CUTLASS
CUDA Templates for Linear Algebra Subroutines and Solvers
|
Default kernel-level GEMM definitions combine threadblock-scoped matrix multiply-add with the appropriate threadblock-scoped epilogue. More...
#include "cutlass/cutlass.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/numeric_types.h"
#include "cutlass/arch/wmma.h"
#include "cutlass/epilogue/threadblock/epilogue.h"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/gemm/kernel/gemm.h"
#include "cutlass/gemm/kernel/gemm_pipelined.h"
#include "cutlass/gemm/threadblock/default_mma_core_sm75.h"
#include "cutlass/gemm/threadblock/default_mma_core_sm70.h"
#include "cutlass/gemm/threadblock/default_mma.h"
#include "cutlass/gemm/threadblock/default_mma_core_simt.h"
#include "cutlass/gemm/threadblock/threadblock_swizzle.h"
#include "cutlass/epilogue/threadblock/default_epilogue_tensor_op.h"
#include "cutlass/epilogue/threadblock/default_epilogue_volta_tensor_op.h"
#include "cutlass/epilogue/threadblock/default_epilogue_simt.h"
#include "cutlass/transform/threadblock/predicated_tile_iterator.h"
Go to the source code of this file.
Namespaces | |
cutlass | |
cutlass::gemm | |
cutlass::gemm::kernel | |
Note, CUTLASS epilogues universally target row-major outputs. Column-major outputs are accommodated by exchanging A and B operands and assuming transposed layouts. Partial specializations here choose 'device::GemmTransposed' to implement this functionality.