Link Search Menu Expand Document

Profiling tool

The Profiling tool analyzes both CPU or GPU generated event logs and generates information which can be used for debugging and profiling Apache Spark applications. The output information contains the Spark version, executor details, properties, etc.

How to use the Profiling tool

Prerequisites

  • Java 8 or above, Spark 3.0.1+ jars
  • Spark event log(s) from Spark 2.0 or above version. Supports both rolled and compressed event logs with .lz4, .lzf, .snappy and .zstd suffixes as well as Databricks-specific rolled and compressed(.gz) event logs.
  • The tool does not support nested directories. Event log files or event log directories should be at the top level when specifying a directory.

Note: Spark event logs can be downloaded from Spark UI using a “Download” button on the right side, or can be found in the location specified by spark.eventLog.dir. See the Apache Spark Monitoring documentation for more information.

Step 1 Download the tools jar and Apache Spark 3 distribution

The Profiling tool requires the Spark 3.x jars to be able to run but do not need an Apache Spark run time. If you do not already have Spark 3.x installed, you can download the Spark distribution to any machine and include the jars in the classpath.

Step 2 How to run the Profiling tool

This tool parses the Spark CPU or GPU event log(s) and creates an output report. We need to extract the Spark distribution into a local directory if necessary. Either set SPARK_HOME to point to that directory or just put the path inside of the classpath java -cp toolsJar:pathToSparkJars/*:... when you run the Profiling tool. Acceptable input event log paths are files or directories containing spark events logs in the local filesystem, HDFS, S3 or mixed. Please note, if processing a lot of event logs use combined or compare mode. Both these modes may need you to increase the java heap size using -Xmx option. For instance, to specify 30 GB heap size java -Xmx30g.

There are 3 modes of operation for the Profiling tool:

  1. Collection Mode: Collection mode is the default mode when no other options are specified it simply collects information on each application individually and outputs a file per application

    Usage: java -cp rapids-4-spark-tools_2.12-<version>.jar:$SPARK_HOME/jars/*
           com.nvidia.spark.rapids.tool.profiling.ProfileMain [options]
           <eventlogs | eventlog directories ...>
    
  2. Combined Mode: Combined mode is collection mode but then combines all the applications together and you get one file for all applications.

    Usage: java -cp rapids-4-spark-tools_2.12-<version>.jar:$SPARK_HOME/jars/*
           com.nvidia.spark.rapids.tool.profiling.ProfileMain --combined
           <eventlogs | eventlog directories ...>
    
  3. Compare Mode: Compare mode will combine all the applications information in the same tables into a single file and also adds in tables to compare stages and sql ids across all of those applications. The Compare mode will use more memory if comparing lots of applications.

    Usage: java -cp rapids-4-spark-tools_2.12-<version>.jar:$SPARK_HOME/jars/*
           com.nvidia.spark.rapids.tool.profiling.ProfileMain --compare
           <eventlogs | eventlog directories ...>
    

    Note that if you are on an HDFS cluster the default filesystem is likely HDFS for both the input and output so if you want to point to the local filesystem be sure to include file: in the path.

    Example running on files in HDFS: (include $HADOOP_CONF_DIR in classpath)

    java -cp ~/rapids-4-spark-tools_2.12-<version>.jar:$SPARK_HOME/jars/*:$HADOOP_CONF_DIR/ \
     com.nvidia.spark.rapids.tool.profiling.ProfileMain  /eventlogDir
    

Understanding Profiling tool detailed output and examples

The default output location is the current directory. The output location can be changed using the --output-directory option. The output goes into a sub-directory named rapids_4_spark_profile/ inside that output location. If running in normal collect mode, it processes event log individually and outputs files for each application under a directory named rapids_4_spark_profile/{APPLICATION_ID}. It creates a summary text file named profile.log. If running combine mode the output is put under a directory named rapids_4_spark_profile/combined/ and creates a summary text file named rapids_4_spark_tools_combined.log. If running compare mode the output is put under a directory named rapids_4_spark_profile/compare/ and creates a summary text file named rapids_4_spark_tools_compare.log. The output will go into your default filesystem, it supports local filesystem or HDFS. Note that if you are on an HDFS cluster the default filesystem is likely HDFS for both the input and output so if you want to point to the local filesystem be sure to include file: in the path. There are separate files that are generated under the same sub-directory when using the options to generate query visualizations or printing the SQL plans. Optionally if the --csv option is specified then it creates a csv file for each table for each application in the corresponding sub-directory.

There is a 100 characters limit for each output column. If the result of the column exceeds this limit, it is suffixed with … for that column.

ResourceProfile ids are parsed for the event logs that are from Spark 3.1 or later. A ResourceProfile allows the user to specify executor and task requirements for an RDD that will get applied during a stage. This allows the user to change the resource requirements between stages.

Run --help for more information.

A. Collect Information or Compare Information(if more than 1 event logs are as input and option -c is specified)

  • Application information
  • Data Source information
  • Executors information
  • Job, stage and SQL ID information
  • Rapids related parameters
  • Spark Properties
  • Rapids Accelerator Jar and cuDF Jar
  • SQL Plan Metrics
  • Compare Mode: Matching SQL IDs Across Applications
  • Compare Mode: Matching Stage IDs Across Applications
  • Optionally : SQL Plan for each SQL query
  • Optionally : Generates DOT graphs for each SQL query
  • Optionally : Generates timeline graph for application

For example, GPU run vs CPU run performance comparison or different runs with different parameters.

We can input multiple Spark event logs and this tool can compare environments, executors, Rapids related Spark parameters,

  • Compare the durations/versions/gpuMode on or off:
### A. Information Collected ###
Application Information:

+--------+-----------+-----------------------+---------+-------------+-------------+--------+-----------+------------+-------------+
|appIndex|appName    |appId                  |sparkUser|startTime    |endTime      |duration|durationStr|sparkVersion|pluginEnabled|
+--------+-----------+-----------------------+---------+-------------+-------------+--------+-----------+------------+-------------+
|1       |Spark shell|app-20210329165943-0103|user1    |1617037182848|1617037490515|307667  |5.1 min    |3.0.1       |false        |
|2       |Spark shell|app-20210329170243-0018|user1    |1617037362324|1617038578035|1215711 |20 min     |3.0.1       |true         |
+--------+-----------+-----------------------+---------+-------------+-------------+--------+-----------+------------+-------------+
  • Executor information:
Executor Information:
+--------+-----------------+------------+-------------+-----------+------------+-------------+--------------+------------------+---------------+-------+-------+
|appIndex|resourceProfileId|numExecutors|executorCores|maxMem     |maxOnHeapMem|maxOffHeapMem|executorMemory|numGpusPerExecutor|executorOffHeap|taskCpu|taskGpu|
+--------+-----------------+------------+-------------+-----------+------------+-------------+--------------+------------------+---------------+-------+-------+
|1       |0                |1           |4            |11264537395|11264537395 |0            |20480         |1                 |0              |1      |0.0    |
|1       |1                |2           |2            |3247335014 |3247335014  |0            |6144          |2                 |0              |2      |2.0    |
+--------+-----------------+------------+-------------+-----------+------------+-------------+-------------+--------------+------------------+---------------+-------+-------+
  • Data Source information The details of this output differ between using a Spark Data Source V1 and Data Source V2 reader. The Data Source V2 truncates the schema, so if you see ..., then the full schema is not available.
Data Source Information:
+--------+-----+-------+---------------------------------------------------------------------------------------------------------------------------+-----------------+---------------------------------------------------------------------------------------------+
|appIndex|sqlID|format |location                                                                                                                   |pushedFilters    |schema                                                                                       |
+--------+-----+-------+---------------------------------------------------------------------------------------------------------------------------+-----------------+---------------------------------------------------------------------------------------------+
|1       |0    |Text   |InMemoryFileIndex[file:/home/user1/workspace/spark-rapids-another/integration_tests/src/test/resources/trucks-comments.csv]|[]               |value:string                                                                                 |
|1       |1    |csv    |Location: InMemoryFileIndex[file:/home/user1/workspace/spark-rapids-another/integration_tests/src/test/re...               |PushedFilters: []|_c0:string                                                                                   |
|1       |2    |parquet|Location: InMemoryFileIndex[file:/home/user1/workspace/spark-rapids-another/lotscolumnsout]                                |PushedFilters: []|loan_id:bigint,monthly_reporting_period:string,servicer:string,interest_rate:double,curren...|
|1       |3    |parquet|Location: InMemoryFileIndex[file:/home/user1/workspace/spark-rapids-another/lotscolumnsout]                                |PushedFilters: []|loan_id:bigint,monthly_reporting_period:string,servicer:string,interest_rate:double,curren...|
|1       |4    |orc    |Location: InMemoryFileIndex[file:/home/user1/workspace/spark-rapids-another/logscolumsout.orc]                             |PushedFilters: []|loan_id:bigint,monthly_reporting_period:string,servicer:string,interest_rate:double,curren...|
|1       |5    |orc    |Location: InMemoryFileIndex[file:/home/user1/workspace/spark-rapids-another/logscolumsout.orc]                             |PushedFilters: []|loan_id:bigint,monthly_reporting_period:string,servicer:string,interest_rate:double,curren...|
|1       |6    |json   |Location: InMemoryFileIndex[file:/home/user1/workspace/spark-rapids-another/lotsofcolumnsout.json]                         |PushedFilters: []|adj_remaining_months_to_maturity:double,asset_recovery_costs:double,credit_enhancement_pro...|
|1       |7    |json   |Location: InMemoryFileIndex[file:/home/user1/workspace/spark-rapids-another/lotsofcolumnsout.json]                         |PushedFilters: []|adj_remaining_months_to_maturity:double,asset_recovery_costs:double,credit_enhancement_pro...|
|1       |8    |json   |Location: InMemoryFileIndex[file:/home/user1/workspace/spark-rapids-another/lotsofcolumnsout.json]                         |PushedFilters: []|adj_remaining_months_to_maturity:double,asset_recovery_costs:double,credit_enhancement_pro...|
|1       |9    |JDBC   |unknown                                                                                                                    |unknown          |                                                                                             |
+--------+-----+-------+---------------------------------------------------------------------------------------------------------------------------+-----------------+---------------------------------------------------------------------------------------------+
  • Matching SQL IDs Across Applications:
Matching SQL IDs Across Applications:
+-----------------------+-----------------------+
|app-20210329165943-0103|app-20210329170243-0018|
+-----------------------+-----------------------+
|0                      |0                      |
|1                      |1                      |
|2                      |2                      |
|3                      |3                      |
|4                      |4                      |
+-----------------------+-----------------------+

There is one column per application. There is a row per SQL ID. The SQL IDs are matched primarily on the structure of the SQL query run, and then on the order in which they were run. Be aware that this is truly the structure of the query. Two queries that do similar things, but on different data are likely to match as the same. An effort is made to also match between CPU plans and GPU plans so in most cases the same query run on the CPU and on the GPU will match.

  • Matching Stage IDs Across Applications:
Matching Stage IDs Across Applications:
+-----------------------+-----------------------+
|app-20210329165943-0103|app-20210329170243-0018|
+-----------------------+-----------------------+
|31                     |31                     |
|32                     |32                     |
|33                     |33                     |
|39                     |38                     |
|40                     |40                     |
|41                     |41                     |
+-----------------------+-----------------------+

There is one column per application. There is a row per stage ID. If a SQL query matches between applications, see Matching SQL IDs Across Applications, then an attempt is made to match stages within that application to each other. This has the same issues with stages when generating a dot graph. This can be especially helpful when trying to compare large queries and Spark happened to assign the stage IDs slightly differently, or in some cases there are a different number of stages because of slight differences in the plan. This is a best effort, and it is not guaranteed to match up all stages in a plan.

  • Compare Rapids related Spark properties side-by-side:
Compare Rapids Properties which are set explicitly:
+-------------------------------------------+----------+----------+
|propertyName                               |appIndex_1|appIndex_2|
+-------------------------------------------+----------+----------+
|spark.rapids.memory.pinnedPool.size        |null      |2g        |
|spark.rapids.sql.castFloatToDecimal.enabled|null      |true      |
|spark.rapids.sql.concurrentGpuTasks        |null      |2         |
|spark.rapids.sql.enabled                   |false     |true      |
|spark.rapids.sql.explain                   |null      |NOT_ON_GPU|
|spark.rapids.sql.hasNans                   |null      |FALSE     |
|spark.rapids.sql.incompatibleOps.enabled   |null      |true      |
|spark.rapids.sql.variableFloatAgg.enabled  |null      |TRUE      |
+-------------------------------------------+----------+----------+
  • List rapids-4-spark and cuDF jars based on classpath:
Rapids Accelerator Jar and cuDF Jar:
+--------+------------------------------------------------------------+
|appIndex|Rapids4Spark jars                                           |
+--------+------------------------------------------------------------+
|1       |spark://10.10.10.10:43445/jars/cudf-0.19.2-cuda11.jar       |
|1       |spark://10.10.10.10:43445/jars/rapids-4-spark_2.12-0.5.0.jar|
|2       |spark://10.10.10.11:41319/jars/cudf-0.19.2-cuda11.jar       |
|2       |spark://10.10.10.11:41319/jars/rapids-4-spark_2.12-0.5.0.jar|
+--------+------------------------------------------------------------+
  • Job, stage and SQL ID information(not in compare mode yet):
+--------+-----+---------+-----+
|appIndex|jobID|stageIds |sqlID|
+--------+-----+---------+-----+
|1       |0    |[0]      |null |
|1       |1    |[1,2,3,4]|0    |
+--------+-----+---------+-----+
  • SQL Plan Metrics for Application for each SQL plan node in each SQL:

These are also called accumulables in Spark.

SQL Plan Metrics for Application:
+--------+-----+------+-----------------------------------------------------------+-------------+-----------------------+-------------+----------+
|appIndex|sqlID|nodeID|nodeName                                                   |accumulatorId|name                   |max_value    |metricType|
+--------+-----+------+-----------------------------------------------------------+-------------+-----------------------+-------------+----------+
|1       |0    |1     |GpuColumnarExchange                                        |111          |output rows            |1111111111   |sum       |
|1       |0    |1     |GpuColumnarExchange                                        |112          |output columnar batches|222222       |sum       |
|1       |0    |1     |GpuColumnarExchange                                        |113          |data size              |333333333333 |size      |
|1       |0    |1     |GpuColumnarExchange                                        |114          |shuffle bytes written  |444444444444 |size      |
|1       |0    |1     |GpuColumnarExchange                                        |115          |shuffle records written|555555       |sum       |
|1       |0    |1     |GpuColumnarExchange                                        |116          |shuffle write time     |666666666666 |nsTiming  |
  • Print SQL Plans (-p option): Prints the SQL plan as a text string to a file named planDescriptions.log. For example if your application id is app-20210507103057-0000, then the filename will be planDescriptions.log

  • Generate DOT graph for each SQL (-g option):

Generated DOT graphs for app app-20210507103057-0000 to /path/. in 17 second(s)

Once the DOT file is generated, you can install graphviz to convert the DOT file as a graph in pdf format using below command:

dot -Tpdf ./app-20210507103057-0000-query-0/0.dot > app-20210507103057-0000.pdf

Or to svg using

dot -Tsvg ./app-20210507103057-0000-query-0/0.dot > app-20210507103057-0000.svg

The pdf or svg file has the SQL plan graph with metrics. The svg file will act a little more like the Spark UI and include extra information for nodes when hovering over it with a mouse.

As a part of this an effort is made to associate parts of the graph with the Spark stage it is a part of. This is not 100% accurate. Some parts of the plan like TakeOrderedAndProject may be a part of multiple stages and only one of the stages will be selected. Exchanges are purposely left out of the sections associated with a stage because they cover at least 2 stages and possibly more. In other cases we may not be able to determine what stage something was a part of. In those cases we mark it as UNKNOWN STAGE. This is because we rely on metrics to link a node to a stage. If a stage has no metrics, like if the query crashed early, we cannot establish that link.

  • Generate timeline for application (–generate-timeline option):

The output of this is an svg file named timeline.svg. Most web browsers can display this file. It is a timeline view similar to Apache Spark’s event timeline.

This displays several data sections.

  1. Tasks This shows all tasks in the application divided by executor. Please note that this tries to pack the tasks in the graph. It does not represent actual scheduling on CPU cores. The tasks are labeled with the time it took for them to run. There is a breakdown of some metrics per task in the lower half of the task block with different colors used to designate different metrics.
    1. Yellow is the deserialization time for the task as reported by Spark. This works for both CPU and GPU tasks.
    2. White is the read time for a task. This is a combination of the “buffer time” GPU SQL metric and the shuffle read time as reported by Spark. The shuffle time works for both CPU and GPU tasks, but “buffer time” only is reported for GPU accelerated file reads.
    3. Red is the semaphore wait time. This is the amount of time a task spent waiting to get access to the GPU. This only shows up on GPU tasks when DEBUG metrics are enabled. It does not apply to CPU tasks, as they don’t go through the Semaphore.
    4. Green is the “op time” SQL metric along with a few other metrics that also indicate the amount of time the GPU was being used to process data. This is GPU specific.
    5. Blue is the write time for a task. This is the “write time” SQL metric used when writing out results as files using GPU acceleration, or it is the shuffle write time as reported by Spark. The shuffle metrics work for both CPU and GPU tasks, but the “write time” metrics is GPU specific.
    6. Anything else is time that is not accounted for by these metrics. Typically, this is time spent on the CPU, but could also include semaphore wait time as DEBUG metrics are not on by default.
  2. STAGES This shows the stages times reported by Spark. It starts with when the stage was scheduled and ends when Spark considered the stage done.
  3. STAGE RANGES This shows the time from the start of the first task to the end of the last task. Often a stage is scheduled, but there are not enough resources in the cluster to run it. This helps to show. How long it takes for a task to start running after it is scheduled, and in many cases how long it took to run all of the tasks in the stage. This is not always true because Spark can intermix tasks from different stages.
  4. JOBS This shows the time range reported by Spark from when a job was scheduled to when it completed.
  5. SQL This shows the time range reported by Spark from when a SQL statement was scheduled to when it completed.

Tasks and stages all are color coordinated to help know what tasks are associated with a given stage. Jobs and SQL are not color coordinated.

B. Analysis

  • Job + Stage level aggregated task metrics
  • SQL level aggregated task metrics
  • SQL duration, application during, if it contains Dataset or RDD operation, potential problems, executor CPU time percent
  • Shuffle Skew Check: (When task’s Shuffle Read Size > 3 * Avg Stage-level size)

Below we will aggregate the task level metrics at different levels to do some analysis such as detecting possible shuffle skew.

  • Job + Stage level aggregated task metrics:
### B. Analysis ###

Job + Stage level aggregated task metrics:
+--------+-------+--------+--------+--------------------+------------+------------+------------+------------+-------------------+------------------------------+---------------------------+-------------------+---------------------+-------------------+---------------------+-------------+----------------------+-----------------------+-------------------------+-----------------------+---------------------------+--------------+--------------------+-------------------------+---------------------+--------------------------+----------------------+----------------------------+---------------------+-------------------+---------------------+----------------+
|appIndex|ID     |numTasks|Duration|diskBytesSpilled_sum|duration_sum|duration_max|duration_min|duration_avg|executorCPUTime_sum|executorDeserializeCPUTime_sum|executorDeserializeTime_sum|executorRunTime_sum|gettingResultTime_sum|input_bytesRead_sum|input_recordsRead_sum|jvmGCTime_sum|memoryBytesSpilled_sum|output_bytesWritten_sum|output_recordsWritten_sum|peakExecutionMemory_max|resultSerializationTime_sum|resultSize_max|sr_fetchWaitTime_sum|sr_localBlocksFetched_sum|sr_localBytesRead_sum|sr_remoteBlocksFetched_sum|sr_remoteBytesRead_sum|sr_remoteBytesReadToDisk_sum|sr_totalBytesRead_sum|sw_bytesWritten_sum|sw_recordsWritten_sum|sw_writeTime_sum|
+--------+-------+--------+--------+--------------------+------------+------------+------------+------------+-------------------+------------------------------+---------------------------+-------------------+---------------------+-------------------+---------------------+-------------+----------------------+-----------------------+-------------------------+-----------------------+---------------------------+--------------+--------------------+-------------------------+---------------------+--------------------------+----------------------+----------------------------+---------------------+-------------------+---------------------+----------------+
|1       |job_0  |3333    |222222  |0                   |11111111    |111111      |111         |1111.1      |6666666            |55555                         |55555                      |55555555           |0                    |222222222222       |22222222222          |111111       |0                     |0                      |0                        |222222222              |1                          |11111         |11111               |99999                    |22222222222          |2222221                   |222222222222          |0                           |222222222222         |222222222222       |5555555              |444444          |
  • SQL level aggregated task metrics:
SQL level aggregated task metrics:
+--------+------------------------------+-----+--------------------+--------+--------+---------------+---------------+----------------+--------------------+------------+------------+------------+------------+-------------------+------------------------------+---------------------------+-------------------+---------------------+-------------------+---------------------+-------------+----------------------+-----------------------+-------------------------+-----------------------+---------------------------+--------------+--------------------+-------------------------+---------------------+--------------------------+----------------------+----------------------------+---------------------+-------------------+---------------------+----------------+
|appIndex|appID                         |sqlID|description         |numTasks|Duration|executorCPUTime|executorRunTime|executorCPURatio|diskBytesSpilled_sum|duration_sum|duration_max|duration_min|duration_avg|executorCPUTime_sum|executorDeserializeCPUTime_sum|executorDeserializeTime_sum|executorRunTime_sum|gettingResultTime_sum|input_bytesRead_sum|input_recordsRead_sum|jvmGCTime_sum|memoryBytesSpilled_sum|output_bytesWritten_sum|output_recordsWritten_sum|peakExecutionMemory_max|resultSerializationTime_sum|resultSize_max|sr_fetchWaitTime_sum|sr_localBlocksFetched_sum|sr_localBytesRead_sum|sr_remoteBlocksFetched_sum|sr_remoteBytesRead_sum|sr_remoteBytesReadToDisk_sum|sr_totalBytesRead_sum|sw_bytesWritten_sum|sw_recordsWritten_sum|sw_writeTime_sum|
+--------+------------------------------+-----+--------------------+--------+--------+---------------+---------------+----------------+--------------------+------------+------------+------------+------------+-------------------+------------------------------+---------------------------+-------------------+---------------------+-------------------+---------------------+-------------+----------------------+-----------------------+-------------------------+-----------------------+---------------------------+--------------+--------------------+-------------------------+---------------------+--------------------------+----------------------+----------------------------+---------------------+-------------------+---------------------+----------------+
|1       |application_1111111111111_0001|0    |show at <console>:11|1111    |222222  |6666666        |55555555       |55.55           |0                   |13333333    |111111      |999         |3333.3      |6666666            |55555                         |66666                      |11111111           |0                    |111111111111       |11111111111          |111111       |0                     |0                      |0                        |888888888              |8                          |11111         |11111               |99999                    |11111111111          |2222222                   |222222222222          |0                           |222222222222         |444444444444       |5555555              |444444          |
  • SQL duration, application during, if it contains Dataset or RDD operation, potential problems, executor CPU time percent:
SQL Duration and Executor CPU Time Percent
+--------+-------------------+-----+------------+--------------------------+------------+---------------------------+-------------------------+
|appIndex|App ID             |sqlID|SQL Duration|Contains Dataset or RDD Op|App Duration|Potential Problems         |Executor CPU Time Percent|
+--------+-------------------+-----+------------+--------------------------+------------+---------------------------+-------------------------+
|1       |local-1626104300434|0    |1260        |false                     |131104      |NESTED COMPLEX TYPE        |92.65                    |
|1       |local-1626104300434|1    |259         |false                     |131104      |NESTED COMPLEX TYPE        |76.79                    |
  • Shuffle Skew Check:
Shuffle Skew Check: (When task's Shuffle Read Size > 3 * Avg Stage-level size)
+--------+-------+--------------+------+-------+---------------+--------------+-----------------+----------------+----------------+----------+----------------------------------------------------------------------------------------------------+
|appIndex|stageId|stageAttemptId|taskId|attempt|taskDurationSec|avgDurationSec|taskShuffleReadMB|avgShuffleReadMB|taskPeakMemoryMB|successful|reason                                                                                              |
+--------+-------+--------------+------+-------+---------------+--------------+-----------------+----------------+----------------+----------+----------------------------------------------------------------------------------------------------+
|1       |2      |0             |2222  |0      |111.11         |7.7           |2222.22          |111.11          |0.01            |false     |ExceptionFailure(ai.rapids.cudf.CudfException,cuDF failure at: /dddd/xxxxxxx/ccccc/bbbbbbbbb/aaaaaaa|
|1       |2      |0             |2224  |1      |222.22         |8.8           |3333.33          |111.11          |0.01            |false     |ExceptionFailure(ai.rapids.cudf.CudfException,cuDF failure at: /dddd/xxxxxxx/ccccc/bbbbbbbbb/aaaaaaa|
+--------+-------+--------------+------+-------+---------------+--------------+-----------------+----------------+----------------+----------+----------------------------------------------------------------------------------------------------+

C. Health Check

  • List failed tasks, stages and jobs
  • Removed BlockManagers and Executors
  • SQL Plan HealthCheck

Below are examples.

  • Print failed tasks:
Failed tasks:
+--------+-------+--------------+------+-------+----------------------------------------------------------------------------------------------------+
|appIndex|stageId|stageAttemptId|taskId|attempt|failureReason                                                                              |
+--------+-------+--------------+------+-------+----------------------------------------------------------------------------------------------------+
|3       |4      |0             |2842  |0      |ExceptionFailure(ai.rapids.cudf.CudfException,cuDF failure at: /home/jenkins/agent/workspace/jenkins|
|3       |4      |0             |2858  |0      |TaskKilled(another attempt succeeded,List(AccumulableInfo(453,None,Some(22000),None,false,true,None)|
|3       |4      |0             |2884  |0      |TaskKilled(another attempt succeeded,List(AccumulableInfo(453,None,Some(21148),None,false,true,None)|
|3       |4      |0             |2908  |0      |TaskKilled(another attempt succeeded,List(AccumulableInfo(453,None,Some(20420),None,false,true,None)|
|3       |4      |0             |3410  |1      |ExceptionFailure(ai.rapids.cudf.CudfException,cuDF failure at: /home/jenkins/agent/workspace/jenkins|
|4       |1      |0             |1948  |1      |TaskKilled(another attempt succeeded,List(AccumulableInfo(290,None,Some(1107),None,false,true,None),|
+--------+-------+--------------+------+-------+----------------------------------------------------------------------------------------------------+
  • Print failed stages:
Failed stages:
+--------+-------+---------+-------------------------------------+--------+---------------------------------------------------+
|appIndex|stageId|attemptId|name                                 |numTasks|failureReason                                      |
+--------+-------+---------+-------------------------------------+--------+---------------------------------------------------+
|3       |4      |0        |attachTree at Spark300Shims.scala:624|1000    |Job 0 cancelled as part of cancellation of all jobs|
+--------+-------+---------+-------------------------------------+--------+---------------------------------------------------+
  • Print failed jobs:
Failed jobs:
+--------+-----+---------+------------------------------------------------------------------------+
|appIndex|jobID|jobResult|failureReason                                                           |
+--------+-----+---------+------------------------------------------------------------------------+
|3       |0    |JobFailed|java.lang.Exception: Job 0 cancelled as part of cancellation of all j...|
+--------+-----+---------+------------------------------------------------------------------------+
  • SQL Plan HealthCheck:

    Prints possibly unsupported query plan nodes such as $Lambda key word means dataset API.

+--------+-----+------+--------+---------------------------------------------------------------------------------------------------+
|appIndex|sqlID|nodeID|nodeName|nodeDescription                                                                                    |
+--------+-----+------+--------+---------------------------------------------------------------------------------------------------+
|3       |1    |8     |Filter  |Filter $line21.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$Lambda$4578/0x00000008019f1840@4b63e04c.apply|
+--------+-----+------+--------+---------------------------------------------------------------------------------------------------+

Profiling tool options

Profiling tool for the RAPIDS Accelerator and Apache Spark

Usage: java -cp rapids-4-spark-tools_2.12-<version>.jar:$SPARK_HOME/jars/*
       com.nvidia.spark.rapids.tool.profiling.ProfileMain [options]
       <eventlogs | eventlog directories ...>

      --combined                  Collect mode but combine all applications into
                                  the same tables.
  -c, --compare                   Compare Applications (Note this may require
                                  more memory if comparing a large number of
                                  applications). Default is false.
      --csv                       Output each table to a CSV file as well
                                  creating the summary text file.
  -f, --filter-criteria  <arg>    Filter newest or oldest N eventlogs for
                                  processing.eg: 100-newest-filesystem (for
                                  processing newest 100 event logs). eg:
                                  100-oldest-filesystem (for processing oldest
                                  100 event logs)
  -g, --generate-dot              Generate query visualizations in DOT format.
                                  Default is false
      --generate-timeline         Write an SVG graph out for the full
                                  application timeline.
  -m, --match-event-logs  <arg>   Filter event logs whose filenames contain the
                                  input string
  -n, --num-output-rows  <arg>    Number of output rows for each Application.
                                  Default is 1000
      --num-threads  <arg>        Number of thread to use for parallel
                                  processing. The default is the number of cores
                                  on host divided by 4.
  -o, --output-directory  <arg>   Base output directory. Default is current
                                  directory for the default filesystem. The
                                  final output will go into a subdirectory
                                  called rapids_4_spark_profile. It will
                                  overwrite any existing files with the same
                                  name.
  -p, --print-plans               Print the SQL plans to a file named
                                  'planDescriptions.log'.
                                  Default is false.
  -t, --timeout  <arg>            Maximum time in seconds to wait for the event
                                  logs to be processed. Default is 24 hours
                                  (86400 seconds) and must be greater than 3
                                  seconds. If it times out, it will report what
                                  it was able to process up until the timeout.
  -h, --help                      Show help message

 trailing arguments:
  eventlog (required)   Event log filenames(space separated) or directories
                        containing event logs. eg: s3a://<BUCKET>/eventlog1
                        /path/to/eventlog2

Profiling tool metrics definitions

All the metrics definitions can be found in the executor task metrics doc / executor metrics doc or the SPARK webUI doc.