Source code for earth2studio.models.px.persistence

# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import OrderedDict
from collections.abc import Generator, Iterator

import numpy as np
import torch

from earth2studio.models.batch import batch_coords, batch_func
from earth2studio.models.px.utils import PrognosticMixin
from earth2studio.utils import handshake_coords, handshake_dim
from earth2studio.utils.type import CoordSystem


[docs] class Persistence(torch.nn.Module, PrognosticMixin): """Persistence model that generates a forecast by applying the identity operator on the initial condition and indexing the lead time by 6 hours. Primarily used in testing. Parameters ---------- variable : Union[str, List[str]] The variable or list of variables predicted by the model. domain_coords : CoordSystem The coordinates representing the domain for this model to operate on. """ def __init__( self, variable: str | list[str], domain_coords: CoordSystem, history: int = 1, # TODO dt: np.timedelta64 = np.timedelta64(6, "h"), ): super().__init__() if isinstance(variable, str): variable = [variable] self._input_coords = OrderedDict( { "batch": np.empty(0), "lead_time": np.array([np.timedelta64(0, "h")]), "variable": np.array(variable), } ) self._output_coords = OrderedDict( { "batch": np.empty(0), "lead_time": np.array([np.timedelta64(6, "h")]), "variable": np.array(variable), } ) for key, value in domain_coords.items(): self._input_coords[key] = value self._output_coords[key] = value self._history = history self._dt = dt def __str__( self, ) -> str: return "persistence" def input_coords(self) -> CoordSystem: """Input coordinate system of the prognostic model Returns ------- CoordSystem Coordinate system dictionary """ return self._input_coords.copy() @batch_coords() def output_coords(self, input_coords: CoordSystem) -> CoordSystem: """Output coordinate system of the prognostic model Parameters ---------- input_coords : CoordSystem Input coordinate system to transform into output_coords Returns ------- CoordSystem Coordinate system dictionary """ output_coords = self._output_coords.copy() if input_coords is None: return output_coords test_coords = input_coords.copy() test_coords["lead_time"] = ( test_coords["lead_time"] - input_coords["lead_time"][-1] ) target_input_coords = self.input_coords() for i, key in enumerate(target_input_coords): if key != "batch": handshake_dim(test_coords, key, i) handshake_coords(test_coords, target_input_coords, key) output_coords["batch"] = input_coords["batch"] output_coords["lead_time"] = ( output_coords["lead_time"] + input_coords["lead_time"] ) return output_coords @torch.inference_mode() def _forward( self, x: torch.Tensor, coords: CoordSystem, ) -> tuple[torch.Tensor, CoordSystem]: # Model is identity operator # Update coordinates output_coords = self.output_coords(coords) return x, output_coords
[docs] @batch_func() def __call__( self, x: torch.Tensor, coords: CoordSystem, ) -> tuple[torch.Tensor, CoordSystem]: """Runs prognostic model 1 step. Parameters ---------- x : torch.Tensor Input tensor coords : CoordSystem Coordinate system, should have dimensions ``[time, variable, *domain_dims]`` Returns ------ x : torch.Tensor coords : CoordSystem """ return self._forward(x, coords)
@batch_func() def _default_generator( self, x: torch.Tensor, coords: CoordSystem ) -> Generator[tuple[torch.Tensor, CoordSystem], None, None]: coords = coords.copy() self.output_coords(coords) yield x, coords while True: # Front hook x, coords = self.front_hook(x, coords) # Forward is identity operator x, coords = self._forward(x, coords) # Rear hook x, coords = self.rear_hook(x, coords) yield x, coords
[docs] def create_iterator( self, x: torch.Tensor, coords: CoordSystem ) -> Iterator[tuple[torch.Tensor, CoordSystem]]: """Creates a iterator which can be used to perform time-integration of the prognostic model. Will return the initial condition first (0th step). Parameters ---------- x : torch.Tensor Input tensor coords : CoordSystem Input coordinate system Yields ------ Iterator[tuple[torch.Tensor, CoordSystem]] Iterator that generates time-steps of the prognostic model container the output data tensor and coordinate system dictionary. """ yield from self._default_generator(x, coords)