Earth2Studio is now OSS!

Source code for earth2studio.models.px.sfno

# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from collections import OrderedDict
from collections.abc import Generator, Iterator

import numpy as np
import torch

try:
    from makani.models.model_package import load_model_package
except ImportError:
    load_model_package = None

from earth2studio.models.auto import AutoModelMixin, Package
from earth2studio.models.batch import batch_coords, batch_func
from earth2studio.models.px.base import PrognosticModel
from earth2studio.models.px.utils import PrognosticMixin
from earth2studio.utils import handshake_coords, handshake_dim
from earth2studio.utils.time import timearray_to_datetime
from earth2studio.utils.type import CoordSystem

VARIABLES = [
    "u10m",
    "v10m",
    "u100m",
    "v100m",
    "t2m",
    "sp",
    "msl",
    "tcwv",
    "u50",
    "u100",
    "u150",
    "u200",
    "u250",
    "u300",
    "u400",
    "u500",
    "u600",
    "u700",
    "u850",
    "u925",
    "u1000",
    "v50",
    "v100",
    "v150",
    "v200",
    "v250",
    "v300",
    "v400",
    "v500",
    "v600",
    "v700",
    "v850",
    "v925",
    "v1000",
    "z50",
    "z100",
    "z150",
    "z200",
    "z250",
    "z300",
    "z400",
    "z500",
    "z600",
    "z700",
    "z850",
    "z925",
    "z1000",
    "t50",
    "t100",
    "t150",
    "t200",
    "t250",
    "t300",
    "t400",
    "t500",
    "t600",
    "t700",
    "t850",
    "t925",
    "t1000",
    "q50",
    "q100",
    "q150",
    "q200",
    "q250",
    "q300",
    "q400",
    "q500",
    "q600",
    "q700",
    "q850",
    "q925",
    "q1000",
]


[docs] class SFNO(torch.nn.Module, AutoModelMixin, PrognosticMixin): """Spherical Fourier Operator Network global prognostic model. Consists of a single model with a time-step size of 6 hours. FourCastNet operates on 0.25 degree lat-lon grid (south-pole excluding) equirectangular grid with 73 variables. Note ---- This model and checkpoint are trained using Modulus-Makani. For more information see the following references: - https://arxiv.org/abs/2306.03838 - https://github.com/NVIDIA/modulus-makani - https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/models/sfno_73ch_small Parameters ---------- core_model : torch.nn.Module Core PyTorch model with loaded weights center : torch.Tensor Model center normalization tensor of size [73] scale : torch.Tensor Model scale normalization tensor of size [73] """ def __init__( self, core_model: torch.nn.Module, center: torch.Tensor, scale: torch.Tensor, ): super().__init__() self.model = core_model self.register_buffer("center", center) self.register_buffer("scale", scale) def __str__(self) -> str: return "sfno_73ch_small" def input_coords(self) -> CoordSystem: """Input coordinate system of the prognostic model Returns ------- CoordSystem Coordinate system dictionary """ return OrderedDict( { "batch": np.empty(0), "time": np.empty(0), "lead_time": np.array([np.timedelta64(0, "h")]), "variable": np.array(VARIABLES), "lat": np.linspace(90.0, -90.0, 721), "lon": np.linspace(0, 360, 1440, endpoint=False), } ) @batch_coords() def output_coords(self, input_coords: CoordSystem) -> CoordSystem: """Output coordinate system of the prognostic model Parameters ---------- input_coords : CoordSystem Input coordinate system to transform into output_coords by default None, will use self.input_coords. Returns ------- CoordSystem Coordinate system dictionary """ output_coords = OrderedDict( { "batch": np.empty(0), "time": np.empty(0), "lead_time": np.array([np.timedelta64(6, "h")]), "variable": np.array(VARIABLES), "lat": np.linspace(90.0, -90.0, 721), "lon": np.linspace(0, 360, 1440, endpoint=False), } ) if input_coords is None: return output_coords test_coords = input_coords.copy() test_coords["lead_time"] = ( test_coords["lead_time"] - input_coords["lead_time"][-1] ) target_input_coords = self.input_coords() for i, key in enumerate(target_input_coords): if key not in ["batch", "time"]: handshake_dim(test_coords, key, i) handshake_coords(test_coords, target_input_coords, key) output_coords["batch"] = input_coords["batch"] output_coords["time"] = input_coords["time"] output_coords["lead_time"] = ( output_coords["lead_time"] + input_coords["lead_time"] ) return output_coords
[docs] @classmethod def load_default_package(cls) -> Package: """Load prognostic package""" package = Package( "ngc://models/nvidia/modulus/sfno_73ch_small@0.1.0", cache_options={ "cache_storage": Package.default_cache("sfno"), "same_names": True, }, ) package.root = os.path.join(package.root, "sfno_73ch_small") return package
[docs] @classmethod def load_model( cls, package: Package, ) -> PrognosticModel: """Load prognostic from package""" if load_model_package is None: raise ImportError( "Modulus Makani required for SFNO. See model install notes for details.\n" + "https://nvidia.github.io/earth2studio/userguide/about/install.html#model-dependencies" ) model = load_model_package(package) model.eval() # Load center and std normalizations local_center = torch.Tensor(np.load(package.resolve("global_means.npy")))[ :, : len(VARIABLES) ] local_std = torch.Tensor(np.load(package.resolve("global_stds.npy")))[ :, : len(VARIABLES) ] return cls( model, center=local_center, scale=local_std, )
@torch.inference_mode() def _forward( self, x: torch.Tensor, coords: CoordSystem, ) -> tuple[torch.Tensor, CoordSystem]: output_coords = self.output_coords(coords) x = x.squeeze(2) x = (x - self.center) / self.scale for j, _ in enumerate(coords["batch"]): for (i, t) in enumerate(coords["time"]): t = timearray_to_datetime(t + coords["lead_time"]) x[j, i : i + 1] = self.model(x[j, i : i + 1], t) x = self.scale * x + self.center x = x.unsqueeze(2) return x, output_coords
[docs] @batch_func() def __call__( self, x: torch.Tensor, coords: CoordSystem, ) -> tuple[torch.Tensor, CoordSystem]: """Runs prognostic model 1 step. Parameters ---------- x : torch.Tensor Input tensor coords : CoordSystem Input coordinate system Returns ------ x : torch.Tensor coords : CoordSystem """ return self._forward(x, coords)
@batch_func() def _default_generator( self, x: torch.Tensor, coords: CoordSystem ) -> Generator[tuple[torch.Tensor, CoordSystem], None, None]: coords = coords.copy() self.output_coords(coords) yield x, coords while True: # Front hook x, coords = self.front_hook(x, coords) # Forward is identity operator x, coords = self._forward(x, coords) # Rear hook x, coords = self.rear_hook(x, coords) yield x, coords.copy()
[docs] def create_iterator( self, x: torch.Tensor, coords: CoordSystem ) -> Iterator[tuple[torch.Tensor, CoordSystem]]: """Creates a iterator which can be used to perform time-integration of the prognostic model. Will return the initial condition first (0th step). Parameters ---------- x : torch.Tensor Input tensor coords : CoordSystem Input coordinate system Yields ------ Iterator[tuple[torch.Tensor, CoordSystem]] Iterator that generates time-steps of the prognostic model container the output data tensor and coordinate system dictionary. """ yield from self._default_generator(x, coords)