# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
from collections.abc import Generator, Iterator
from typing import TypeVar
import numpy as np
try:
import onnxruntime as ort
from onnxruntime import InferenceSession
except ImportError:
ort = None
InferenceSession = TypeVar("InferenceSession") # type: ignore
import torch
from earth2studio.models.auto import AutoModelMixin, Package
from earth2studio.models.batch import batch_coords, batch_func
from earth2studio.models.px.base import PrognosticModel
from earth2studio.models.px.utils import PrognosticMixin
from earth2studio.models.utils import create_ort_session
from earth2studio.utils import handshake_coords, handshake_dim
from earth2studio.utils.type import CoordSystem
VARIABLES = [
"u10m",
"v10m",
"t2m",
"msl",
"z50",
"z100",
"z150",
"z200",
"z250",
"z300",
"z400",
"z500",
"z600",
"z700",
"z850",
"z925",
"z1000",
"q50",
"q100",
"q150",
"q200",
"q250",
"q300",
"q400",
"q500",
"q600",
"q700",
"q850",
"q925",
"q1000",
"u50",
"u100",
"u150",
"u200",
"u250",
"u300",
"u400",
"u500",
"u600",
"u700",
"u850",
"u925",
"u1000",
"v50",
"v100",
"v150",
"v200",
"v250",
"v300",
"v400",
"v500",
"v600",
"v700",
"v850",
"v925",
"v1000",
"t50",
"t100",
"t150",
"t200",
"t250",
"t300",
"t400",
"t500",
"t600",
"t700",
"t850",
"t925",
"t1000",
]
[docs]
class FengWu(torch.nn.Module, AutoModelMixin, PrognosticMixin):
"""FengWu (operational) weather model consists of single auto-regressive model with
a time-step size of 6 hours. FengWu operates on 0.25 degree lat-lon grid (south-pole
including) equirectangular grid with 69 atmospheric/surface variables. This model
uses two time-steps as an input.
Note
----
This model uses the ONNX checkpoint from the original publication repository. This
checkpoint is a operational version to the one used in the paper which requires less
variables. For additional information see the following resources:
- https://arxiv.org/abs/2304.02948
- https://github.com/OpenEarthLab/FengWu
Note
----
To avoid ONNX init session overhead of this model we recommend setting the default
Pytorch device to the correct target prior to model construction.
Parameters
----------
ort : str
Path to FengWu 6 hour onnx file
center : torch.Tensor
Model variable center normalization tensor of size [69]
scale : torch.Tensor
Model variable scale normalization tensor of size [69]
"""
def __init__(
self,
ort: str,
center: torch.Tensor,
scale: torch.Tensor,
) -> None:
super().__init__()
self.device = torch.ones(1).device # Hack to get default device
self.ort = create_ort_session(ort, self.device)
self.register_buffer("center", center.unsqueeze(-1).unsqueeze(-1))
self.register_buffer("scale", scale.unsqueeze(-1).unsqueeze(-1))
def input_coords(self) -> CoordSystem:
"""Input coordinate system of the prognostic model
Returns
-------
CoordSystem
Coordinate system dictionary
"""
return OrderedDict(
{
"batch": np.empty(0),
"lead_time": np.array(
[np.timedelta64(-6, "h"), np.timedelta64(0, "h")]
),
"variable": np.array(VARIABLES),
"lat": np.linspace(90, -90, 721, endpoint=True),
"lon": np.linspace(0, 360, 1440, endpoint=False),
}
)
@batch_coords()
def output_coords(self, input_coords: CoordSystem) -> CoordSystem:
"""Output coordinate system of the prognostic model
Parameters
----------
input_coords : CoordSystem
Input coordinate system to transform into output_coords
Returns
-------
CoordSystem
Coordinate system dictionary
"""
output_coords = OrderedDict(
{
"batch": np.empty(0),
"lead_time": np.array([np.timedelta64(6, "h")]),
"variable": np.array(VARIABLES),
"lat": np.linspace(90, -90, 721, endpoint=True),
"lon": np.linspace(0, 360, 1440, endpoint=False),
}
)
test_coords = input_coords.copy()
test_coords["lead_time"] = (
test_coords["lead_time"] - input_coords["lead_time"][-1]
)
target_input_coords = self.input_coords()
for i, key in enumerate(target_input_coords):
if key != "batch":
handshake_dim(test_coords, key, i)
handshake_coords(test_coords, target_input_coords, key)
output_coords["batch"] = input_coords["batch"]
output_coords["lead_time"] = (
input_coords["lead_time"][1:] + output_coords["lead_time"]
)
return output_coords
def to(self, device: str | torch.device | int) -> PrognosticModel:
"""Move model (and default ORT session) to device"""
device = torch.device(device)
if device.index is None:
if device.type == "cuda":
device = torch.device(device.type, torch.cuda.current_device())
else:
device = torch.device(device.type, 0)
super().to(device)
if device != self.device:
self.device = device
# Move base ort session
if self.ort is not None:
model_path = self.ort._model_path
del self.ort
self.ort = create_ort_session(model_path, device)
return self
[docs]
@classmethod
def load_default_package(cls) -> Package:
"""Load prognostic package"""
return Package(
"hf://NickGeneva/earth_ai/fengwu",
cache_options={
"cache_storage": Package.default_cache("fengwu"),
"same_names": True,
},
)
[docs]
@classmethod
def load_model(
cls,
package: Package,
) -> PrognosticModel:
"""Load prognostic from package"""
onnx_file = package.resolve("fengwu_v1.onnx")
global_center = torch.Tensor(np.load(package.open("global_means.npy")))
global_std = torch.Tensor(np.load(package.open("global_stds.npy")))
return cls(onnx_file, global_center, global_std)
@torch.inference_mode()
def _forward(
self,
x: torch.Tensor,
ort_session: InferenceSession,
) -> torch.Tensor:
# Ref https://onnxruntime.ai/docs/api/python/api_summary.html
binding = ort_session.io_binding()
def bind_input(name: str, input: torch.Tensor) -> None:
input = input.contiguous()
binding.bind_input(
name=name,
device_type=self.device.type,
device_id=self.device.index,
element_type=np.float32,
shape=tuple(input.shape),
buffer_ptr=input.data_ptr(),
)
def bind_output(name: str, like: torch.Tensor) -> torch.Tensor:
out = torch.empty_like(like).contiguous()
binding.bind_output(
name=name,
device_type=self.device.type,
device_id=self.device.index,
element_type=np.float32,
shape=tuple(out.shape),
buffer_ptr=out.data_ptr(),
)
return out
x = (x - self.center) / self.scale # Normalize
x = x.view(x.shape[0], -1, 721, 1440) # Concat time-steps
# Forward pass, fengwu onnx supports batched
bind_input("input", x)
output = bind_output("output", like=x)
ort_session.run_with_iobinding(binding)
# ONNX model outputs two time-steps, take the first
output_tensor = output[:].contiguous()
x = self.scale * output_tensor[:, :69].unsqueeze(1) + self.center # UnNormalize
return x
[docs]
@batch_func()
def __call__(
self,
x: torch.Tensor,
coords: CoordSystem,
) -> tuple[torch.Tensor, CoordSystem]:
"""Runs 6 hour prognostic model 1 step.
Parameters
----------
x : torch.Tensor
Input tensor
coords : CoordSystem
Input coordinate system
Returns
-------
tuple[torch.Tensor, CoordSystem]
Output tensor and coordinate system 6 hours in the future
"""
return self._forward(x, self.ort), self.output_coords(coords)
@batch_func()
def _default_generator(
self, x: torch.Tensor, coords: CoordSystem
) -> Generator[tuple[torch.Tensor, CoordSystem], None, None]:
coords = coords.copy()
self.output_coords(coords)
out = x[:, 1:]
out_coords = coords.copy()
out_coords["lead_time"] = out_coords["lead_time"][1:]
yield out, out_coords
while True:
# Front hook
x, coords = self.front_hook(x, coords)
# Forward is identity operator
out = self._forward(x, self.ort)
out_coords = self.output_coords(coords)
# Rear hook
out, out_coords = self.rear_hook(out, out_coords)
# Update inputs for next time-step
x = torch.cat([x[:, 1:], out], dim=1)
coords["lead_time"] = np.array(
[coords["lead_time"][-1], out_coords["lead_time"][-1]]
)
yield out, out_coords.copy()
[docs]
def create_iterator(
self, x: torch.Tensor, coords: CoordSystem
) -> Iterator[tuple[torch.Tensor, CoordSystem]]:
"""Creates a iterator which can be used to perform time-integration of the
prognostic model. Will return the initial condition first (0th step).
Parameters
----------
x : torch.Tensor
Input tensor
coords : CoordSystem
Input coordinate system
Yields
------
Iterator[tuple[torch.Tensor, CoordSystem]]
Iterator that generates time-steps of the prognostic model container the
output data tensor and coordinate system dictionary.
"""
yield from self._default_generator(x, coords)