAAAAAAAAAAAAZRHNIF7w/PPPKyYmxrmdlpamIUOGaNy4cdq7d6/zTheHDx/Wc889pz59+ujs2bPO4yMiIjR58mSv5tilSxfdfffdpn2ffvqpevXqpZ9++klpaWmSpOTkZM2ZM0ddu3bVTz/9ZDr+6aefVr169Yo1X8WKFfWvf/3LtG/jxo3q3LmzPv74Y50/f16SlJGRoZUrV2rw4MEuDSvXXnuthg8f7s5pAgAAAAAAAAAAAABQ5oTYnUAgio6O1ty5c9W3b1+lpKRIkrKysvTWW2/prbfeUnh4uIKCgnTx4kWXscHBwfr888/VrFkzr+f5zjvvaM+ePVq5cqVz34oVK9SvXz85HA5FRkbqwoUL+Y696aabXB4ZU5Q777xTmzdv1ptvvuncFxcXp1GjRmnUqFGKjIxUcnKycnJyXMZefvnl+uKLL+RwONyaEwAAAAAAAAAAAACAsoY7g3jJlVdeqSVLlqhu3bour6Wnp+fbCFKlShXNnz9fQ4cOLY0UVaFCBS1atEjDhg1zec0wjAIbQcaOHasvvvhCQUHuf/tMnjxZEydOzPdRL4mJifk2gnTv3l3Lly83PWYGAAAAAAAAAAAAAADkj2YQL+rcubN27NihZ555ptBGhsjISD300EPatWuXBg0aVIoZ/vn4lm+++UZz585V586dCzzO4XDommuu0bJly/TOO+8oNDTU4zmfeeYZrV+/XkOGDFFISME3p2nRooWmT5+uZcuWqWbNmh7PBwAAAAAAAAAAAABAWcJjYrysUqVKmjhxoiZMmKANGzZo69atSkhIkGEYqlatmlq0aKEuXbooLCzMo/iGYViS59ChQzV06FAdPnxYq1ev1uHDh5WWlqaIiAg1btxYV155paKjoy2ZS5Latm2refPm6fz581q1apX27t2rpKQkhYWFqW7duurQoYMuv/xyy+YDAAAAAAAAAAAAAKCsoBmklAQHB6tz586F3n3DF9SvX1/169cvtfkqV66sgQMHltp8AAAAAAAAAAAAAAAEOh4TAwAAAAAAAAAAAAAAEEBoBgEAAAAAAAAAAAAAAAggNIMAAAAAAAAAAAAAAAAEEJpBAAAAAAAAAAAAAAAAAkiItyfYt2+f+vTp49bxl3JnbEExAAAAAAAAAAAAAAAAygqvN4OkpKRo+fLlbo0xDMP5X3fHAgAAAAAAAAAAAAAAlGVebwbJbewo7fEOh6NE8wIAAAAAAAAAAAAAAPgjrzaD0JABAAAAAAAAAAAAAABQurzWDFLSO4IAAAAAAAAAAAAAAADAfV5pBjl48KA3wgIAAAAAAAAAAAAAAKAIXmkGadCggTfCAgAAAAAAAAAAAAAAoAhBdicAAAAAAAAAAAAAAAAA69AMAgAAAAAAAAAAAAAAEEBoBgEAAAAAAAAAAAAAAAggNIMAAAAAAAAAAAAAAAAEkBC7EwAAAAAAAAAAAAAAAKVv8v6tmrx/a4Gv5xiGy742y75WkMNRaNzHYlvrsdjWJc4PnqMZBAAAAAAAAAAAAACAMigxM0PH0lLcGnMiPbVYcWEvmkEAAAAAAAAAAAAAACiDIkPDVKdchFfiwl40gwAAAAAAAAAAAAAAUAbxOJfAFWR3AgAAAAAAAAAAAAAAALAOdwYBAAAAAABAoSbv36rJ+7cW+HqOYbjsa7PsawU5HIXG5R1oAAAAAAB4B80gAAAAAAAAKFRiZoaOpaW4NeZEemqx4gIAAAAAAOvRDAIAAAAAAIBCRYaGqU65CK/EBQAAAAAA1qMZBAAAAAAAAIXicS4AAAAAAPiXILsTAAAAAAAAAAAAAAAAgHVoBgEAAAAAAAAAAAAAAAggNIMAAAAAAAAAAAAAAAAEEJpBAAAAAAAAAAAAAAAAAgjNIAAAAAAAAAAAAAAAAAGEZhAAAAAAAAAAAAAAAIAAQjMIAAAAAAAAAAAAAABAAKEZBAAAAAAAAAAAAAAAIIDQDAIAAAAAAAAAAAAAABBAaAYBAAAAAAAAAAAAAAAIIDSDAAAAAAAAAAAAAAAABBCaQQAAAAAAAAAAAAAAAAIIzSAAAAAAAAAAAAAAAAABhGYQAAAAAAAAAAAAAACAAEIzCAAAAAAAAAAAAAAAQAChGQQAAAAAAAAAAAAAACCA0AwCAAAAAAAAAAAAAAAQQGgGAQAAAAAAAAAAAAAACCA0gwAAAAAAAAAAAAAAAAQQmkEAAAAAAAAAAAAAAAACCM0gAAAAAAAAAAAAAAAAAYRmEAAAAAAAAAAAAAAAgABCMwgAAAAAAAAAAAAAAEAAoRkEAAAAAAAAAAAAAAAggNAMAgAAAAAAAAAAAAAAEEBoBgEAAAAAAAAAAAAAAAggNIMAAAAAAAAAAAAAAAAEEJpBAAAAAAAAAAAAAAAAAgjNIAAAAAAAAAAAAAAAAAGEZhAAAAAAAAAAAAAAAIAAQjMIAAAAAAAAAAAAAABAAKEZBAAAAAAAAAAAAAAAIIDQDAIAAAAAAAAAAAAAABBAaAYBAAAAAAAAAAAAAAAIIDSDAAAAAAAAAAAAAAAABBCaQQAAAAAAAAAAAAAAAAIIzSAAAAAAAAAAAAAAAAABhGYQAAAAAAAAAAAAAACAAEIzCAAAAAAAAAAAAAAAQAChGQQAAAAAAAAAAAAAACCA0AwCAAAAAAAAAAAAAAAQQGgGAQAAAAAAAAAAAAAACCA0gwAAAAAAAAAAAAAAAAQQmkEAAAAAAAAAAAAAAAACCM0gAAAAAAAAAAAAAAAAAYRmEAAAAAAAAAAAAAAAgABCMwgAAAAAAAAAAAAAAEAAoRkEAAAAAAAAAAAAAAAggNAMAgAAAAAAAAAAAAAAEEBoBgEAAAAAAAAAAAAAAAggNIMAAAAAAAAAAAAAAAAEEJpBAAAAAAAAAAAAAAAAAgjNIAAAAAAAAAAAAAAAAAGEZhAAAAAAAAAAAAAAAIAAQjMIAAAAAAAAAAAAAABAAKEZBAAAAAAAAAAAAAAAIIDQDAIAAAAAAAAAAAAAABBAQuxOAAAAAAAAAAAAAEDZNnn/Vk3ev7XA13MMw2Vfm2VfK8jhKDTuY7Gt9Vhs6xLnBwD+hmYQAAAAAAAAAAAAALZKzMzQsbQUt8acSE8tVlwAKItoBgEAAAAAAAAAAABgq8jQMNUpF+GVuABQFtEMAgAAAAAAAAAAAMBWPM4FAKwVZHcCAAAAAAAAAAAAAAAAsA7NIAAAAAAAAAAAAAAAAAGEZhAAAAAAAAAAAAAAAIAAQjMIAAAAAAAAAAAAAABAAKEZBAAAAAAAAAAAAAAAIIDQDAIAAAAAAAAAAAAAABBAaAYBAAAAAAAAAAAAAAAIIDSDAAAAAAAAAAAAAAAABBCaQQAAAAAAAAAAAAAAAAIIzSAAAAAAAAAAAAAAAAABhGYQAAAAAAAAAAAAAACAAEIzCAAAAAAAAAAAAAAAQAChGQQAAAAAAAAAAAAAACCA0AwCAAAAAAAAAAAAAAAQQGgGAQAAAAAAAAAAAAAACCA0gwAAAAAAAAAAAAAAAASQELsTAHxJVlaW898nTpywMRMAAAAAAAAAAAAAQFlw6d+mL/2bdUnQDAJcIiEhwfnvzp0725gJAAAAAAAAAAAAAKCsSUhIUMOGDUsch8fEAAAAAAAAAAAAAAAABBCHYRiG3UkAviItLU3btm2TJNWoUUMhIdw8x2onTpxw3nVl7dq1qlWrls0ZAWUDtQfYg9oD7EHtAfag9gB7UHuAPag9wB7UHmAPas/7srKynE+xaNWqlcqVK1fimPylG7hEuXLl1KlTJ7vTKDNq1aqlunXr2p0GUOZQe4A9qD3AHtQeYA9qD7AHtQfYg9oD7EHtAfag9rzHikfDXIrHxAAAAAAAAAAAAAAAAAQQmkEAAAAAAAAAAAAAAAACCM0gAAAAAAAAAAAAAAAAAYRmEAAAAAAAAAAAAAAAgABCMwgAAAAAAAAAAAAAAEAAoRkEAAAAAAAAAAAAAAAggNAMAgAAAAAAAAAAAAAAEEAchmEYdicBAAAAAAAAAAAAAAAAa3BnEAAAAAAAAAAAAAAAgABCMwgAAAAAAAAAAAAAAEAAoRkEAAAAAAAAAAAAAAAggNAMAgAAAAAAAAAAAAAAEEBoBgEAAAAAAAAAAAAAAAggNIMAAAAAAAAAAAAAAAAEEJpBAAAAAAAAAAAAAAAAAgjNIAAAAAAAAAAAAAAAAAGEZhAAAAAAAAAAAAAAAIAAQjMI4EOSkpJUu3ZtORwOORwOPfbYY3anFLCOHz+uuXPnaurUqXrppZc0adIkffXVV9q3b5/HMZOSkhQdHe38+v3zn/+0MGN4E7Xn36i9wEVt2ovaClzUVulhzYlLUXv+jdoLXNSmvaitwGVVbaWlpWnJkiX69NNP9frrr+vVV1/VRx99pFWrVikzM9PirP0Ta05citrzb9Re4KI27VWma8sA4DMee+wxQ5IhyYiKijJOnz7t1vgzZ84YixYtMiZOnGgMHjzYiImJccbL/fjkk0+8k7wfyMzMND788EOjZcuWLp+XSz9atGhhTJ061cjKynJ7jilTpjjjhIWFGXv27PHCmcBq1J535eTkGHv27DFmzpxpPPLII8aVV15plCtXzuVzVBLUXmCiNs0++eSTQv//5cnHc889V+ic1FZg8qS2GjRoUOLvN3+qt5JgzYmCUHvexZoTnqI2zVhzwiol/Xlu/fr1xg033JDvtTz3IzIy0hg7dqxx7NgxL52F72LNiYJQe97FmhOeojbNWHOWHppBAB+xc+dOIzQ01HkhevHFF4s1btasWcatt95qxMbG+vUvG7xt586dRvPmzd36H0eHDh2MgwcPujVPenq66ZdC119/vXdOCJah9rwjKSnJeOqpp4y+ffsalStXLtbnqCSovcBDbbryxg9JEydOLHROaivweFpbgfxHLyux5kRBqD3vYM2JkqI2XbHmhBU8rS3D+PP74d577zUcDkexv8cqVqxofPHFF148I9/CmhMFofa8gzUnSoradMWas/TQDAL4iJtuusl5AYqMjDTOnz9frHE9e/YMiF82eNOKFSsKXKQFBQUZVapUMYKDg/N9vXbt2sbevXvdmu/tt982xVixYoWXzgxWoPa84+DBg24v1kqK2gss1KYrb/yQtG7duiLnpbYCi6e1Fch/9LIKa04UhtrzDtacKClq0xVrTljB09pKSUkp9Ge6SpUqGRUqVCjw9XfffdfLZ2Y/1pwoDLXnHaw5UVLUpivWnKXHYRiGIQC22rRpkzp06KDccnziiSf02muvFWtsr169tHz58mLP9cknn2jkyJGepOmXjh8/rvbt2+vkyZOm/cOGDdPDDz+sq666SiEhIcrJydHGjRs1bdo0TZ8+XTk5Oc5jW7RoobVr1yoiIqJYc6ampqpBgwY6ffq0pD+/RkuXLrXupGAZas974uLi1KhRI7fGlHRJQu0FDmozf7t37y7R9/Q///lPnT9/3rndsmVLbdu2rchx1FbgKEltNWzYUIcOHXJuv/jii6pWrZpb8/fu3VuXX365W2P8BWtOFIba8x7WnCgJajN/rDlRUiWprTvuuEMzZ8407WvcuLGeffZZ/eUvf1HVqlUlSSdOnNA333yjF1980bT+CgoK0k8//aRrrrnGorPxLaw5URhqz3tYc6IkqM38seYsRXZ0oAAwu/HGG51daMHBwcbhw4eLPfbSrsCgoCCjefPmxp133mn8+9//NlavXu3SGeer7zzxlkGDBpnO3+FwGNOmTSt0zI8//ujy3LUJEya4Ne9TTz1lGv/rr7+W5DTgJdSe9+TtmI+IiDC6d+9uPPbYY8Z//vMfY+LEiZZ3zBsGtRcoqE3rbdy40eXc//WvfxV7PLUVGEpSW3nfAe3uLaYDHWtOFIba8x7WnCgJatN6rDlhGJ7X1pw5c1y+f6677jojJSWlwDGnT5822rdvbxrTtGlTIzMz06rT8SmsOVEYas97WHOiJKhN67HmdA/NIIDNDhw4YAQFBTkvOoMGDXJr/Isvvmi89tprxtKlS43ExESX18vqH70MwzA2bNjgcv5PPPFEscZ+8MEHpnGVKlUyTp06Vey59+/fb3qG27Bhwzw9DXgJteddJ0+eNMaMGWNMnz7d2Lp1q5GVlWV6Pb/bwFmB2vN/1KZ3PPzww6bzDgkJMeLj44s9ntryfyWtLf7oVTDWnCgMteddrDnhKWrTO1hzoiS11aZNG9P3T+PGjY3k5OQix504ccKoUqWKaez7779fktPwSaw5URhqz7tYc8JT1KZ3sOZ0D80ggM3GjRtnumjNmzfP0vhl9Y9ehmEY9913n+ncq1ataqSmphZ7fMuWLU3jn3nmGbfm79Onj3NsUFAQvxzyMdSevbz1Q5JhUHv+jtq0XkZGhlG9enXTeQ8ePNjtONSWfytpbfFHr4Kx5kRhqD17seZEQahN67HmhGF4Xlu///67y/V69uzZxZ73jTfeMI2tV6+ekZOT4+FZ+CbWnCgMtWcv1pwoCLVpPdac7gsSANtkZWXp888/d25XqlRJAwYMsDGjwLJkyRLT9q233qry5csXe/w999xj2v7666/dmn/48OHOf+fk5GjGjBlujYf3UHuBjdrzX9SmdyxYsMD5HMxcI0eOdDsOteW/qC3vYs2JglB7gY3a81/Upnew5kRJaivveqpy5coaOnRosee+++67FRT0vz91HDlyRGvXri32eH/AmhMFofYCG7Xnv6hN72DN6T6aQQAbLVq0yHTRGjRokMLDw23MKHCcO3dOe/fuNe3r3r27WzGuvvpq0/auXbu0c+fOYo8fOnSo6X+4M2fOdGt+eA+1F9ioPf9FbXrHp59+atquXr26Bg8e7HYcast/UVvew5oThaH2Ahu157+oTe9gzYmS1NaaNWtM2127dlVoaGix565WrZqaNWtm2jd37txij/d1rDlRGGovsFF7/ova9A7WnO6jGQSw0VdffWXa7t+/v02ZBJ6TJ0+67GvSpIlbMZo2beqy77///W+xx9esWVPt27d3bu/du1cbN250Kwd4B7UX2Kg9/0VtWi8hIUELFy407fvrX//q1g+Quagt/0VteQ9rThSG2gts1J7/ojatx5oTUslqK++ayt31lOS6pnJnPeXrWHOiMNReYKP2/Be1aT3WnJ6hGQSwiWEYWrx4sWlfr1697EkmAJ09e9ZlX1RUlFsxIiMjXfZt377drRh5v6Z5/0eF0kftlQ3Unv+hNr1j5syZyszMNO3z5NaJuagt/0NteRdrThSE2isbqD3/Q216B2tOlLS28q6p3F1P5Tdm165dysnJcTuOL2LNiYJQe2UDted/qE3vYM3pGZpBAJts3rxZp06dcm7Xr19fDRo0sDGjwJLf7bbS09PdipHf8e7cPlGSevToYdpetGiRW+NhPWqvbKD2/A+16R2fffaZabtNmzZq166dx/GoLf/jzdqKi4vTwoULNWPGDH3++ef68ccftWHDBpcfzAMZa04UhNorG6g9/0NtegdrTpS0tvKuqdxdT0lSWlqaaTs1NVWHDh1yO44vYs2JglB7ZQO153+oTe9gzemZELsTAMqq1atXm7bbtGljUyaBqWrVqi77EhIS3IqR3/G7d+92K0ber+v69euVlZWlkBAuv3ah9soGas//UJvW27Rpk7Zs2WLaV5JueYna8kfeqq2OHTvqzJkz+b5Wvnx5XXnllRo1apRGjBgR0N8frDlREGqvbKD2/A+1aT3WnJBKXlt511TurqcKGrN79241atTI7Vi+hjUnCkLtlQ3Unv+hNq3HmtNz3BkEsMn69etN261atbIpk8BUq1YthYWFmfZt2LDBrRj5PR8sv9syFqZ+/fqqXLmyczstLU3btm1zKwasRe2VDdSe/6E2rffpp5+atkNDQ3XbbbeVKCa15X+8VVsF/cFLki5evKglS5botttuU9OmTbV06VJL5vRFrDlREGqvbKD2/A+1aT3WnJBKXlt53y3t7nrKMAxt3rzZZb+7aypfxZoTBaH2ygZqz/9Qm9Zjzek5mkEAm+zYscO0HRsba1MmgalcuXLq0KGDad93333nVoz8js/MzHT7llx5v7Z//PGHW+NhLWqv7KD2/Au1aa3MzEx98cUXpn2DBg1SjRo1Shyb2vIvdtdWXFycrr32Wr3++uulOm9pYc2JglB7ZQe151+oTWux5kSuktbW1Vdfbdrevn279u/fX+zxv/32m86dO+eyPykpya08fBVrThSE2is7qD3/Qm1aizVnydAMAtgkLi7OtF2nTh17Eglg/fr1M23/+uuvWrt2bbHGHjlyRLNnz873teTkZLfyyPu1zfu1R+mi9soOas+/UJvWWrBggU6fPm3aV9JbJ+aitvyLlbUVHBysHj166JVXXtFPP/2kI0eOKDk5Wenp6Tpx4oSWLl2q8ePHq1atWqZxOTk5evLJJzV9+nSP5/ZlrDmRH2qv7KD2/Au1aS3WnMhV0trq27evgoL+96cKwzA0adKkYo9/44038t3v7nrKl7HmRH6ovbKD2vMv1Ka1WHOWDM0ggA0yMzN18uRJ076YmBibsglcY8aMUXh4uGnfyJEj8+2IvFRGRoZGjhyp1NTUfF+/ePGiW3nk/cXPkSNH3BoP61B7ZQu15z+oTevlvXVidHS0Bg0aZElsast/WFlbTzzxhA4dOqTly5frH//4h/r27au6desqIiJCYWFhiomJUa9evfT8888rLi5OTzzxhBwOhynGmDFj3H4uuT9gzYm8qL2yhdrzH9Sm9VhzQrKmtho1aqS//OUvpn1Tp07VwoULixz70UcfacGCBfm+5u56ypex5kRe1F7ZQu35D2rTeqw5S4ZmEMAGycnJMgzDtC8iIsKmbAJXzZo19fDDD5v27dy5U71799bWrVvzHXPo0CENHDhQS5YsKTBuxYoV3coj79c2MTHRrfGwDrVXtlB7/oPatFZCQoLLD4e33XabQkJCLIlPbfkPK2vrgQceKPY7WcLCwvTaa6/p7bffNu3PysrS008/7dH8vow1J/Ki9soWas9/UJvWYs2JXFbV1nPPPafQ0FDntmEYGjZsmD766COX+NKff2x79dVXdd999xUY0931lC9jzYm8qL2yhdrzH9SmtVhzlpw1nykAbsmvE7t8+fI2ZBL4XnzxRS1btkzr1q1z7tuyZYvat2+vnj176uqrr1b16tV1/vx5rVu3Tj/99JPzWZkOh0P9+/c3/Y/G4XAoMjLSrRzyfm0L6sSH91F7ZQu15z+oTWvNnDlTmZmZpn133323ZfGpLf9hd209+OCDWrp0qebOnevcN3fuXJ08eVI1a9YstTxKA2tOXIraK1uoPf9BbVqLNSdyWVVbbdu21euvv65x48Y596WlpWn06NF69dVXNWjQIDVs2FDZ2dnat2+fvv/+ex0/ftx57PXXX+/yTujKlSu7nYcvY82JS1F7ZQu15z+oTWux5iw5mkEAH5FfJ19ZNmvWLCUlJRXr2EqVKum2227L97WwsDD98MMPuuGGG/T7778792dnZ2vJkiWFdsbnPlft0h+SIiMjTc9qKw6+tr6Nr4+ZVbXnC/ja+je+fp777LPPTNvt27dXq1atLIvP18a/lfbX77nnnjP90cswDP3000+64447SjWPgrDmRGmh9sxYc8JXUJueY82Jwnj69Xv00UeVnJys8ePHm2Ls37/f5e46l+rSpYvee+89n/2jF2tOlBZqz4w1J3wFtek51pwlRzMIYIMKFSq47EtLS7MhE9/19NNP69ChQ8U6tkGDBoUu1GrUqKElS5bohRde0JQpU4rs7IuJidH06dM1cOBATZgwwfRavXr1ipXTpfI+h41HH9iH2iualbVnN2rPf1Cb1tm0aZO2bNli2mdlt7xEbfkTX6it1q1bq379+jp8+LBz39q1a33mj16sOeEN1F7RWHPCDtSmdVhz4lJW19Yzzzyjtm3b6v/+7/+0a9euQo8NCgrSuHHj9NJLL+nEiRMur3uypvIG1pzwBmqvaKw5YQdq0zqsOa1BMwhgg0qVKsnhcJg6zpKTk23MKPCVK1dOL7/8sh555BHNmTNHP/30k3bs2KGEhARlZmaqdu3aatasmW6++WYNGzbMecHPu1js2LGj23OnpKSYtt29/SKsQ+2VLdSe/6A2rfPpp5+atsPCwvTXv/7V0jmoLf/hK7XVokUL0x+9Tp06Veo5lBbWnJCovbKG2vMf1KZ1WHPiUt6oreuvv14DBgzQggULtHDhQq1atUonT57UuXPnVL16ddWvX1/9+/fXHXfcodjYWEmu66mwsDBL3znsS1hzQqL2yhpqz39Qm9ZhzWkNmkEAG4SEhKhWrVqm53edOHFCbdu2tS+pMqJmzZp68MEH9eCDDxbr+G3btpm2O3Xq5PaceTsw69ev73YMWIPaK1uoPf9BbVojMzNTX3zxhWnf4MGDVbVqVUvnobb8h6/UVt7vwXPnzpXq/HZgzVm2UXtlC7XnP6hNa7DmRF7eqq3g4GDdcMMNuuGGG4p1fN71VJs2bRQWFlaiHHwda86yjdorW6g9/0FtWoM1p3VoBgFs0rBhQ9P/DI4dO2ZjNr4nLi7O7hSUmpqq7du3m/ZdddVVbsfJ+7Vt0KBBifJCyVB7hfOF2rMKtedfqM2SW7BggU6fPm3aZ/WtEyVqy9/4Qm2dP3/etB0VFVXqORTEF/6/x5ozMFF7hfOF2rMKtedfqM2SY82J/PhCba1bt8607cl6ylt84f97rDkDE7VXOF+oPatQe/6F2iw51pzWCbI7AaCsuuKKK0zb+/btsykTFOS7774zPcutTZs2atOmjdtx9u/fb9pu2bJliXOD56i9soPa8y/UZsnlvXViTEyM+vfvb/k81JZ/8YXa2rt3r2k7Ojq61HPwZaw5AxO1V3ZQe/6F2iw51pzIj921lZ6ervnz55v23XXXXaWag69jzRmYqL2yg9rzL9RmybHmtA7NIIBN8j6TMe8tm2C/jz76yLQ9evRot2McOnRIFy5ccG6XL18+IP9n4k+ovbKB2vM/1GbJJCQkaOHChaZ9d9xxh4KDgy2dh9ryP3bX1r59+1z+6NW6detSzcHXseYMTNRe2UDt+R9qs2RYc6IgdtfWnDlzTN8zHTt25LGjebDmDEzUXtlA7fkfarNkWHNai2YQwCZdu3Y1bW/evNmeRJCvefPm6ZdffnFuV69eXbfffrvbcbZs2WLa7tChg0JCeEKXnai9soHa8z/UZsnMnDlTmZmZpn0jR460fB5qy//YXVsvvfSSyz5vvJPDX7HmDFzUXtlA7fkfarNkWHOiIHbWVnJysv7xj3+Y9j366KOlNr8/YM0ZuKi9soHa8z/UZsmw5rQWzSCATVq1aqVatWo5t48fP+5yOyJfFBcXJ4fDYfqYMGGC3WlZateuXbr//vtN+yZPnuzRc3yXL19u2vanX/IEKmqvbKD2/A+1WTKfffaZabtTp05q0aKF5fNQW/6npLVlGIbHc3/55Zcu35u9evUq1vNXfaW2vIk1Z2Cj9soGas//UJslw5oTBbHr57msrCyNHDlSx44dc+675pprdNtttxVrvK/Uljex5gxs1F7ZQO35H2qzZFhzWotmEMAmDofD5cKybNkye5IJYPHx8VqyZEmxj//ll1/Uu3dvnTx50rmvb9++uuOOOzyaP+//TAYOHOhRHFiH2isbqD3/Q216btOmTS6d7HfffbdX5qK2/E9Ja+vXX3/VwIED9dtvv7k175QpU3TnnXea/mjmcDj0+uuvuxXHX7DmRF7UXtlA7fkfatNzrDlRGKt+nvvuu++UlJRUrGPj4+M1bNgwffPNN8595cuX19SpU92e11+w5kRe1F7ZQO35H2rTc6w5rRd49zoB/MiIESP0ySefOLd//PFHjRo1yq0YSUlJmjVrVrGPX7p0qdLS0vJ9rWPHji7PMvN38fHxuuaaa9S0aVMNGTJE1157rdq2bavo6GhJf76rJyEhQb/88ov+85//6PvvvzeNj42Ndevze6mTJ09q06ZNzu0mTZqoXbt2np8MLEPtlY7169dr/fr1+b72+++/u+wrbGF62223qVKlSsWal9rzX9SmZz799FPTdnh4uG699VbL56G2/FdJasswDC1cuFALFy5U48aNddNNN+mqq65S27ZtVbduXQUFBTmP27t3r5YsWaJ3331Xf/zxh0us5557Tp06dbLmpHwMa07kh9orHaw54S5q0zOsOVEUK36eGz9+vA4cOKBBgwZp0KBB6tSpk5o2beqsrdTUVG3cuFHz58/XtGnTlJiY6BwbFBSkGTNmqEmTJtackA9izYn8UHulgzUn3EVteoY1pxcYAGyTlZVlxMTEGJIMSUaFChWM1NRUt2IcPHjQOb6kH88995xH8z3//PMefga8b9OmTfmea1hYmFGtWjUjJCSkwM9H8+bNjcOHD3s89/vvv+83n6eyhtorHc8995xln6ODBw8We15qz39Rm+7LyMgwqlevbpr/5ptv9spc1Jb/KkltLV26tMAacTgcRqVKlYyqVasaQUFBhdbTo48+6lbOdteWu1hzIj/UXulgzQl3UZvuY82J4rDi57k2bdq4fK8HBQUZlStXNiIiIgqsqdDQUOOLL75wO2e7a8tdrDmRH2qvdLDmhLuoTfex5vQOHhMD2Cg4ONh0W77U1FT98MMPNmZUtB07dpi2HQ6Hhg0bZlM2nsvIyNCZM2eUlZXl8prD4dA999yjtWvXql69eh7PMWfOHOe/g4KCdOedd3ocC9ai9gIbtee/qE33LViwQKdPnzbtGzlypFfmorb8l7dqyzAMJSUl6ezZs8rJycn3mBo1amju3Ll688033Yptd21ZhTVn2UbtBTZqz39Rm+5jzYni8FZt5eTk6Pz580pJScn39SuuuEK///67R+8atru2rMKas2yj9gIbtee/qE33seb0DppBAJs9+OCDCg4Odm5Pnz7dxmyKlve5ZjfddJNatmxpTzLF0KhRI40fP16dOnVSSEjhT8aqWLGibr/9dm3YsEHTp09XxYoVPZ73wIEDWrp0qXP7hhtuUMOGDT2OB+tRe4GJ2vN/1KZ7PvvsM9N27dq11bdvX8vnobb8n6e11bZtW7333nsaMWJEsX95HBoaqiuvvFIfffSRDh06pKFDh7qdr9215S7WnCgItReYqD3/R226hzUniqukP8899dRTGjJkiCpXrlzocQ6HQ127dtWnn36qLVu2qEOHDp6ka3ttuYs1JwpC7QUmas//UZvuYc3pHQ7DMAy7kwDKultuuUWzZ8+W9GcH2oEDB9SgQQObs8pf586dtW7dOkl//g9m27ZtuuKKK2zOqnhSU1O1detW7du3T6dOnVJKSorCwsIUHR2t5s2bq0OHDgoNDbVkrqefflovv/yyc/vXX39V9+7dLYkN61B7gYfaCwzUpu+htgKDFbV19uxZ7dq1S0eOHNHJkyeVkpKinJwcRUZGqkqVKmrUqJE6dOigcuXKlShXf64t1pzIi9oLPNReYKA2fQ+1FRisqC3DMLRnzx5nfSUmJkqSIiMjFRsbq44dO6pGjRolztWfa4s1J/Ki9gIPtRcYqE3fU+Zqy74n1ADItWXLFsPhcDifTfX444/bnVK+EhMTjeDgYGeeI0aMsDsln5SammrUqFHD+Xnq0aOH3SmhANReYKH2Age16VuorcBBbQUWatN/UHuBhdoLHNSmb6G2Age1FVioTf9B7QUWai9wUJu+pSzWFo+JAXxA69atNXz4cOf2Bx98oPPnz9uXUAFWrFih7OxsSX92MI4fP97mjHzT9OnTlZCQ4Nx+6aWXbMwGhaH2Agu1FzioTd9CbQUOaiuwUJv+g9oLLNRe4KA2fQu1FTiorcBCbfoPai+wUHuBg9r0LWWxtmgGAXzExIkTnbfuS0pK0jvvvGNzRq4ufV7Y8OHDA/L2UCWVkZGhSZMmObcHDhyoq6++2saMUBRqLzBQe4GH2vQN1FbgobYCA7Xpf6i9wEDtBR5q0zdQW4GH2goM1Kb/ofYCA7UXeKhN31Bma8vuW5MA+J+///3vzlsTRUVFGadPn7Y7JZMuXboYkoygoCBj+/btdqfjk6ZMmeL8GoaFhRl79uyxOyUUA7Xn/6i9wERt2o/aCkzUlv+jNv0Ttef/qL3ARG3aj9oKTNSW/6M2/RO15/+ovcBEbdqvrNaWwzAMwytdJgDclpSUpMsvv1wnTpyQJI0bN06TJ0+2OSsUV1JSkmJjY523mPrHP/6hV155xeasUBzUnn+j9gIXtWkvaitwUVv+jdr0X9Sef6P2Ahe1aS9qK3BRW/6N2vRf1J5/o/YCF7Vpr7JcWzSDAAAAAAAAAAAAAAAABJAguxMAAAAAAAAAAAAAAACAdWgGAQAAAAAAAAAAAAAACCA0gwAAAAAAAAAAAAAAAAQQmkEAAAAAAAAAAAAAAAACCM0gAAAAAAAAAAAAAAAAAYRmEAAAAAAAAAAAAAAAgABCMwgAAAAAAAAAAAAAAEAAoRkEAAAAAAAAAAAAAAAggNAMAgAAAAAAAAAAAAAAEEBoBgEAAAAAAAAAAAAAAAggNIMAAAAAAAAAAAAAAAAEEJpBAAAAAAAAAAAAAAAAAgjNIAAAAAAAAAAAAAAAAAGEZhAAAAAAQIl8+umncjgcpo+4uDivjYM1+PwDADz14Ycfmv7/8eSTT9qdEjz0ww8/mL6Wt99+u90pAQAAwCI0gwAAAAAAAAAAiuXs2bP65z//6dyuVq2annrqKRszQkkMGjRIPXr0cG7PmjVLK1assDEjAAAAWIVmEAAAAAClKi4uzuVuBL169bIk9rJly1xijxw50pLYAFAS+V37CvsoX768YmJidPnll2vw4MGaMGGCfvnlF+Xk5Nh9KgDKuKeeekpnzpxxbj/zzDOKiooqclzDhg29dkeq/K6jvubHH390ybFp06Zem+/99993me+6667L99jXX3/dtP3ggw8qOzvba7kBAACgdNAMAgAAAADwKxMmTPD5P/gAJZWWlqaTJ09qz549WrBggZ5//nlde+21io2N1aRJk5SVlWV3ikCh8muA+vTTT+1OCyW0c+dOffTRR87tmjVrasyYMTZm5D/69eunOnXqmPbt27dPv/76q1fm+/jjj132jRo1Kt9ju3Tpon79+jm3t2zZos8//9wreQEAAKD00AwCAAAAAADgJ+Li4vT444+ra9eu2rt3r93pAChjnn32WdMdI8aNG6dy5crZmJH/CA4OzveOdZ988onlc/3xxx9av369aV/VqlU1ZMiQAsdc+ugfSXr++eeVkZFheW4AAAAoPTSDAAAAAAAA2CAiIkJt2rTJ96Np06aqUqVKgWM3bNiga6+9VkePHi3FjAGUZRs3btTcuXOd25GRkXrggQdszMj/3HPPPS53NJszZ46Sk5MtnSe/u4LcfvvtCg8PL3BMz5491aVLF+d2XFyc6S4wAAAA8D80gwAAAAAASmTkyJEyDMP00bBhQ7vTQhH4utmvY8eO2rx5c74fe/bs0dmzZ7Vv3z69+OKLql69usv4w4cPa/jw4TZkDqAseu2112QYhnP7jjvuUKVKlWzMyP80btxYvXr1Mu1LSUnRV199ZdkcmZmZmjlzpsv+e+65p8ix999/v2l70qRJysnJsSw3AAAAlC6aQQAAAAAAAHxUbGysnn76aW3btk2dO3d2eX316tWaM2eODZkBKEsOHTqkb775xrTvvvvusykb/zZq1CiXffndycNTCxYsUEJCgmlfhw4d1KZNmyLHjhgxQlFRUc7tAwcOaN68eZblBgAAgNJFMwgAAAAAAICPi4mJ0YIFCxQTE+Py2gcffGBDRgDKknfeeUfZ2dnO7U6dOqlVq1Y2ZuS/brzxRlWuXNm0b+XKldq7d68l8fNrLMmvASU/5cuX16233mraN2XKFEvyAgAAQOmjGQQAAAAAAMAP1KhRQ0888YTL/hUrVig1NdWGjACUBVlZWfr8889N+3hElefKlSunv/71ry77rbg7SHx8vBYtWmTaV758+XznK0jer+1vv/2m/fv3lzg3AAAAlL4QuxMAAAAAAF+VnJysXbt2ac+ePTpz5oySkpIUHh6uKlWqKDo6Wh07dsz3XfrekJqaqjVr1mj37t06d+6cQkJCFBMTo86dO+vyyy8vdpwzZ85o7dq12rdvn5KSkhQZGalatWqpZ8+eql69uhfPwD+dOnVK69ev16lTp3Tq1CkFBwcrOjpaNWvWVNeuXRUZGen1HHJycrRx40Zt27ZNp06dksPhUPXq1dW4cWN169ZNYWFhXs+hKNnZ2Tpw4IB27dqlY8eOKTExUdnZ2apSpYqqVKmiZs2aqVWrVgoKKp33pOzdu1cbNmzQsWPHlJ6ermrVqql27dq6+uqrVaVKlVLJwVuGDRumxx57zLQvPT1d27dvV6dOnQod64tfpy1btujo0aNKTk5WWFiYYmJidOeddxZr/LFjx7Rr1y7FxcXpwoULunjxoiIjI1W1alXVr19fnTp1Urly5bx8Fn86fPiw1q9fr0OHDiklJUWVKlVSkyZN1K1bN7e+53bu3KlNmzbpxIkTysjIUHR0tGJjY3X11VcrJMT6X+MZhqFt27Zp//79SkhI0JkzZxQREaEaNWqoYcOG6tSpk1fm9Ybz589r3bp1OnnypBISEpSenq7q1asrOjpanTp1Uq1atbyeQ+7/Mw4ePKgLFy44r9dDhw4t8v+xFy9e1Pbt27Vz506dO3dOSUlJCg4OVoUKFVSlShU1aNBAsbGxqlOnjtfPI6/Fixfr5MmTpn033XRTqecRSEaNGqX33nvPtG/GjBl68cUXFRwc7HHcGTNmKCsry7Rv2LBhpke/FKVnz56qUaOG6VEzM2bM0PPPP+9xXgAAALCJAQAAAACl6ODBg4Yk00fPnj0tib106VKX2HfddVexx2dmZhqLFy82Hn74YaN169aGw+FwiZf3IzY21nj22WeNhIQEj3L+5JNPXGIePHjQ+fquXbuM22+/3ShXrlyBObRv39744YcfCp3n119/Nfr3728EBwfnGyM4ONjo16+f8ccff1h+DlaM69mzZ5Ffi6I+Pvnkk2KdT2pqqvH6668bHTp0KPR7ICQkxOjevbsxffp0Iysrq/ifsP8vv+/XpUuXOl+/cOGCMX78eKNmzZoF5hAREWGMHDnSOHz4sNvze/p1y7V7927jlVdeMa677jojIiKiyM9/VFSUcdNNNxmrV692O9dceWM+99xzzteys7ONjz/+2GjZsmWBOQQHBxvXXHON8fvvv3ucg6esvPbl9/ku6Brga1+n5ORk45VXXjEaN25cYA4FSUhIMKZNm2aMGDGi0LrI/QgLCzN69OhhfPXVV0Z2drZH55L32pP3azZ79myjY8eOBeYQHh5u3HHHHcaRI0cKnCMtLc2YMmWK0aRJkwLjVK5c2fjnP/9ppKSkeHQeea1bt8644447ivw8VqpUyRg2bJixZs2aYsXN77ri7oc7dZGammpMmjTJuPLKKwv8/1vuxxVXXGG8+uqrRnJystufr8K+D3JycoxZs2YZXbt2LfD/GZde2/OaO3eucf311xuhoaHF+vzUrl3bGD58uDFz5kzjwoULbp+LJ26//XZTDi1atPAoToMGDUr0/53CuHMt8RVt27Yt9rW8uJo1a+YSc8mSJW7HufPOO00xmjRpUqK8AAAAYA/fXxUDAAAACCi+2gwye/Zso3r16h7/8apChQrGO++843bOhf1B/t133zXCw8OLncMjjzxi5OTkmOKnp6cb999/f7FjhISEGDNmzLDsHKwaV1rNIF9++aVRp04dt2NfccUVxvLly936vBXWDPLrr7+6lUf58uWN+fPnuzW/p1+306dPG+3atSvR1+KGG24wzp0751a+hlFwk8HRo0eNK6+80q0cnnrqKbfnLwkrr321a9d2iTVr1izTMb74dVq9erVRv379IufNz6233mqEhIR4fC7Nmzf3qNmtoCaACxcuGIMGDSr2/FFRUcYvv/ziEn/Hjh2FNjDl/WjSpIlHzV+54uLijGHDhnn0ORw2bFiR3w+l2Qzy4YcfGrVq1XI7fs2aNY05c+a49Xkr6PsgPj7e6NGjR5Fz5tcMcujQoWKNLezjySefdOs8PJGdne2yPnrggQc8ikUziNm///1vl5xvuukmj+OtXLnSJV7jxo1d1obFkV8t79692+PcAAAAYI/Sue8nAAAAAPi4HTt26PTp0x6PT01N1YMPPqj777/fknxefvlljR07Vunp6cUeM2XKFD399NPO7YyMDA0ZMkTvv/9+sWNkZWVp5MiRmj9/vlv5BoKJEyfqlltu0bFjx9weu337dvXt21f/+c9/SpzHggULdO2117qVx8WLF3XjjTdq0aJFJZ6/KElJSdq0aVOJYsyfP1+dO3fW0aNHS5zPgQMH1KVLF/3+++9ujXv55Zf1zDPPlHh+O1y4cMFlX+XKlU3bvvZ1+vXXX9WrVy8dPnzYo/GrVq1yefSBO3bu3KmuXbvqv//9r8cxciUlJal379764Ycfij3mwoULGjx4sDZv3uzct3nzZnXv3l1//PFHsePs27dPvXr1yvd7oCirV69W586dNXfuXLfHStLcuXPVtWtX7du3z6PxVsnMzNTf/vY3jR49WidOnHB7/MmTJzVixAhNnDixRHnEx8erW7du+vXXX90eGxcXp6uvvtqjsaVt3bp1LuujXr162ZNMgLnttttcHmX13Xff6cyZMx7F++STT1z23XPPPXI4HG7H6t27t8u+hQsXepQXAAAA7OMfD/0EAAAAgFLWoEEDtWvXTi1atFDdunVVqVIllS9fXsnJyTp+/Lg2b96sxYsXu/xBburUqWrVqpUeeOABj+f+9ttvTU0dNWvW1PXXX6/27durevXqSkpK0pYtW/TVV1/p5MmTprGvvvqqhgwZos6dO2vs2LGmX9w3a9ZM119/vZo2barKlSvr7NmzWrFihb7++mtT00lOTo7uv/9+9erVy61nzHtTkyZNdP78eUl//gEu73m3adOmyBhVq1Yt8LWJEydq/PjxLvtDQkLUu3dvXXvttapTp46ysrJ05MgR/fjjj1q9erUMw3Aem5GRodtuu03BwcEaMWJEMc/MbPPmzfrnP/+pjIwMSVL58uV1zTXXqEePHoqJiVFISIiOHDmin376Sb/88otpbFZWlv72t79p+/btpfp1q1ixojp16qTmzZuradOmioqKUqVKlZSRkaFz585px44dWrp0qXbu3Gkat3fvXt18881avny5QkI8+/VEUlKSBgwY4GyccTgc6tatm6699lrVr19fFStWVEJCglauXKl58+YpLS3NNP7VV1/V4MGD1aVLF89O3gaHDh1SSkqKy/4aNWoUOs7Or1N8fLyGDRtm+vx37txZ1113nRo0aKBKlSrpxIkT2rFjh+bMmVNkvODgYLVv315XXHGFmjVrpmrVqikyMlKGYSgxMVF79+7V6tWrtXLlSuXk5DjHJScn65ZbbtGmTZtUr149j85Fku68805t3LjRud2hQwcNGDBAjRo1UsWKFRUfH68lS5bo+++/N82fmpqqu+66Sxs3btTp06d1/fXXO//oGxoaqt69e6tPnz6qXbu2QkJCFBcXp/nz52vNmjWm+Q8cOKB//vOfeu+994qd87JlyzRgwACXGggKClL37t3VrVs3NWrUSJUrV9bFixd19OhRLV++XL/88ouys7Odx+/evVsDBw7U+vXrFRkZ6TJP1apVndfjjIwMl++nevXqFXotlv683hckJydHQ4YM0Y8//ujyWu3atXXNNdeoXbt2ql69usqVK6ezZ89q06ZNWrhwoakRyTAMjR8/XtWrV/eoiTMnJ0cjRozQgQMHnPsaN26sQYMGqVmzZqpevbrOnDmjgwcP6ptvvnEZf8899+jIkSMu+9u2batevXrpsssuU+XKlRUaGqqkpCSdO3dOu3bt0tatW7V+/XrT18Tbli9f7rKvY8eOpTZ/IKtSpYqGDh1qaiTNyMjQrFmz9PDDD7sVKzU1VbNnzzbtCw4O1siRIz3KrUGDBqpRo4YSEhKc+5YtW6ZHHnnEo3gAAACwic13JgEAAABQxvjqY2Kee+45o1WrVsZbb71l7Nmzp1hj0tLSjLffftuIjIw0zRkeHm4cPXq0WDHyuw137qNhgoODjYkTJxoXL17Md+yFCxfyvd3/ddddZ3zzzTfO7Ro1ahhfffVVgTns3bvXuOyyy1zivPzyyx6fg9WPibnUc889Z+mt4FesWGEEBwe7xLz66qsLvSX6qlWrjGbNmrmMq1y5snHo0KEi583v+7VcuXLOf99xxx3G8ePHCx1ftWpVlxivvPJKsc7b08//wYMHjcqVKxsPPvigsWzZMiMjI6NY861cudLo2LGjy5xvvPFGscYbhutjAC79fHXp0sXYsGFDoXm3b9/eJUa/fv2KPX9JWHXtmzx5skucsLAwIzk52WU+X/k6XVpfrVu3NlatWlXg2IKud02bNjWGDRtmzJ071zh//nyx8oiLizNuvfVWl3wGDRpU7HPJ+3iQSx/d1ahRI+Pnn38ucOz69euNmjVrusz/xRdfGIMHD3ZuX3vttYX+f+fjjz92uUYFBQUZR44cKdY5nDhxIt887r777iKvVfv27TP69evnMrY4j7LI73u+OI/rKsz48eNdYtatW9f46quvjKysrALHZWZmGh9++KFRsWJFl9op7LqRK+/3waVfj2rVqhkzZswo8FEcOTk5RlpamnP7t99+czmHxo0bGytWrCjW5+Ds2bPGrFmzjB49ehj/+Mc/ijWmJG666SZTrpUqVfLosSOGwWNi8vPf//7XJe+2bdu6HefTTz91iTNgwIAS5Xbttdea4tWpU6dE8QAAAFD6/GNVDAAAACBg+GozSHH/uJifLVu2uDSE/POf/yzW2Pz+IJ/7h765c+cWOT4jI8No2bKlaazD4TCqV69uSDJq1apVrOaWffv2mf7Iqf/X3n1HR1Wt/x//DCEmgCEFgYQiIEguIJ1IhFACF6SLBUEEpF77F1H0CgtBBWlyry4Ur0oJiCgIFgJGEBSkt0QJNUCUSBECKZTQk/n94Y8sTs4QZs5MKu/XWlmL82T2s/eZUyaL88zekr127dqW96GoFINkZWXZQ0NDHT4svnz58i3bp6SkmN5/SfZu3brdsq2j8/X6z/jx450a//r16+02m83QtlatWk61tfr+X7582X7hwgWn+sjp4sWL9k6dOhn6rFq1qv3q1atOtb/Z+9WtW7ebFhHcKCUlxfRQvESJEk4V77jLE/e+U6dO2YODg0152rVrZ3ptYTxOLVu2tJ85c8bSmNy5R7/55pume+T+/fudapuzCOD6T506dex//fXXLdtv3LjRdI1WqFAh+99PPPGEU+/rhAkTTGN45513nNqHzp07G9p5eXnZFyxY4FRbu/3v++SgQYNM/W/dujXXdp4uBtm0aZO9RIkShnwPPPCAS+fGb7/9Zvq8duaB+c3Og4oVK9r37Nnj0n6MHDnSkMPb29t+8OBBl3Jcl5GRYamdK6pXr24Yb3h4uOVcFIOYZWVl2WvUqGEae1xcnEt5HJ2jS5YscWtsI0aMMOXMrUgVAAAAhU8JAQAAAEAB27Fjhxo1auT2z9ChQy2PwZ1lNRo0aKCJEycaYrNnz7acT5Jef/11Pfzww7d8nbe3t2l5E7vdrtOnT0uS5s+fr3vvvfeWeWrWrKlBgwYZYgcOHFBiYqILoy56vv/+eyUkJBhid999txYtWqQ77rjjlu2DgoIUHR2tUqVK3TKvsx555BGNGTPGqddGRESoV69ehtihQ4fy9Ljdcccdpv11lq+vr+bNm6fSpUtnx64ve2NV9erV9fnnn8vX1/eWrw0KCtK4ceMMsaysLK1atcpy//nl5MmT6tGjh06cOGH63bBhw0yxwnac/P39tWjRIodLizjb3qqxY8cqLCwse9tut7t1j/bx8dGiRYsUHBx8y9e2aNFCnTt3NsSSk5MlSaGhoZo1a5ZTy++88sorCggIMMRuXAbsZrZv32563aRJk9S3b99btr3OZrPpk08+UZ06dQzxyZMnO53DEyZMmGBYdqdSpUqKiYlx6dxo2LChaXmdH374QTt37rQ0plmzZqlu3boutblxaRlJatu2ba5L4+Tmxms0L1y5ckVJSUmGWLVq1fK0z9uNzWYz/f0lSXPmzHE6R2JiotatW2eIlS9fXj169HBrbI6O9YEDB9zKCQAAgPxFMQgAAACAApeRkaGdO3e6/VOQhQv9+vWTzWbL3k5OTrb8H+YBAQEaPXq006/v1q2bfHx8TPEOHTqoffv2Tud57LHHTLG4uDin2xdFH374oSk2bdo0lSlTxukcNWrU0L///W9DzG63a8aMGS6Pp0SJEpo6dapLbfr162eKxcbGutx3fqlQoYI6depkiG3YsMFyvnHjxrn0MLhPnz7y8vIyxArz+/X7779r8uTJatCggTZv3mz6fVhYmHr37u3xfj19nF5++WVVrlzZ3WFZYrPZ1L9/f0PMnX3p37+/6tev7/TrH330UYfxsWPHOv0w39fXV926dTPEdu7cKbvdnmu7KVOmGLZr1aqll19+2ak+b+Tt7W36XPrhhx90+fJll3NZsXv3bsXExBhiEydONBXIOKNv376mIsnvvvvO5TyRkZGmY+KMc+fOGbbLlSvnco78kpSUZDrHCuo6Ls4GDhyoEiWM/03/xRdfOH19RUVFmY5T//795e3t7da4qlSpYoodPnzYrZwAAADIXxSDAAAAAIAH+Pv7q0KFCobYli1bLOXq3bu3S8UIpUqVUmhoqCk+ZMgQl/pt3LixKWZ1doui4MqVK/rll18MseDgYKdmZMnpX//6l6nAwMpsE+3atVPNmjVdanP//febYoX9uOV8EGv1WilTpoxLMxxIUmBgoKn/gnq/cpsVKTQ0VOXKlVPNmjU1atSo7NkkblS5cmUtXrzYUIjmSZ46TjabTYMHD/bEkCzLuS9xcXG6evWqpVyeuLf6+fmZZvVxNc+5c+d07Nixm77+0qVLWr58uSE2cOBA073KWV26dDHlt3pOuGrJkiWGbT8/P8tFUDabzTRby9q1a13O4+p5cF3O4o+tW7fq2rVrlnLltaNHj5pizsyIA9dUrVpVHTt2NMRSU1O1dOnSW7bNysrSZ599Zop74p4bEhJiih05csTtvAAAAMg/t56HEgAAAABuQ3a7XbGxsYqNjdWuXbt09OhRnTt3TmfPnr3pA8TU1FTD9p9//mmp79atW7vcplq1aoqPjzfEWrVq5VKOoKAg+fn5Gb61nJ6e7vJYioq4uDhdunTJEOvZs6dTSzbkFBISolatWhkeKCYkJCglJcWlb323adPG5b4rVqyoMmXKKCMjIzt25swZl/O449ixY9q0aZPi4+N14MABnTlzRmfPntXFixcdzlyQc6kTq9dKeHi4U8v55FSzZk3t378/ezu/36/rrs+KZEWjRo20cOFCl5ZsKKjjVKtWLYffMHfH+fPntW7dOsXHx2vv3r1KSUnR2bNnlZGRYVhK5MbX3+jy5cs6efKky+MqXbq0mjVr5lIbR8coPDzc5W/tV69e3RRLT0+/6T5s3brVNLNAy5YtXerzRkFBQfL39zdcL7/++qul+5archbuNWnSxKmloW6mRo0ahu1ff/3V5RyRkZGW+m7evLkWLlyYvf3HH39o2LBhmjFjRp4v++Kqs2fPmmKuFKvCeUOGDNGKFSsMsaioKD3++OO5tlu1apWpQKN58+aqV6+e22NydD7mnNkGAAAAhRvFIAAAAAAKXJs2bSx9KzentWvXWn44c92ZM2c0bdo0zZ8/X0lJSW7lslpIUatWLZfb+Pn5GbZLlSqlSpUqWcpz43/0F9RD8vzgaAkcVx/y3igsLMxwHtvtdv3666/65z//6XSOnLMXOMvf379AikGWLFmijz76SL/88ovDB/DOsnqtuPN+3agoned33323nn/+eY0YMcLpYoKCPk5NmjSx3GdOsbGxevfddxUdHa2LFy+6lSu3QoqbqVatmssFYznvz5Jn7vNS7ufuxo0bTbHnnnvOUgHVdRcuXDBsnz592nIuZ2VmZppmIImPj1ejRo0s58xZvHnmzBldvXrV6WuqYsWKlj5jpb9n/xo9erTh/J07d65iYmI0cOBAPfLIIwoLCzMtG1IQch5v6e+/L+B5PXr00F133WW4pn788UcdO3Ys16V5oqKiTDGrs9bk5OhY3/i3BgAAAAo/ikEAAAAA4P9bunSpnn76aZ08edIj+aw+YA4MDHS5Tc4HWFZyOMpjdRmFosDRQ8w6depYzle3bl2n+shNUFCQpb7z+7gdP35c/fv3188//+yRfFavlaLyflnh4+OjsmXLKiAgQLVr11bTpk3VunVrRUZGOv2QuLAcp5xLaFlx9epVjRgxQv/73//cKmi5kZX98cT92ZN5cjt3HS3xsW/fPpf7zbiN+NkAABeESURBVE1KSopH892sj5yzOKWlpSktLc2j/aSmpqpixYpOvdadczokJEQTJ07UiBEjDPHk5GRNnTpVU6dOVUBAgFq0aKHmzZsrPDxcLVq00J133mm5T6syMzNNMavLDCF3d9xxh/r376/33nsvO5aVlaV58+Zp9OjRDtukpaXpu+++M8TKlCmjPn36eGRMjgrfCuuSRgAAAHCMYhAAAAAAkPTFF19owIABDh98WGX1AbOrSwfkVY7iztGDxICAAMv5HD3czfnt81spCsft2LFjatu2rQ4dOuSxnFYfLhWF9ys3npoVyZHCdJzKli3rVr9Xr15Vr169tHTpUrfyOMrrKk+dc/lx7uZHoYa7s7M4Iz/2Q3JtX9w9p1966SVdu3ZNo0aNcnhdpaenKyYmRjExMZL+figfHh6u3r17q0+fPrrrrrvc6t9ZjmaGyFmYA88ZMmSIoRhE+nvWmJsVgyxYsMC0FFSvXr0cziJkhaNrorAtZQQAAIDcFfx8gwAAAABQwBITEzV48GBTIYi3t7cefvhhvffee1q9erUSEhKUmpqqjIwMZWVlyW63G36qVatWQHsAKxyte1+mTBnL+Ry1ddRHUTdw4ECHBQaNGjXSqFGj9O233youLk4nTpzQ2bNndeXKFdO1Mm7cuAIY+e2lMB0nV5dVyWnKlCkOC0EqV66s5557Tp9//rk2b96sI0eOKD09XZcuXTLty5o1a9waQ1Hk6ZkzCkph3A93z2lJGjlypHbv3q0nn3xSvr6+ub722rVr2rBhg1588UVVq1ZNr776ar4s1+Hoc82dAiBH75snikscjakozmBSr149NW/e3BA7ePCg1q9f7/D1jpaIGTx4sMfG4+h9defvJAAAAOQ/ZgYBAAAAcNt7/fXXTd+s7NSpk+bMmaOQkBCn8+THN6ThOY6+OevOwzVHbT317dzC4vvvv9fq1asNsQoVKmj+/Pnq2LGj03m4VvJWcTpOycnJmjRpkiFWsmRJvfvuu3rhhRecfihfGPYlvzma1WHfvn36xz/+UQCjsc7RfvTu3VsLFy4sgNF4VmhoqD7//HPNmDFD33//vdasWaMNGzYoISFBdrvdYZsLFy5o2rRpio6O1o8//pinhaiOlsNxdcarGzmafev8+fOW8+WWw+pyeQVtyJAh2rp1qyE2Z84ctWrVyhCLj49XXFycIVa7dm3T69zh6Fh7YtkvAAAA5B9mBgEAAABwW8vIyNCyZcsMsSZNmig6OtqlQhCpcH57GTfn6EFRenq65XyO2gYFBVnOVxh9+eWXhm0vLy8tW7bMpQIDyb2Hibi14nScoqOjdeHCBUNsypQpeumll1yanaEw7Et+c7SUSFF8H4rLfuTG399fffv21cyZM7Vv3z6lpKRo+fLl+ve//6369es7bHPgwAF17dpVV65cybNxOSo0OXr0qOV8nv7czS1HUS0G6dOnj2n2jcWLF5sKXmbPnm1q68lZQSTHx5pZ8AAAAIoWikEAAAAA3NbWrVtnmhVk1KhR8vb2dinPkSNHdPXqVU8ODXmsfPnypti+ffss59u7d68p5ughZlG2atUqw3anTp10//33u5zn999/99SQ4EBxOk459yUwMFAvvviiy3kKw77kt4oVK5piSUlJBTAS95QvX142m80QK4r74YrAwEB17dpVkydPVnx8vBISEvTss8+alj7Zs2ePw6IATylXrpzKli1riLlTDOLoM3H//v2W813n6LO7qH7++vn5qVevXoZYRkaGvvrqq+ztK1euaMGCBYbXlCxZUk899ZRHx3Ls2DFTrEaNGh7tAwAAAHmLYhAAAAAAt7UjR46YYlam2N68ebMnhoN81KRJE1Nsx44dlvNt377dsG2z2Rz2UVRdvnxZycnJhpiVayUzM1Pbtm3z1LCQQ3E7Tjnv0c2bN3e5WE+6Pe/RzZs3N8XWrVtXACNxj6+vrxo2bGiIHThwQCdPniygEeW/2rVr66OPPtJnn31m+t3XX3+dp303aNDAsJ2QkGA5l6PPxPj4eMv5rtu9e7cp1rRpU7fzFpQhQ4aYYlFRUdn/jo6OVkpKiuH3nTt3VnBwsEfHkbNQx8fHp8gtMwUAAHC7oxgEAAAAwG3t9OnTppiVpT0WLVrkieHACY6WhsjMzHQ5T5MmTeTr62uIfffdd5ZynTx5UuvXrzfEQkNDi9UyMTkfPEnWrpWYmBjTdPfwnOJ2nHLeo63sy+nTp7VmzRpPDanIiIyMNN0vly9fnm+zWHnqXi1JHTp0MMW++eYbS7mKsr59+6pRo0aGmCeKKXITFhZm2E5KStLZs2ct5WrZsqUp9sMPP8hut1vKd93y5cud6quoiIiIUGhoqCG2YcMGHTx4UJI0Z84cUxtHBSTu2rlzp2G7YcOGlorxAAAAUHAoBgEAAABwW8u5LrvkuEAkN4mJiVq6dKmnhoRb8PPzM8WsPLT29vZWZGSkIXbixAl99913Luf69NNPde3aNUOsY8eOLucpzDxxrUjSf//7X08MBzdR3I5Tzv2xsi8zZszQpUuXPDWkIqNs2bJq27atIXb06FHNnz8/X/r31L1akh566CFTbNq0aab77u0g58wMZ86cydP+wsPDTTGrBShNmzZ1uOyMO8Vahw4dMs384+XlpdatW1vOWRgMHjzYFJszZ46OHz+uH3/80RCvWLGiunbt6tH+L126pAMHDhhijmYbAgAAQOFGMQgAAACA21pISIgplvM/2XOTlZWlwYMHW/62M1wXGBhoiv3++++Wcj3//POm2MiRI3XhwgWncyQlJWny5MmGmM1m0wsvvGBpTIWVv7+/SpcubYi5cq1I0qxZs7R27VoPjgo5FbfjlPMevWnTJmVkZDjdfs+ePZo0aZKnh1VkjBkzxhQbOXKk5XumK/z8/Eyzg1jtt2XLlqbClt9//12vvPKK1eEVWX/99Zdhu3z58nnaX/v27VWihPG/kHPOhOUsHx8fDRs2zBR/9dVXLf8d9fLLL5tijz76qCpVqmQpX2ExYMAA0/Xz2Wefac6cOab36qmnnnI4E487Nm/ebCq2evDBBz3aBwAAAPIexSAAAAAAbmutWrUyxSZMmODUFOhZWVl6+umntW7durwYGm6ifv36plhMTIylXF26dDF9y/rw4cPq27evU984T0tL00MPPWQqHunevbvuvfdeS2MqzCIiIgzba9eudfq9X7Fihf7v//4vL4aFHIrTccp5jz5//rzeeustp9oePnxYPXr00OXLl/NiaEVCmzZtTEuspKWlqVOnTtq3b5+lnJcuXdInn3xyy9ljSpQoobp16xpiK1euVFZWlqV+J0yYIJvNZohNnz5d48aNs7zMyO7duzVgwAClpaVZam/FK6+8or1791pqGxcXZyrEaNiwoSeGdVPlypUzzQjhzkwew4cPNy01EhcXp2effdblc+Ptt9/WsmXLTPGRI0e6lKdt27ay2WyGn7lz57qUw9OCg4NNs30cP35cEydONL3W0Swi7sp5jH19fdWuXTuP9wMAAIC8RTEIAAAAgNtaSEiI6cHpoUOH9OCDDyopKemm7RISEtSpUyfNmjVLklSyZEnTt/GRN+677z7TNPOTJk3S3LlzdfHiRZdy2Ww2zZ49W15eXob40qVL1bFjRx06dOimbbdu3aqIiAjt3LnTEA8ICNAHH3zg0jiKiscff9wU6927t5YsWXLTNhcvXtTbb7+thx56KPv45Dx+8KzidJweffRR06wE7777rt54441cC7a+/PJLPfDAA9kzURSGfSkoc+fONc2ScPDgQd1///2aNGmSU8uM2O12bdq0SSNGjFD16tX1zDPPODXLR4sWLQzbCQkJGjp0aK6frzfTsmVLjRs3zhR/++231a5dO6dnq0hJSdGsWbPUoUMHNWjQQPPnz8/X2b1mz56tevXqqUOHDpo5c6aSk5Odard8+XJ17tzZVDDRr1+/vBimQc+ePQ3bGzdudPnz9rqqVatq/PjxpvjMmTPVoUMHxcbG3jLHwYMH9fjjjzs8H1588UWFhYVZGlthM2TIEFMs5/vesmVLhYaGerzv1atXG7Y7dOigUqVKebwfAAAA5C3Pzh8HAAAAAEXQW2+9pfbt2xtiW7ZsUe3atfXQQw8pIiJCwcHBunTpko4dO6ZVq1Zp/fr1hgeRY8eO1ezZsy094IJrvL291a9fP3300UfZsYyMDA0aNEhDhw5V1apV5efnZ3qA/Pbbb6tHjx6mfC1atNC4ceM0duxYQ3zNmjWqW7eu2rdvr3bt2qly5crKzMzUkSNHFBMTo02bNpm+jW6z2fTJJ5/o7rvv9uAeFx4DBgzQpEmTlJiYmB07f/68evXqpSZNmqh79+6qVauWvL29lZycrNjYWC1fvlwpKSnZr69Xr566deumKVOmFMQu3BaK03GqXbu2+vXrp88++8wQnzBhgubOnavHHntMDRo00J133qnU1FQlJCQoOjrasO+lS5fWlClT9Oyzz+b38AuFSpUqaenSpWrbtq1hiZ3z589r9OjReueddxQREaEWLVooJCREgYGBunjxotLT03X8+HHFxcUpNjbWcH44a/Dgwfr4448NsaioKEVFRal8+fIqX768aZaIZs2aZRda5jR27Fjt379fCxcuNMTXrl2r1q1bq3bt2mrbtq3q1aunoKAg+fj4KD09XWlpadq7d69iY2O1b9++QrG02+rVq7V69Wo988wzqlevnho3bqy6deuqXLlyCggIUGZmplJTU7Vv3z6tWrVK+/fvN+Vo1aqVevfunedj7du3r0aNGpVdiHLhwgWtWLFCDz/8sKV8r732mjZt2qTo6GhD/Oeff1azZs3UoEEDRUZGqlatWgoKCpKXl5dSU1OVlJSktWvXaseOHQ6PYXh4uP7zn/9YGlNh1KVLF4WEhJiWBrqRo4IRdx0/flxbtmwxxAYMGODxfgAAAJD3KAYBAAAAcNtr166dXn/9dU2ePNkQv3LlihYvXqzFixfn2r5fv34aM2aMZs+enZfDxA3eeOMNffPNNzpx4oQhnpmZqcOHDztsk5qamms+u91u+pbx1atXtWLFCq1YseKWY/L29lZUVJTDWRmKC29vby1evFgRERGmpXHi4uIUFxeXa/vKlStr+fLlBT79fnFX3I7T9OnTtW3bNtPD8KNHj+r999/Pte319+J2n7mpWbNm2rJlix599FEdOHDA8LuMjAytXLlSK1eu9Hi/YWFhGjhwoMNz6dSpUzp16pQpHhAQcNN8NptNCxYsUM2aNTVx4kRTQd6BAwdM+1fYZWVladeuXdq1a5dL7e677z4tXLjQVPiYF6pUqaLIyEj99NNP2bGvv/7acjGIzWbTokWL9NxzzykqKsr0+/j4eMXHx7uUs3v37po/f76puKgo8/Ly0lNPPWX6+/Q6Pz+/PPmb45tvvjFcW4GBgerevbvH+wEAAEDeY5kYAAAAAJA0ceJEjRkzRjabzek2Xl5eGj16tObNm+dSO7gvODhYP//8s5o2beqxnGPHjtWXX35pWk7BGXXr1tWqVav05JNPemw8hVXjxo21cuVKhYSEuNQuPDxcW7ZsUfXq1fNmYDAoTsfJ399fq1evVnh4uEvtKlWqpNWrV6tLly55NLKi5b777tP27dv1wgsvyNfX161cYWFh6tq1q1Ov/fjjjzV8+HCPFS2UKFFCEyZMUExMjBo2bOhWLn9/fw0dOlR33nmnR8bmjODgYLfa22w2PfXUU9qwYYOlzyurcs6sEx0drfPnz1vO5+vrqzlz5mjOnDmqWrWq5Tx33XWX3n33XS1dulT+/v6WcjgqSqpXr57lMXnS4MGDb/q73r17q0yZMh7v84svvjBsDxw4UD4+Ph7vBwAAAHmPYhAAAAAA0N8PV8aPH68NGzaoc+fOuT60Kl26tPr27avY2Fi98847+fKtXJjVqVNH27dv1y+//KKXXnpJkZGRqlKlisqWLSsvLy9LOfv06aNDhw5p6tSpaty4ca5FPiVLllRERIRmzZql+Ph4tWnTxuquFDkRERHauXOnXnvttVy/xS/9PSPBvHnztHHjRlWpUiV/BghJxes4Va5cWevWrdOHH36oe+65J9fXVqtWTePHj9f+/fvVunXrfBph0VC2bFl98MEHOnz4sMaMGaPGjRs79RlWqlQptW/fXpMmTdLevXu1bds2de7c2ak+fXx89P777+vw4cOaOnWqHnnkEYWGhqpcuXK64447LO9Lp06d9Ntvv2nZsmV65JFHFBQU5FS7e+65R8OGDdOSJUv0119/aebMmW4Xx7hi//79io2N1fjx49WhQweVLVvWqXYVKlTQc889p7i4OM2dO9dy4YNVPXv2VI0aNbK3z507py+//NLtvIMGDVJiYqLmzp2rjh07ys/P75ZtfH191bp1a02fPl1JSUkaOXKk5aLckydPau/evYZY165dFRYWZimfp9177703vY/lVihi1e7du7V58+bsbS8vLw0fPtzj/QAAACB/2Ow551MEAAAAACg9PV0bNmzQn3/+qbS0NJUsWVJ33XWXQkNDFRYWxjckbxMnT57U9u3blZycrFOnTsnLy0vly5dXcHCwwsPD8/1hXGGUmZmpHTt2aM+ePTp9+rSuXbsmPz8/1ahRQ82aNXP7W/DwjOJ2nBISErR9+3adOnVKGRkZKlOmjKpUqaIGDRooNDS0oIdXpKSlpWnHjh1KTk5WSkqKzp49q9KlS8vPz08hISEKDQ3VPffcY7nILr/Y7Xbt2rVLiYmJSklJUUpKirKysuTn56eAgADVrFlTderUuWVhVH7LysrS4cOHlZiYqKSkJJ09e1YXLlyQj4+PypYtq5CQEDVo0KBQzNYzffp0Q2FA06ZNtWPHDo/2kZmZqZ07d+qPP/5Qamqq0tLSlJWVpcDAQAUGBqpq1apq2rSpW4VEN1q4cKGeeOIJQyw2NlZNmjTxSP6iZvjw4Zo+fXr2dq9evfTVV18V4IgAAADgDopBAAAAAAAAAAC5unjxomrVqqXjx49nx9atW6dWrVoV4Kjc8/TTT+vTTz/N3u7Zs6e+/fbbAhxRwUlPT9fdd9+tc+fOSfp7SabffvtN9evXL+CRAQAAwCrmMgYAAAAAAAAA5KpUqVIaM2aMITZp0qQCGo1n/Pzzz9n/ttlseuuttwpwNAVrxowZ2YUg0t9L51EIAgAAULQxMwgAAAAAAAAA4JauXr2qOnXqKDExMTsWFxenxo0bF+CorDl69KiqVq2avX07L4ly4cIFVa9eXadOnZIkeXt7a+/evapVq1YBjwwAAADuYGYQAAAAAAAAAMAteXt76/333zfERo0aVTCDcdONs4KUKFFCb775ZsENpoC999572YUgkjRixAgKQQAAAIoBikEAAAAAAAAAAE7p1q2bunfvnr29cuVK/fTTTwU4ImvWrFmT/e8+ffqobt26BTiagnP69GlNnTo1e7ty5cp64403CnBEAAAA8BSWiQEAAAAAAAAAOC0pKUlRUVHZ23Xr1tXjjz9egCOCVdu2bVNMTEz2dmRkpNq0aVOAIwIAAICnUAwCAAAAAAAAAAAAAABQjLBMDAAAAAAAAAAAAAAAQDFCMQgAAAAAAAAAAAAAAEAxQjEIAAAAAAAAAAAAAABAMUIxCAAAAAAAAAAAAAAAQDFCMQgAAAAAAAAAAAAAAEAxQjEIAAAAAAAAAAAAAABAMUIxCAAAAAAAAAAAAAAAQDFCMQgAAAAAAAAAAAAAAEAxQjEIAAAAAAAAAAAAAABAMUIxCAAAAAAAAAAAAAAAQDFCMQgAAAAAAAAAAAAAAEAxQjEIAAAAAAAAAAAAAABAMUIxCAAAAAAAAAAAAAAAQDFCMQgAAAAAAAAAAAAAAEAxQjEIAAAAAAAAAAAAAABAMUIxCAAAAAAAAAAAAAAAQDFCMQgAAAAAAAAAAAAAAEAxQjEIAAAAAAAAAAAAAABAMUIxCAAAAAAAAAAAAAAAQDFCMQgAAAAAAAAAAAAAAEAxQjEIAAAAAAAAAAAAAABAMUIxCAAAAAAAAAAAAAAAQDHy/wBT6rfPCuOXKwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(figsize=(11, 7), dpi=200)\n", "\n", "plt.errorbar(\n", " plot_labels,\n", " physical_energy_diff,\n", " yerr=physical_uncertainties.values(),\n", " ecolor=(20 / 255.0, 26 / 255.0, 94 / 255.0),\n", " color=(20 / 255.0, 26 / 255.0, 94 / 255.0),\n", " capsize=4,\n", " elinewidth=1.5,\n", " fmt=\"o\",\n", " markersize=8,\n", " markeredgewidth=1,\n", " label=\"Physical\",\n", ")\n", "plt.errorbar(\n", " plot_labels,\n", " logical_energy_diff,\n", " yerr=logical_uncertainties.values(),\n", " color=(0, 177 / 255.0, 152 / 255.0),\n", " ecolor=(0, 177 / 255.0, 152 / 255.0),\n", " capsize=4,\n", " elinewidth=1.5,\n", " fmt=\"o\",\n", " markersize=8,\n", " markeredgewidth=1,\n", " label=\"Logical\",\n", ")\n", "\n", "ax.set_xlabel(\"Hamiltonian Parameters (U, V)\", fontsize=18)\n", "ax.set_ylabel(\"Energy above true ground state (in eV)\", fontsize=18)\n", "ax.set_title(\"CUDA-Q AIM Infleqtion Hardware Execution (lower is better)\", fontsize=20)\n", "ax.legend(loc=\"upper left\", fontsize=18.5)\n", "plt.xticks(fontsize=16)\n", "plt.yticks(fontsize=16)\n", "\n", "ax.axhline(y=0, color=\"black\", linestyle=\"--\", linewidth=2)\n", "plt.ylim(top=max(physical_energy_diff) + max(physical_uncertainties.values()) + 0.2, bottom=-0.2)\n", "plt.tight_layout()\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 2 }