CUDA Quantum Python API¶
Program Construction¶
- cudaq.make_kernel(*args, **kwargs)¶
Overloaded function.
- cudaq.make_kernel() cudaq.Kernel
Create and return a
Kernelthat accepts no arguments.- Returns:
An empty kernel function to be used for quantum program construction. This kernel is non-parameterized and accepts no arguments.
- Return type:
# Example: # Non-parameterized kernel. kernel = cudaq.make_kernel()
- cudaq.make_kernel(\*args) tuple
Create a
Kernelthat takes the provided types as arguments. Returns a tuple containing the kernel and aQuakeValuefor each kernel argument.Note
The following types are supported as kernel arguments:
int,float,list/List,cudaq.qubit, orcudaq.qreg.- Parameters:
*arguments – A variable amount of types for the kernel function to accept as arguments.
- Returns:
A tuple containing an empty kernel function and a
QuakeValuehandle for each argument that was passed intomake_kernel().- Return type:
tuple[Kernel, QuakeValue, ...]
# Example: # Parameterized kernel that accepts an `int` # and `float` as arguments. kernel, int_value, float_value = cudaq.make_kernel(int, float)
- cudaq.from_state(*args, **kwargs)¶
Overloaded function.
- cudaq.from_state(kernel: cudaq.Kernel, qubits: cudaq.QuakeValue, state: numpy.ndarray[]) None
Decompose the input state vector to a set of controlled operations and rotations within the provided
kernelbody.# Example: import numpy as np # Define our kernel. kernel = cudaq.make_kernel() # Allocate some qubits. qubits = kernel.qalloc(3) # Define a simple state vector. state = np.array([0,1], dtype=np.complex128) # Now calling `from_state`, we will provide the `kernel` and the # qubit/s that we'd like to evolve to the given `state`. cudaq.from_state(kernel, qubits, state)
- cudaq.from_state(state: numpy.ndarray[]) cudaq.Kernel
Decompose the given state vector into a set of controlled operations and rotations and return a valid, callable, CUDA Quantum kernel.
# Example: import numpy as np # Define a simple state vector. state = np.array([0,1], dtype=np.complex128) # Create and return a kernel that produces the given `state`. kernel = cudaq.from_state(state)
- class cudaq.Kernel¶
The
Kernelprovides an API for dynamically constructing quantum circuits. TheKernelprogrammatically represents the circuit as an MLIR function using the Quake dialect.Note
See
make_kernel()for theKernelconstructor.- arguments¶
The arguments accepted by the
Kernelfunction. Read-only.- Type:
List[
QuakeValue]
- qalloc(*args, **kwargs)¶
Overloaded function.
- qalloc(self: cudaq.Kernel) cudaq.QuakeValue
Allocate a single qubit and return a handle to it as a
QuakeValue.- Returns:
A handle to the allocated qubit in the MLIR.
- Return type:
# Example: kernel = cudaq.make_kernel() qubit = kernel.qalloc()
- qalloc(self: cudaq.Kernel, qubit_count: int) cudaq.QuakeValue
Allocate a register of qubits of size
qubit_countand return a handle to them as aQuakeValue.- Parameters:
qubit_count (
int) – The number of qubits to allocate.- Returns:
A handle to the allocated qubits in the MLIR.
- Return type:
# Example: kernel = cudaq.make_kernel() qubits = kernel.qalloc(10)
- qalloc(self: cudaq.Kernel, qubit_count: cudaq.QuakeValue) cudaq.QuakeValue
Allocate a register of qubits of size
qubit_count(wherequbit_countis an existingQuakeValue) and return a handle to them as a newQuakeValue.- Parameters:
qubit_count (
QuakeValue) – The parameterized number of qubits to allocate.- Returns:
A handle to the allocated qubits in the MLIR.
- Return type:
# Example: # Create a kernel that takes an int as its argument. kernel, qubit_count = cudaq.make_kernel(int) # Allocate the variable number of qubits. qubits = kernel.qalloc(qubit_count)
- __str__()¶
- __str__(self: cudaq.Kernel) str
Return the
Kernelas a string in its MLIR representation using the Quake dialect.
- __call__()¶
- __call__(self: cudaq.Kernel, \*args) None
Just-In-Time (JIT) compile
self(Kernel), and call the kernel function at the provided concrete arguments.- Parameters:
*arguments (Optional[Any]) – The concrete values to evaluate the kernel function at. Leave empty if the
targetkernel doesn’t accept any arguments.
# Example: # Create a kernel that accepts an int and float as its # arguments. kernel, qubit_count, angle = cudaq.make_kernel(int, float) # Parameterize the number of qubits by `qubit_count`. qubits = kernel.qalloc(qubit_count) # Apply an `rx` rotation on the first qubit by `angle`. kernel.rx(angle, qubits[0]) # Call the `Kernel` on the given number of qubits (5) and at a concrete angle (pi). kernel(5, 3.14)
- x()¶
- x(self: cudaq.Kernel, target: cudaq.QuakeValue) None
Apply a x gate to the given target qubit or qubits.
- Parameters:
target (
QuakeValue) – The qubit or qubits to apply x to.
# Example: kernel = cudaq.make_kernel() # Allocate qubit/s to the `kernel`. qubits = kernel.qalloc(5) # Apply a x gate to the qubit/s. kernel.x(qubits)
- cx(*args, **kwargs)¶
Overloaded function.
- cx(self: cudaq.Kernel, control: cudaq.QuakeValue, target: cudaq.QuakeValue) None
Apply a controlled-x operation to the given target qubit, with the provided control qubit.
- Parameters:
control (
QuakeValue) – The control qubit for the operation. Must be a single qubit, registers are not a validcontrolargument.target (
QuakeValue) – The target qubit of the operation.
# Example: kernel = cudaq.make_kernel() control = kernel.qalloc() target = kernel.qalloc() # Apply a controlled-x between the two qubits. kernel.cx(control=control, target=target)
- cx(self: cudaq.Kernel, controls: List[cudaq.QuakeValue], target: cudaq.QuakeValue) None
Apply a controlled-x operation to the given target qubits, with the provided list of control qubits.
- Parameters:
controls (
QuakeValue) – The list of qubits to use as controls for the operation.target (
QuakeValue) – The target qubit of the operation.
# Example: kernel = cudaq.make_kernel() controls = kernel.qalloc(2) target = kernel.qalloc() # Apply a controlled-x to the target qubit, with the two control qubits. kernel.cx(controls=[controls[0], controls[1]], target=target)
- y()¶
- y(self: cudaq.Kernel, target: cudaq.QuakeValue) None
Apply a y gate to the given target qubit or qubits.
- Parameters:
target (
QuakeValue) – The qubit or qubits to apply y to.
# Example: kernel = cudaq.make_kernel() # Allocate qubit/s to the `kernel`. qubits = kernel.qalloc(5) # Apply a y gate to the qubit/s. kernel.y(qubits)
- cy(*args, **kwargs)¶
Overloaded function.
- cy(self: cudaq.Kernel, control: cudaq.QuakeValue, target: cudaq.QuakeValue) None
Apply a controlled-y operation to the given target qubit, with the provided control qubit.
- Parameters:
control (
QuakeValue) – The control qubit for the operation. Must be a single qubit, registers are not a validcontrolargument.target (
QuakeValue) – The target qubit of the operation.
# Example: kernel = cudaq.make_kernel() control = kernel.qalloc() target = kernel.qalloc() # Apply a controlled-y between the two qubits. kernel.cy(control=control, target=target)
- cy(self: cudaq.Kernel, controls: List[cudaq.QuakeValue], target: cudaq.QuakeValue) None
Apply a controlled-y operation to the given target qubits, with the provided list of control qubits.
- Parameters:
controls (
QuakeValue) – The list of qubits to use as controls for the operation.target (
QuakeValue) – The target qubit of the operation.
# Example: kernel = cudaq.make_kernel() controls = kernel.qalloc(2) target = kernel.qalloc() # Apply a controlled-y to the target qubit, with the two control qubits. kernel.cy(controls=[controls[0], controls[1]], target=target)
- z()¶
- z(self: cudaq.Kernel, target: cudaq.QuakeValue) None
Apply a z gate to the given target qubit or qubits.
- Parameters:
target (
QuakeValue) – The qubit or qubits to apply z to.
# Example: kernel = cudaq.make_kernel() # Allocate qubit/s to the `kernel`. qubits = kernel.qalloc(5) # Apply a z gate to the qubit/s. kernel.z(qubits)
- cz(*args, **kwargs)¶
Overloaded function.
- cz(self: cudaq.Kernel, control: cudaq.QuakeValue, target: cudaq.QuakeValue) None
Apply a controlled-z operation to the given target qubit, with the provided control qubit.
- Parameters:
control (
QuakeValue) – The control qubit for the operation. Must be a single qubit, registers are not a validcontrolargument.target (
QuakeValue) – The target qubit of the operation.
# Example: kernel = cudaq.make_kernel() control = kernel.qalloc() target = kernel.qalloc() # Apply a controlled-z between the two qubits. kernel.cz(control=control, target=target)
- cz(self: cudaq.Kernel, controls: List[cudaq.QuakeValue], target: cudaq.QuakeValue) None
Apply a controlled-z operation to the given target qubits, with the provided list of control qubits.
- Parameters:
controls (
QuakeValue) – The list of qubits to use as controls for the operation.target (
QuakeValue) – The target qubit of the operation.
# Example: kernel = cudaq.make_kernel() controls = kernel.qalloc(2) target = kernel.qalloc() # Apply a controlled-z to the target qubit, with the two control qubits. kernel.cz(controls=[controls[0], controls[1]], target=target)
- h()¶
- h(self: cudaq.Kernel, target: cudaq.QuakeValue) None
Apply a h gate to the given target qubit or qubits.
- Parameters:
target (
QuakeValue) – The qubit or qubits to apply h to.
# Example: kernel = cudaq.make_kernel() # Allocate qubit/s to the `kernel`. qubits = kernel.qalloc(5) # Apply a h gate to the qubit/s. kernel.h(qubits)
- ch(*args, **kwargs)¶
Overloaded function.
- ch(self: cudaq.Kernel, control: cudaq.QuakeValue, target: cudaq.QuakeValue) None
Apply a controlled-h operation to the given target qubit, with the provided control qubit.
- Parameters:
control (
QuakeValue) – The control qubit for the operation. Must be a single qubit, registers are not a validcontrolargument.target (
QuakeValue) – The target qubit of the operation.
# Example: kernel = cudaq.make_kernel() control = kernel.qalloc() target = kernel.qalloc() # Apply a controlled-h between the two qubits. kernel.ch(control=control, target=target)
- ch(self: cudaq.Kernel, controls: List[cudaq.QuakeValue], target: cudaq.QuakeValue) None
Apply a controlled-h operation to the given target qubits, with the provided list of control qubits.
- Parameters:
controls (
QuakeValue) – The list of qubits to use as controls for the operation.target (
QuakeValue) – The target qubit of the operation.
# Example: kernel = cudaq.make_kernel() controls = kernel.qalloc(2) target = kernel.qalloc() # Apply a controlled-h to the target qubit, with the two control qubits. kernel.ch(controls=[controls[0], controls[1]], target=target)
- s()¶
- s(self: cudaq.Kernel, target: cudaq.QuakeValue) None
Apply a s gate to the given target qubit or qubits.
- Parameters:
target (
QuakeValue) – The qubit or qubits to apply s to.
# Example: kernel = cudaq.make_kernel() # Allocate qubit/s to the `kernel`. qubits = kernel.qalloc(5) # Apply a s gate to the qubit/s. kernel.s(qubits)
- sdg()¶
- sdg(self: cudaq.Kernel, target: cudaq.QuakeValue) None
Apply a rotation on the z-axis of negative 90 degrees to the given target qubit/s.
- Parameters:
target (
QuakeValue) – The qubit or qubits to apply an sdg gate to.
# Example: kernel = cudaq.make_kernel() # Allocate qubit/s to the `kernel`. qubits = kernel.qalloc(5) # Apply a sdg gate to the qubit/s. kernel.sdg(qubit)
- cs(*args, **kwargs)¶
Overloaded function.
- cs(self: cudaq.Kernel, control: cudaq.QuakeValue, target: cudaq.QuakeValue) None
Apply a controlled-s operation to the given target qubit, with the provided control qubit.
- Parameters:
control (
QuakeValue) – The control qubit for the operation. Must be a single qubit, registers are not a validcontrolargument.target (
QuakeValue) – The target qubit of the operation.
# Example: kernel = cudaq.make_kernel() control = kernel.qalloc() target = kernel.qalloc() # Apply a controlled-s between the two qubits. kernel.cs(control=control, target=target)
- cs(self: cudaq.Kernel, controls: List[cudaq.QuakeValue], target: cudaq.QuakeValue) None
Apply a controlled-s operation to the given target qubits, with the provided list of control qubits.
- Parameters:
controls (
QuakeValue) – The list of qubits to use as controls for the operation.target (
QuakeValue) – The target qubit of the operation.
# Example: kernel = cudaq.make_kernel() controls = kernel.qalloc(2) target = kernel.qalloc() # Apply a controlled-s to the target qubit, with the two control qubits. kernel.cs(controls=[controls[0], controls[1]], target=target)
- t()¶
- t(self: cudaq.Kernel, target: cudaq.QuakeValue) None
Apply a t gate to the given target qubit or qubits.
- Parameters:
target (
QuakeValue) – The qubit or qubits to apply t to.
# Example: kernel = cudaq.make_kernel() # Allocate qubit/s to the `kernel`. qubits = kernel.qalloc(5) # Apply a t gate to the qubit/s. kernel.t(qubits)
- tdg()¶
- tdg(self: cudaq.Kernel, target: cudaq.QuakeValue) None
Apply a rotation on the z-axis of negative 45 degrees to the given target qubit/s.
- Parameters:
target (
QuakeValue) – The qubit or qubits to apply a tdg gate to.
# Example: kernel = cudaq.make_kernel() # Allocate qubit/s to the `kernel`. qubits = kernel.qalloc(5) # Apply a tdg gate to the qubit/s. kernel.tdg(qubit)
- ct(*args, **kwargs)¶
Overloaded function.
- ct(self: cudaq.Kernel, control: cudaq.QuakeValue, target: cudaq.QuakeValue) None
Apply a controlled-t operation to the given target qubit, with the provided control qubit.
- Parameters:
control (
QuakeValue) – The control qubit for the operation. Must be a single qubit, registers are not a validcontrolargument.target (
QuakeValue) – The target qubit of the operation.
# Example: kernel = cudaq.make_kernel() control = kernel.qalloc() target = kernel.qalloc() # Apply a controlled-t between the two qubits. kernel.ct(control=control, target=target)
- ct(self: cudaq.Kernel, controls: List[cudaq.QuakeValue], target: cudaq.QuakeValue) None
Apply a controlled-t operation to the given target qubits, with the provided list of control qubits.
- Parameters:
controls (
QuakeValue) – The list of qubits to use as controls for the operation.target (
QuakeValue) – The target qubit of the operation.
# Example: kernel = cudaq.make_kernel() controls = kernel.qalloc(2) target = kernel.qalloc() # Apply a controlled-t to the target qubit, with the two control qubits. kernel.ct(controls=[controls[0], controls[1]], target=target)
- rx(*args, **kwargs)¶
Overloaded function.
- rx(self: cudaq.Kernel, parameter: cudaq.QuakeValue, target: cudaq.QuakeValue) None
Apply rx to the given target qubit, parameterized by the provided kernel argument (
parameter).- Parameters:
parameter (
QuakeValue) – The kernel argument to parameterize the rx gate over.target (
QuakeValue) – The target qubit of the rx gate.
# Example: # Create a kernel that accepts a float, `angle`, as its argument. kernel, angle = cudaq.make_kernel(float) qubit = kernel.qalloc() # Apply an rx to the kernel at `angle`. kernel.rx(parameter=angle, target=qubit)
- rx(self: cudaq.Kernel, parameter: float, target: cudaq.QuakeValue) None
Apply rx to the given target qubit, parameterized by the provided double value (
parameter).- Parameters:
parameter (float) – The double value to parameterize the rx gate over.
target (
QuakeValue) – The target qubit of the rx gate.
# Example: kernel = cudaq.make_kernel() # Apply an rx to the kernel at a concrete parameter value. kernel.rx(parameter=3.14, target=qubit)
- ry(*args, **kwargs)¶
Overloaded function.
- ry(self: cudaq.Kernel, parameter: cudaq.QuakeValue, target: cudaq.QuakeValue) None
Apply ry to the given target qubit, parameterized by the provided kernel argument (
parameter).- Parameters:
parameter (
QuakeValue) – The kernel argument to parameterize the ry gate over.target (
QuakeValue) – The target qubit of the ry gate.
# Example: # Create a kernel that accepts a float, `angle`, as its argument. kernel, angle = cudaq.make_kernel(float) qubit = kernel.qalloc() # Apply an ry to the kernel at `angle`. kernel.ry(parameter=angle, target=qubit)
- ry(self: cudaq.Kernel, parameter: float, target: cudaq.QuakeValue) None
Apply ry to the given target qubit, parameterized by the provided double value (
parameter).- Parameters:
parameter (float) – The double value to parameterize the ry gate over.
target (
QuakeValue) – The target qubit of the ry gate.
# Example: kernel = cudaq.make_kernel() # Apply an ry to the kernel at a concrete parameter value. kernel.ry(parameter=3.14, target=qubit)
- rz(*args, **kwargs)¶
Overloaded function.
- rz(self: cudaq.Kernel, parameter: cudaq.QuakeValue, target: cudaq.QuakeValue) None
Apply rz to the given target qubit, parameterized by the provided kernel argument (
parameter).- Parameters:
parameter (
QuakeValue) – The kernel argument to parameterize the rz gate over.target (
QuakeValue) – The target qubit of the rz gate.
# Example: # Create a kernel that accepts a float, `angle`, as its argument. kernel, angle = cudaq.make_kernel(float) qubit = kernel.qalloc() # Apply an rz to the kernel at `angle`. kernel.rz(parameter=angle, target=qubit)
- rz(self: cudaq.Kernel, parameter: float, target: cudaq.QuakeValue) None
Apply rz to the given target qubit, parameterized by the provided double value (
parameter).- Parameters:
parameter (float) – The double value to parameterize the rz gate over.
target (
QuakeValue) – The target qubit of the rz gate.
# Example: kernel = cudaq.make_kernel() # Apply an rz to the kernel at a concrete parameter value. kernel.rz(parameter=3.14, target=qubit)
- r1(*args, **kwargs)¶
Overloaded function.
- r1(self: cudaq.Kernel, parameter: cudaq.QuakeValue, target: cudaq.QuakeValue) None
Apply r1 to the given target qubit, parameterized by the provided kernel argument (
parameter).- Parameters:
parameter (
QuakeValue) – The kernel argument to parameterize the r1 gate over.target (
QuakeValue) – The target qubit of the r1 gate.
# Example: # Create a kernel that accepts a float, `angle`, as its argument. kernel, angle = cudaq.make_kernel(float) qubit = kernel.qalloc() # Apply an r1 to the kernel at `angle`. kernel.r1(parameter=angle, target=qubit)
- r1(self: cudaq.Kernel, parameter: float, target: cudaq.QuakeValue) None
Apply r1 to the given target qubit, parameterized by the provided double value (
parameter).- Parameters:
parameter (float) – The double value to parameterize the r1 gate over.
target (
QuakeValue) – The target qubit of the r1 gate.
# Example: kernel = cudaq.make_kernel() # Apply an r1 to the kernel at a concrete parameter value. kernel.r1(parameter=3.14, target=qubit)
- swap()¶
- swap(self: cudaq.Kernel, first: cudaq.QuakeValue, second: cudaq.QuakeValue) None
Swap the states of the provided qubits.
# Example: kernel = cudaq.make_kernel() # Allocate qubit/s to the `kernel`. qubits = kernel.qalloc(2) # Place the 0th qubit in the 1-state. kernel.x(qubits[0]) # Swap their states. kernel.swap(qubits[0], qubits[1])
- mx()¶
- mx(self: cudaq.Kernel, target: cudaq.QuakeValue, register_name: str = '') cudaq.QuakeValue
Measure the given qubit or qubits in the X-basis. The optional
register_namemay be used to retrieve results of this measurement after execution on the QPU. If the measurement call is saved as a variable, it will return aQuakeValuehandle to the measurement instruction.- Parameters:
target (
QuakeValue) – The qubit or qubits to measure.register_name (Optional[str]) – The optional name to provide the results of the measurement. Defaults to an empty string.
- Returns:
A handle to this measurement operation in the MLIR.
- Return type:
Note
Measurements may be applied both mid-circuit and at the end of the circuit. Mid-circuit measurements are currently only supported through the use of
c_if().# Example: kernel = cudaq.make_kernel() # Allocate qubit/s to measure. qubit = kernel.qalloc() # Measure the qubit/s in the X-basis. kernel.mx(qubit)
- my()¶
- my(self: cudaq.Kernel, target: cudaq.QuakeValue, register_name: str = '') cudaq.QuakeValue
Measure the given qubit or qubits in the Y-basis. The optional
register_namemay be used to retrieve results of this measurement after execution on the QPU. If the measurement call is saved as a variable, it will return aQuakeValuehandle to the measurement instruction.- Parameters:
target (
QuakeValue) – The qubit or qubits to measure.register_name (Optional[str]) – The optional name to provide the results of the measurement. Defaults to an empty string.
- Returns:
A handle to this measurement operation in the MLIR.
- Return type:
Note
Measurements may be applied both mid-circuit and at the end of the circuit. Mid-circuit measurements are currently only supported through the use of
c_if().# Example: kernel = cudaq.make_kernel() # Allocate qubit/s to measure. qubit = kernel.qalloc() # Measure the qubit/s in the Y-basis. kernel.my(qubit)
- mz()¶
- mz(self: cudaq.Kernel, target: cudaq.QuakeValue, register_name: str = '') cudaq.QuakeValue
Measure the given qubit or qubits in the Z-basis. The optional
register_namemay be used to retrieve results of this measurement after execution on the QPU. If the measurement call is saved as a variable, it will return aQuakeValuehandle to the measurement instruction.- Parameters:
target (
QuakeValue) – The qubit or qubits to measure.register_name (Optional[str]) – The optional name to provide the results of the measurement. Defaults to an empty string.
- Returns:
A handle to this measurement operation in the MLIR.
- Return type:
Note
Measurements may be applied both mid-circuit and at the end of the circuit. Mid-circuit measurements are currently only supported through the use of
c_if().# Example: kernel = cudaq.make_kernel() # Allocate qubit/s to measure. qubit = kernel.qalloc() # Measure the qubit/s in the Z-basis. kernel.mz(target=qubit)
- c_if()¶
- c_if(self: cudaq.Kernel, measurement: cudaq.QuakeValue, function: function) None
Apply the
functionto theKernelif the provided single-qubitmeasurementreturns the 1-state.- Parameters:
measurement (
QuakeValue) – The handle to the single qubit measurement instruction.function (Callable) – The function to conditionally apply to the
Kernel.
- Raises:
RuntimeError – If the provided
measurementis on more than 1 qubit.
# Example: # Create a kernel and allocate a single qubit. kernel = cudaq.make_kernel() qubit = kernel.qalloc() # Define a function that performs certain operations on the # kernel and the qubit. def then_function(): kernel.x(qubit) kernel.x(qubit) # Measure the qubit. measurement = kernel.mz(qubit) # Apply `then_function` to the `kernel` if the qubit was measured # in the 1-state. kernel.c_if(measurement, then_function)
- for_loop(*args, **kwargs)¶
Overloaded function.
- for_loop(self: cudaq.Kernel, start: int, stop: int, function: function) None
Add a for loop that starts from the given
startinteger index, ends at the givenstopinteger index (non inclusive), applying the providedfunctionwithinselfat each iteration.- Parameters:
Note
This callable function must take as input an index variable that can be used within the body.
# Example: # Create a kernel and allocate (5) qubits to it. kernel = cudaq.make_kernel() qubits = kernel.qalloc(5) kernel.h(qubits[0]) def foo(index: int): """A function that will be applied to `kernel` in a for loop.""" kernel.cx(qubits[index], qubits[index+1]) # Create a for loop in `kernel`, providing a concrete number # of iterations to run (4). kernel.for_loop(start=0, stop=4, function=foo) # Execute the kernel. result = cudaq.sample(kernel) print(result)
- for_loop(self: cudaq.Kernel, start: int, stop: cudaq.QuakeValue, function: function) None
Add a for loop that starts from the given
startinteger index, ends at the givenstopQuakeValueindex (non inclusive), applying the providedfunctionwithinselfat each iteration.- Parameters:
start (int) – The beginning iterator value for the for loop.
stop (
QuakeValue) – The final iterator value (non-inclusive) for the for loop.function (Callable) – The callable function to apply within the
kernelat each iteration.
# Example: # Create a kernel function that takes an `int` argument. kernel, size = cudaq.make_kernel(int) # Parameterize the allocated number of qubits by the int. qubits = kernel.qalloc(size) kernel.h(qubits[0]) def foo(index: int): """A function that will be applied to `kernel` in a for loop.""" kernel.cx(qubits[index], qubits[index+1]) # Create a for loop in `kernel`, parameterized by the `size` # argument for its `stop` iterator. kernel.for_loop(start=0, stop=size-1, function=foo) # Execute the kernel, passing along a concrete value (5) for # the `size` argument. counts = cudaq.sample(kernel, 5) print(counts)
- for_loop(self: cudaq.Kernel, start: cudaq.QuakeValue, stop: int, function: function) None
Add a for loop that starts from the given
startQuakeValueindex, ends at the givenstopinteger index (non inclusive), applying the providedfunctionwithinselfat each iteration.- Parameters:
start (
QuakeValue) – The beginning iterator value for the for loop.stop (int) – The final iterator value (non-inclusive) for the for loop.
function (Callable) – The callable function to apply within the
kernelat each iteration.
# Example: # Create a kernel function that takes an `int` argument. kernel, start = cudaq.make_kernel(int) # Allocate 5 qubits. qubits = kernel.qalloc(5) kernel.h(qubits[0]) def foo(index: int): """A function that will be applied to `kernel` in a for loop.""" kernel.cx(qubits[index], qubits[index+1]) # Create a for loop in `kernel`, with its start index being # parameterized by the kernel's `start` argument. kernel.for_loop(start=start, stop=4, function=foo) # Execute the kernel, passing along a concrete value (0) for # the `start` argument. counts = cudaq.sample(kernel, 0) print(counts)
- for_loop(self: cudaq.Kernel, start: cudaq.QuakeValue, stop: cudaq.QuakeValue, function: function) None
Add a for loop that starts from the given
startQuakeValueindex, and ends at the givenstopQuakeValueindex (non inclusive). The providedfunctionwill be applied withinselfat each iteration.- Parameters:
start (
QuakeValue) – The beginning iterator value for the for loop.stop (
QuakeValue) – The final iterator value (non-inclusive) for the for loop.function (Callable) – The callable function to apply within the
kernelat each iteration.
# Example: # Create a kernel function that takes two `int`'s as arguments. kernel, start, stop = cudaq.make_kernel(int, int) # Parameterize the allocated number of qubits by the int. qubits = kernel.qalloc(stop) kernel.h(qubits[0]) def foo(index: int): """A function that will be applied to `kernel` in a for loop.""" kernel.x(qubits[index]) # Create a for loop in `kernel`, parameterized by the `start` # and `stop` arguments. kernel.for_loop(start=start, stop=stop, function=foo) # Execute the kernel, passing along concrete values for the # `start` and `stop` arguments. counts = cudaq.sample(kernel, 3, 8) print(counts)
- adjoint()¶
- adjoint(self: cudaq.Kernel, target: cudaq.Kernel, \*args) None
Apply the adjoint of the
targetkernel in-place toself.- Parameters:
target (
Kernel) – The kernel to take the adjoint of.*target_arguments (Optional[QuakeValue]) – The arguments to the
targetkernel. Leave empty if thetargetkernel doesn’t accept any arguments.
- Raises:
RuntimeError – if the
*target_argumentspassed to the adjoint call don’t match the argument signature oftarget.
# Example: target_kernel = cudaq.make_kernel() qubit = target_kernel.qalloc() target_kernel.x(qubit) # Apply the adjoint of `target_kernel` to `kernel`. kernel = cudaq.make_kernel() kernel.adjoint(target_kernel)
- control()¶
- control(self: cudaq.Kernel, target: cudaq.Kernel, control: cudaq.QuakeValue, \*args) None
Apply the
targetkernel as a controlled operation in-place toself.Uses the providedcontrolas control qubit/s for the operation.- Parameters:
target (
Kernel) – The kernel to apply as a controlled operation in-place to self.control (
QuakeValue) – The control qubit or register to use when applyingtarget.*target_arguments (Optional[QuakeValue]) – The arguments to the
targetkernel. Leave empty if thetargetkernel doesn’t accept any arguments.
- Raises:
RuntimeError – if the
*target_argumentspassed to the control call don’t match the argument signature oftarget.
# Example: # Create a `Kernel` that accepts a qubit as an argument. # Apply an X-gate on that qubit. target_kernel, qubit = cudaq.make_kernel(cudaq.qubit) target_kernel.x(qubit) # Create another `Kernel` that will apply `target_kernel` # as a controlled operation. kernel = cudaq.make_kernel() control_qubit = kernel.qalloc() target_qubit = kernel.qalloc() # In this case, `control` performs the equivalent of a # controlled-X gate between `control_qubit` and `target_qubit`. kernel.control(target_kernel, control_qubit, target_qubit)
- apply_call()¶
- apply_call(self: cudaq.Kernel, target: cudaq.Kernel, \*args) None
Apply a call to the given
targetkernel within the function-body ofselfat the providedtarget_arguments.- Parameters:
target (
Kernel) – The kernel to call from withinself.*target_arguments (Optional[QuakeValue]) – The arguments to the
targetkernel. Leave empty if thetargetkernel doesn’t accept any arguments.
- Raises:
RuntimeError – if the
*argspassed to the apply call don’t match the argument signature oftarget.
# Example: # Build a `Kernel` that's parameterized by a `cudaq.qubit`. target_kernel, other_qubit = cudaq.make_kernel(cudaq.qubit) target_kernel.x(other_qubit) # Build a `Kernel` that will call `target_kernel` within its # own function body. kernel = cudaq.make_kernel() qubit = kernel.qalloc() # Use `qubit` as the argument to `target_kernel`. kernel.apply_call(target_kernel, qubit) # The final measurement of `qubit` should return the 1-state. kernel.mz(qubit)
Kernel Execution¶
- cudaq.sample()¶
- cudaq.sample(kernel: cudaq.Kernel, \*args, shots_count: int = 1000, noise_model: Optional[cudaq.NoiseModel] = None) Union[cudaq.SampleResult, List[cudaq.SampleResult]]
Sample the state generated by the provided
kernelat the given kernelargumentsover the specified number of circuit executions (shots_count). Each argument inargumentsprovided can be a list or ndarray of arguments of the specified kernel argument type, and in this case, thesamplefunctionality will be broadcasted over all argument sets and a list ofsample_resultinstances will be returned.- Parameters:
kernel (
Kernel) – TheKernelto executeshots_counttimes on the QPU.*arguments (Optional[Any]) – The concrete values to evaluate the kernel function at. Leave empty if the kernel doesn’t accept any arguments. For example, if the kernel takes two
floatvalues as input, thesamplecall should be structured ascudaq.sample(kernel, firstFloat, secondFloat). For broadcasting of thesamplefunction, the arguments should be structured as alistorndarrayof argument values of the specified kernel argument type.shots_count (Optional[int]) – The number of kernel executions on the QPU. Defaults to 1000. Key-word only.
noise_model (Optional[
NoiseModel]) – The optionalNoiseModelto add noise to the kernel execution on the simulator. Defaults to an empty noise model.
- Returns:
A dictionary containing the measurement count results for the
Kernel, or a list of such results in the case ofsamplefunction broadcasting.- Return type:
SampleResultorlist[SampleResult]
- cudaq.sample_async()¶
- cudaq.sample_async(kernel: cudaq.Kernel, \*args, shots_count: int = 1000, qpu_id: int = 0) cudaq.AsyncSampleResult
Asynchronously sample the state of the provided
kernelat the specified number of circuit executions (shots_count). When targeting a quantum platform with more than one QPU, the optionalqpu_idallows for control over which QPU to enable. Will return a future whose results can be retrieved viafuture.get().- Parameters:
kernel (
Kernel) – TheKernelto executeshots_counttimes on the QPU.*arguments (Optional[Any]) – The concrete values to evaluate the kernel function at. Leave empty if the kernel doesn’t accept any arguments.
shots_count (Optional[int]) – The number of kernel executions on the QPU. Defaults to 1000. Key-word only.
qpu_id (Optional[int]) – The optional identification for which QPU on the platform to target. Defaults to zero. Key-word only.
- Returns:
A dictionary containing the measurement count results for the
Kernel.- Return type:
- cudaq.observe()¶
- cudaq.observe(kernel: cudaq.Kernel, spin_operator: Union[cudaq.SpinOperator, List[cudaq.SpinOperator]], \*args, shots_count: int = -1, noise_model: Optional[cudaq.NoiseModel] = None, execution: Optional[type] = None) Union[cudaq.ObserveResult, List[cudaq.ObserveResult]]
Compute the expected value of the
spin_operatorwith respect to thekernel. If the inputspin_operatoris a list ofSpinOperatorthen compute the expected value of every operator in the list and return a list of results. If the kernel accepts arguments, it will be evaluated with respect tokernel(*arguments). Each argument inargumentsprovided can be a list or ndarray of arguments of the specified kernel argument type, and in this case, theobservefunctionality will be broadcasted over all argument sets and a list ofobserve_resultinstances will be returned.- Parameters:
kernel (
Kernel) – TheKernelto evaluate the expectation value with respect to.spin_operator (
SpinOperatororlist[SpinOperator]) – The Hermitian spin operator to calculate the expectation of, or a list of such operators.*arguments (Optional[Any]) – The concrete values to evaluate the kernel function at. Leave empty if the kernel doesn’t accept any arguments.
shots_count (Optional[int]) – The number of shots to use for QPU execution. Defaults to -1 implying no shots-based sampling. Key-word only.
noise_model (Optional[
NoiseModel]) – The optionalNoiseModelto add noise to the kernel execution on the simulator. Defaults to an empty noise model.
- Returns:
A data-type containing the expectation value of the
spin_operatorwith respect to thekernel(*arguments), or a list of such results in the case ofobservefunction broadcasting. Ifshots_countwas provided, theObserveResultwill also contain aSampleResultdictionary.- Return type:
- cudaq.observe_async()¶
- cudaq.observe_async(kernel: cudaq.Kernel, spin_operator: cudaq.SpinOperator, \*args, qpu_id: int = 0, shots_count: int = -1, noise_model: Optional[cudaq.NoiseModel] = None) cudaq.AsyncObserveResult
Compute the expected value of the
spin_operatorwith respect to thekernelasynchronously. If the kernel accepts arguments, it will be evaluated with respect tokernel(*arguments). When targeting a quantum platform with more than one QPU, the optionalqpu_idallows for control over which QPU to enable. Will return a future whose results can be retrieved viafuture.get().- Parameters:
kernel (
Kernel) – TheKernelto evaluate the expectation value with respect to.spin_operator (
SpinOperator) – The Hermitian spin operator to calculate the expectation of.*arguments (Optional[Any]) – The concrete values to evaluate the kernel function at. Leave empty if the kernel doesn’t accept any arguments.
qpu_id (Optional[int]) – The optional identification for which QPU on the platform to target. Defaults to zero. Key-word only.
shots_count (Optional[int]) – The number of shots to use for QPU execution. Defaults to -1 implying no shots-based sampling. Key-word only.
noise_model (Optional[
NoiseModel]) – The optionalNoiseModelto add noise to the kernel execution on the simulator. Defaults to an empty noise model.
- Returns:
A future containing the result of the call to observe.
- Return type:
- cudaq.vqe(*args, **kwargs)¶
Overloaded function.
- cudaq.vqe(kernel: cudaq.Kernel, spin_operator: cudaq.SpinOperator, optimizer: cudaq.optimizers.optimizer, parameter_count: int, shots: int = -1) Tuple[float, List[float]]
- cudaq.vqe(kernel: cudaq.Kernel, spin_operator: cudaq.SpinOperator, optimizer: cudaq.optimizers.optimizer, parameter_count: int, argument_mapper: function, shots: int = -1) Tuple[float, List[float]]
- cudaq.vqe(kernel: cudaq.Kernel, gradient_strategy: cudaq.gradients.gradient, spin_operator: cudaq.SpinOperator, optimizer: cudaq.optimizers.optimizer, parameter_count: int, shots: int = -1) Tuple[float, List[float]]
- cudaq.vqe(kernel: cudaq.Kernel, gradient_strategy: cudaq.gradients.gradient, spin_operator: cudaq.SpinOperator, optimizer: cudaq.optimizers.optimizer, parameter_count: int, argument_mapper: function, shots: int = -1) Tuple[float, List[float]]
Backend Configuration¶
- cudaq.has_target()¶
-
Return true if the
cudaq.Targetwith the given name exists.
- cudaq.get_target(*args, **kwargs)¶
Overloaded function.
- cudaq.get_target(arg0: str) cudaq.Target
Return the
cudaq.Targetwith the given name. Will raise an exception if the name is not valid.- cudaq.get_target() cudaq.Target
Return the
cudaq.Targetwith the given name. Will raise an exception if the name is not valid.
- cudaq.get_targets()¶
- cudaq.get_targets() List[cudaq.Target]
Return all available
cudaq.Targetinstances on the current system.
- cudaq.set_target(*args, **kwargs)¶
Overloaded function.
- cudaq.set_target(arg0: cudaq.Target, \*\*kwargs) None
Set the
cudaq.Targetto be used for CUDA Quantum kernel execution. Can provide optional, target-specific configuration data via Python kwargs.- cudaq.set_target(arg0: str, \*\*kwargs) None
Set the
cudaq.Targetwith given name to be used for CUDA Quantum kernel execution. Can provide optional, target-specific configuration data via Python kwargs.
- cudaq.set_noise()¶
- cudaq.set_noise(arg0: cudaq.NoiseModel) None
Set the underlying noise model.
- cudaq.unset_noise()¶
- cudaq.unset_noise() None
Clear backend simulation from any existing noise models.
- cudaq.initialize_cudaq()¶
- cudaq.initialize_cudaq(\*\*kwargs) None
Initialize the CUDA Quantum environment.
Data Types¶
- class cudaq.Target¶
The
cudaq.Targetrepresents the underlying infrastructure that CUDA Quantum kernels will execute on. Instances ofcudaq.Targetdescribe what simulator they may leverage, the quantum_platform required for execution, and a description for the target.- property description¶
A string describing the features for this
cudaq.Target.
- property name¶
The name of the
cudaq.Target.
- num_qpus()¶
- num_qpus(self: cudaq.Target) int
Return the number of QPUs available in this
cudaq.Target.
- property platform¶
The name of the quantum_platform implementation this
cudaq.Targetleverages.
- property simulator¶
The name of the simulator this
cudaq.Targetleverages. This will be empty for physical QPUs.
- class cudaq.QuakeValue¶
A
QuakeValuerepresents a handle to an individual function argument of aKernel, or a return value from an operation within it. As documented inmake_kernel(), aQuakeValuecan hold values of the following types: int, float, list/List,qubit, orqreg. TheQuakeValuecan also hold kernel operations such as qubit allocations and measurements.- __add__(*args, **kwargs)¶
Overloaded function.
- __add__(self: cudaq.QuakeValue, other: float) cudaq.QuakeValue
Return the sum of
self(QuakeValue) andother(float).- Raises:
RuntimeError – if the underlying
QuakeValuetype is not a float.
# Example: kernel, value = cudaq.make_kernel(float) new_value: QuakeValue = value + 5.0
- __add__(self: cudaq.QuakeValue, other: cudaq.QuakeValue) cudaq.QuakeValue
Return the sum of
self(QuakeValue) andother(QuakeValue).- Raises:
RuntimeError – if the underlying
QuakeValuetype is not the same type asself.
# Example: kernel, values = cudaq.make_kernel(list) new_value: QuakeValue = values[0] + values[1]
- __add__(self: cudaq.QuakeValue, other: int) cudaq.QuakeValue
Return the sum of
self(QuakeValue) andother(int).- Raises:
RuntimeError – if the underlying
QuakeValuetype is not anint.
# Example: kernel, values = cudaq.make_kernel(list) new_value: QuakeValue = values[0] + 2
- __radd__()¶
- __radd__(self: cudaq.QuakeValue, other: float) cudaq.QuakeValue
Return the sum of
other(float) andself(QuakeValue).- Raises:
RuntimeError – if the underlying
QuakeValuetype is not a float.
# Example: kernel, value = cudaq.make_kernel(float) new_value: QuakeValue = 5.0 + value
- __sub__(*args, **kwargs)¶
Overloaded function.
- __sub__(self: cudaq.QuakeValue, other: float) cudaq.QuakeValue
Return the difference of
self(QuakeValue) andother(float).- Raises:
RuntimeError – if the underlying
QuakeValuetype is not a float.
# Example: kernel, value = cudaq.make_kernel(float) new_value: QuakeValue = value - 5.0
- __sub__(self: cudaq.QuakeValue, other: cudaq.QuakeValue) cudaq.QuakeValue
Return the difference of
self(QuakeValue) andother(QuakeValue).- Raises:
RuntimeError – if the underlying
QuakeValuetype is not the same type asself.
# Example: kernel, values = cudaq.make_kernel(list) new_value: QuakeValue = values[0] - values[1]
- __sub__(self: cudaq.QuakeValue, other: int) cudaq.QuakeValue
Return the difference of
self(QuakeValue) andother(int).- Raises:
RuntimeError – if the underlying
QuakeValuetype is not a int.
# Example: kernel, values = cudaq.make_kernel(list) new_value: QuakeValue = values[0] - 2
- __rsub__()¶
- __rsub__(self: cudaq.QuakeValue, other: float) cudaq.QuakeValue
Return the difference of
other(float) andself(QuakeValue).- Raises:
RuntimeError – if the underlying
QuakeValuetype is not a float.
# Example: kernel, value = cudaq.make_kernel(float) new_value: QuakeValue = 5.0 - value
- __neg__()¶
- __neg__(self: cudaq.QuakeValue) cudaq.QuakeValue
Return the negation of
self(QuakeValue).- Raises:
RuntimeError – if the underlying
QuakeValuetype is not a float.
# Example: kernel, value = cudaq.make_kernel(float) new_value: QuakeValue = -value
- __mul__(*args, **kwargs)¶
Overloaded function.
- __mul__(self: cudaq.QuakeValue, other: float) cudaq.QuakeValue
Return the product of
self(QuakeValue) withother(float).- Raises:
RuntimeError – if the underlying
QuakeValuetype is not a float.
# Example: kernel, value = cudaq.make_kernel(float) new_value: QuakeValue = value * 5.0
- __mul__(self: cudaq.QuakeValue, other: cudaq.QuakeValue) cudaq.QuakeValue
Return the product of
self(QuakeValue) withother(QuakeValue).- Raises:
RuntimeError – if the underlying
QuakeValuetype is not a float.
# Example: kernel, values = cudaq.make_kernel(list) new_value: QuakeValue = values[0] * values[1]
- __rmul__()¶
- __rmul__(self: cudaq.QuakeValue, other: float) cudaq.QuakeValue
Return the product of
other(float) withself(QuakeValue).- Raises:
RuntimeError – if the underlying
QuakeValuetype is not a float.
# Example: kernel, value = cudaq.make_kernel(float) new_value: QuakeValue = 5.0 * value
- __getitem__(*args, **kwargs)¶
Overloaded function.
- __getitem__(self: cudaq.QuakeValue, index: int) cudaq.QuakeValue
Return the element of
selfat the providedindex.Note
Only
listorqregtypeQuakeValue’s may be indexed.- Parameters:
index (int) – The element of
selfthat you’d like to return.- Returns:
A new
QuakeValuefor theindex-th element ofself.- Return type:
- Raises:
RuntimeError – if
selfis a non-subscriptableQuakeValue.
- __getitem__(self: cudaq.QuakeValue, index: cudaq.QuakeValue) cudaq.QuakeValue
Return the element of
selfat the providedindex.Note
Only
listorqregtypeQuakeValue’s may be indexed.- Parameters:
index (QuakeValue) – The element of
selfthat you’d like to return.- Returns:
A new
QuakeValuefor theindex-th element ofself.- Return type:
- Raises:
RuntimeError – if
selfis a non-subscriptableQuakeValue.
- slice()¶
- slice(self: cudaq.QuakeValue, start: int, count: int) cudaq.QuakeValue
Return a slice of the given
QuakeValueas a newQuakeValue.Note
The underlying
QuakeValuemust be alistorveq.- Parameters:
- Returns:
A new
QuakeValuecontaining a slice ofselffrom thestart-th element to thestart + count-th element.- Return type:
- class cudaq.qubit¶
The data-type representing a qubit argument to a
Kernelfunction.# Example: kernel, qubit = cudaq.make_kernel(cudaq.qubit)
- class cudaq.qreg¶
The data-type representing a register of qubits as an argument to a
Kernelfunction.# Example: kernel, qreg = cudaq.make_kernel(cudaq.qreg)
- class cudaq.ComplexMatrix¶
The
ComplexMatrixis a thin wrapper around a matrix of complex<double> elements.- __getitem__(*args, **kwargs)¶
Overloaded function.
- __getitem__(self: cudaq.ComplexMatrix, arg0: int, arg1: int) complex
Return the matrix element at i, j.
- __getitem__(self: cudaq.ComplexMatrix, arg0: Tuple[int, int]) complex
Return the matrix element at i, j.
- __str__()¶
- __str__(self: cudaq.ComplexMatrix) str
Write this matrix to a string representation.
- minimal_eigenvalue()¶
- minimal_eigenvalue(self: cudaq.ComplexMatrix) complex
Return the lowest eigenvalue for this
ComplexMatrix.
- class cudaq.SpinOperator¶
- __eq__()¶
- __eq__(self: cudaq.SpinOperator, other: cudaq.SpinOperator) bool
Return true if the two
SpinOperator’s are equal. Equality does not consider the coefficients.
- __add__(*args, **kwargs)¶
Overloaded function.
- __add__(self: cudaq.SpinOperator, other: cudaq.SpinOperator) cudaq.SpinOperator
Add the given
SpinOperatorto this one and return result as a newSpinOperator.- __add__(self: cudaq.SpinOperator, other: float) cudaq.SpinOperator
Add a double to the given
SpinOperatorand return result as a newSpinOperator.
- __radd__()¶
- __radd__(self: cudaq.SpinOperator, other: float) cudaq.SpinOperator
Add a
SpinOperatorto the given double and return result as a newSpinOperator.
- __sub__(*args, **kwargs)¶
Overloaded function.
- __sub__(self: cudaq.SpinOperator, other: cudaq.SpinOperator) cudaq.SpinOperator
Subtract the given
SpinOperatorfrom this one and return result as a newSpinOperator.- __sub__(self: cudaq.SpinOperator, other: float) cudaq.SpinOperator
Subtract a double from the given
SpinOperatorand return result as a newSpinOperator.
- __rsub__()¶
- __rsub__(self: cudaq.SpinOperator, other: float) cudaq.SpinOperator
Subtract a
SpinOperatorfrom the given double and return result as a newSpinOperator.
- __mul__(*args, **kwargs)¶
Overloaded function.
- __mul__(self: cudaq.SpinOperator, other: cudaq.SpinOperator) cudaq.SpinOperator
Multiply the given
SpinOperator’s together and return result as a newSpinOperator.- __mul__(self: cudaq.SpinOperator, other: float) cudaq.SpinOperator
Multiply the
SpinOperatorby the given double and return result as a newSpinOperator.- __mul__(self: cudaq.SpinOperator, other: complex) cudaq.SpinOperator
Multiply the
SpinOperatorby the given complex value and return result as a newSpinOperator.
- __rmul__(*args, **kwargs)¶
Overloaded function.
- __rmul__(self: cudaq.SpinOperator, other: float) cudaq.SpinOperator
Multiply the double by the given
SpinOperatorand return result as a newSpinOperator.- __rmul__(self: cudaq.SpinOperator, other: complex) cudaq.SpinOperator
Multiply the complex value by the given
SpinOperatorand return result as a newSpinOperator.
- __iter__()¶
- __iter__(self: cudaq.SpinOperator) Iterator
Loop through each term of this
SpinOperator.
- distribute_terms()¶
- distribute_terms(self: cudaq.SpinOperator, chunk_count: int) List[cudaq.SpinOperator]
Return a list of
SpinOperatorrepresenting a distribution of the terms in thisSpinOperatorintochunk_countsized chunks.
- dump()¶
- dump(self: cudaq.SpinOperator) None
Print a string representation of this
SpinOperator.
- for_each_pauli()¶
- for_each_pauli(self: cudaq.SpinOperator, function: function) None
For a single
SpinOperatorterm, apply the given function to each pauli element in the term. The function must havevoid(pauli, int)signature wherepauliis the Pauli matrix type and theintis the qubit index.
- for_each_term()¶
- for_each_term(self: cudaq.SpinOperator, function: function) None
Apply the given function to all terms in this
SpinOperator. The input function must havevoid(SpinOperator)signature.
- static from_word()¶
- from_word(word: str) cudaq.SpinOperator
Return a
SpinOperatorcorresponding to the provided Pauliword.# Example: # The first and third qubits will receive a Pauli X, # while the second qubit will receive a Pauli Y. word = "XYX" # Convert word to spin operator. spin_operator = cudaq.SpinOperator.from_word(word) print(spin_operator) # prints: `[1+0j] XYX`
- get_coefficient()¶
- get_coefficient(self: cudaq.SpinOperator) complex
Return the coefficient of this
SpinOperator. Must be aSpinOperatorwith one term, otherwise an exception is thrown.
- get_qubit_count()¶
- get_qubit_count(self: cudaq.SpinOperator) int
Return the number of qubits this
SpinOperatoris on.
- get_raw_data()¶
- get_raw_data(self: cudaq.SpinOperator) Tuple[List[List[bool]], List[complex]]
Return the raw data of this
SpinOperator.
- get_term_count()¶
- get_term_count(self: cudaq.SpinOperator) int
Return the number of terms in this
SpinOperator.
- is_identity()¶
- is_identity(self: cudaq.SpinOperator) bool
Returns a bool indicating if this
SpinOperatoris equal to the identity.
- static random()¶
- random(qubit_count: int, term_count: int, seed: int = 2714503777) cudaq.SpinOperator
Return a random
SpinOperatoron the given number of qubits (qubit_count) and composed of the given number of terms (term_count). An optional seed value may also be provided.
- serialize()¶
- serialize(self: cudaq.SpinOperator) List[float]
Return a serialized representation of the
SpinOperator. Specifically, this encoding is via a vector of doubles. The encoding is as follows: for each term, a list of doubles where the ith element is a 3.0 for a Y, a 1.0 for a X, and a 2.0 for a Z on qubit i, followed by the real and imaginary part of the coefficient. Each term is appended to the array forming one large 1d array of doubles. The array is ended with the total number of terms represented as a double.
- to_matrix()¶
- to_matrix(self: cudaq.SpinOperator) cudaq.ComplexMatrix
Return
selfas aComplexMatrix.
- to_sparse_matrix()¶
- to_sparse_matrix(self: cudaq.SpinOperator) Tuple[List[complex], List[int], List[int]]
Return
selfas a sparse matrix. This representation is aTuple[list[complex], list[int], list[int]], encoding the non-zero values, rows, and columns of the matrix. This format is supported byscipy.sparse.csr_array.
- to_string()¶
- to_string(self: cudaq.SpinOperator) str
Return a string representation of this
SpinOperator.
- spin.i()¶
- i(target: int) cudaq.SpinOperator
Return an identity
SpinOperatoron the given target qubit index.
- spin.x()¶
- x(target: int) cudaq.SpinOperator
Return an X
SpinOperatoron the given target qubit index.
- spin.y()¶
- y(target: int) cudaq.SpinOperator
Return a Y
SpinOperatoron the given target qubit index.
- spin.z()¶
- z(target: int) cudaq.SpinOperator
Return a Z
SpinOperatoron the given target qubit index.
- class cudaq.SampleResult¶
A data-type containing the results of a call to
sample(). This includes all measurement counts data from both mid-circuit and terminal measurements.Note
At this time, mid-circuit measurements are not directly supported. Mid-circuit measurements may only be used if they are passed through to
c_if.- register_names¶
A list of the names of each measurement register that are stored in
self.- Type:
List[str]
- __getitem__()¶
- __getitem__(self: cudaq.SampleResult, bitstring: str) int
Return the measurement counts for the given
bitstring.
- __iter__()¶
- __iter__(self: cudaq.SampleResult) Iterator
Iterate through the
SampleResultdictionary.
- __len__()¶
- __len__(self: cudaq.SampleResult) int
Return the number of elements in
self. Equivalent to the number of uniquely measured bitstrings.
- clear()¶
- clear(self: cudaq.SampleResult) None
Clear out all metadata from
self.
- count()¶
- count(self: cudaq.SampleResult, bitstring: str, register_name: str = '__global__') int
Return the number of times the given bitstring was observed.
- Parameters:
- Returns:
The number of times the given bitstring was measured during the experiment.
- Return type:
- dump()¶
- dump(self: cudaq.SampleResult) None
Print a string of the raw measurement counts data to the terminal.
- expectation_z()¶
- expectation_z(self: cudaq.SampleResult, register_name: str = '__global__') float
Return the expectation value in the Z-basis of the
Kernelthat was sampled.
- get_marginal_counts()¶
- get_marginal_counts(self: cudaq.SampleResult, marginal_indices: List[int], \*, register_name: str = '__global__') cudaq.SampleResult
Extract the measurement counts data for the provided subset of qubits (
marginal_indices).- Parameters:
- Returns:
A new
SampleResultdictionary containing the extracted measurement data.- Return type:
- get_register_counts()¶
- get_register_counts(self: cudaq.SampleResult, register_name: str) cudaq.SampleResult
Extract the provided sub-register (
register_name) as a newSampleResult.
- get_sequential_data()¶
- get_sequential_data(self: cudaq.SampleResult, register_name: str = '__global__') List[str]
Return the data from the given register (
register_name) as it was collected sequentially. A list of measurement results, not collated into a map.
- items()¶
- items(self: cudaq.SampleResult) Iterator
Return the key/value pairs in this
SampleResultdictionary.
- most_probable()¶
- most_probable(self: cudaq.SampleResult, register_name: str = '__global__') str
Return the bitstring that was measured most frequently in the experiment.
- probability()¶
- probability(self: cudaq.SampleResult, bitstring: str, register_name: str = '__global__') float
Return the probability of measuring the given
bitstring.- Parameters:
- Returns:
The probability of measuring the given
bitstring. Equivalent to the proportion of the total times the bitstring was measured vs. the number of experiments (shots_count).- Return type:
- values()¶
- values(self: cudaq.SampleResult) Iterator
Return all values (the counts) in this
SampleResultdictionary.
- class cudaq.AsyncSampleResult¶
A data-type containing the results of a call to
sample_async(). TheAsyncSampleResultmodels a future-like type, whoseSampleResultmay be returned via an invocation of thegetmethod. This kicks off a wait on the current thread until the results are available. See future for more information on this programming pattern.- get()¶
- get(self: cudaq.AsyncSampleResult) cudaq.SampleResult
Return the
SampleResultfrom the asynchronous sample execution.
- class cudaq.ObserveResult¶
A data-type containing the results of a call to
observe(). This includes any measurement counts data, as well as the global expectation value of the user-definedspin_operator.- counts(*args, **kwargs)¶
Overloaded function.
- counts(self: cudaq.ObserveResult) cudaq.SampleResult
Returns a
SampleResultdictionary with the measurement results from the experiment. The result for each individual term of thespin_operatoris stored in its own measurement register. Each register name corresponds to the string representation of the spin term (without any coefficients).- counts(self: cudaq.ObserveResult, sub_term: cudaq.SpinOperator) cudaq.SampleResult
Given a
sub_termof the globalspin_operatorthat was passed toobserve(), return its measurement counts.- Parameters:
sub_term (
SpinOperator) – An individual sub-term of thespin_operator.- Returns:
The measurement counts data for the individual
sub_term.- Return type:
- dump()¶
- dump(self: cudaq.ObserveResult) None
Dump the raw data from the
SampleResultthat are stored inObserveResultto the terminal.
- expectation_z(*args, **kwargs)¶
Overloaded function.
- expectation_z(self: cudaq.ObserveResult) float
Return the expectation value of the
spin_operatorthat was provided inobserve().- expectation_z(self: cudaq.ObserveResult, sub_term: cudaq.SpinOperator) float
Return the expectation value of an individual
sub_termof the globalspin_operatorthat was passed toobserve().- Parameters:
sub_term (
SpinOperator) – An individual sub-term of thespin_operator.- Returns:
The expectation value of the
sub_termwith respect to theKernelthat was passed toobserve().- Return type:
- get_spin()¶
- get_spin(self: cudaq.ObserveResult) cudaq.SpinOperator
Return the
SpinOperatorcorresponding to thisObserveResult.
- class cudaq.AsyncObserveResult¶
A data-type containing the results of a call to
observe_async().The
AsyncObserveResultcontains a future, whoseObserveResultmay be returned via an invocation of thegetmethod.This kicks off a wait on the current thread until the results are available.
See future for more information on this programming pattern.
- get()¶
- get(self: cudaq.AsyncObserveResult) cudaq.ObserveResult
Returns the
ObserveResultfrom the asynchronous observe execution.
- class cudaq.OptimizationResult¶
Optimizers¶
- class cudaq.optimizers.optimizer¶
- class cudaq.optimizers.GradientDescent¶
- property initial_parameters¶
Set the initial parameter values for the optimization.
- property lower_bounds¶
Set the lower value bound for the optimization parameters.
- property max_iterations¶
Set the maximum number of optimizer iterations.
- optimize()¶
- optimize(self: cudaq.optimizers.GradientDescent, dimensions: int, function: function) Tuple[float, List[float]]
Run
cudaq.optimize()on the provided objective function.
- property upper_bounds¶
Set the upper value bound for the optimization parameters.
- class cudaq.optimizers.COBYLA¶
- property initial_parameters¶
Set the initial parameter values for the optimization.
- property lower_bounds¶
Set the lower value bound for the optimization parameters.
- property max_iterations¶
Set the maximum number of optimizer iterations.
- optimize()¶
- optimize(self: cudaq.optimizers.COBYLA, dimensions: int, function: function) Tuple[float, List[float]]
Run
cudaq.optimize()on the provided objective function.
- property upper_bounds¶
Set the upper value bound for the optimization parameters.
- class cudaq.optimizers.NelderMead¶
- property initial_parameters¶
Set the initial parameter values for the optimization.
- property lower_bounds¶
Set the lower value bound for the optimization parameters.
- property max_iterations¶
Set the maximum number of optimizer iterations.
- optimize()¶
- optimize(self: cudaq.optimizers.NelderMead, dimensions: int, function: function) Tuple[float, List[float]]
Run
cudaq.optimize()on the provided objective function.
- property upper_bounds¶
Set the upper value bound for the optimization parameters.
- class cudaq.optimizers.LBFGS¶
- property initial_parameters¶
Set the initial parameter values for the optimization.
- property lower_bounds¶
Set the lower value bound for the optimization parameters.
- property max_iterations¶
Set the maximum number of optimizer iterations.
- optimize()¶
- optimize(self: cudaq.optimizers.LBFGS, dimensions: int, function: function) Tuple[float, List[float]]
Run
cudaq.optimize()on the provided objective function.
- property upper_bounds¶
Set the upper value bound for the optimization parameters.
Gradients¶
- class cudaq.gradients.gradient¶
- class cudaq.gradients.CentralDifference¶
- compute()¶
- compute(self: cudaq.gradients.gradient, parameter_vector: List[float], function: function, funcAtX: float) List[float]
Compute the gradient of the provided
parameter_vectorwith respect to its loss function, using theCentralDifferencemethod.
Noisy Simulation¶
- class cudaq.NoiseModel¶
The
NoiseModeldefines a set ofKrausChannel’s applied to specific qubits after the invocation of specified quantum operations.- __init__()¶
- __init__(self: cudaq.NoiseModel) None
Construct an empty noise model.
- add_channel()¶
- add_channel(self: cudaq.NoiseModel, operator: str, qubits: List[int], channel: cudaq.KrausChannel) None
Add the given
KrausChannelto be applied after invocation of the specified quantum operation.- Parameters:
operator (str) – The quantum operator to apply the noise channel to.
qubits (List[int]) – The qubit/s to apply the noise channel to.
channel (cudaq.KrausChannel) – The
KrausChannelto apply to the specifiedoperatoron the specifiedqubits.
- get_channels()¶
- get_channels(self: cudaq.NoiseModel, operator: str, qubits: List[int]) List[cudaq.KrausChannel]
Return the
KrausChannel’s that make up this noise model.
- class cudaq.BitFlipChannel¶
Models the decoherence of the qubit state. Its constructor expects a float value,
probability, representing the probability that the qubit flips from the 1-state to the 0-state, or vice versa. E.g, the probability of a random X-180 rotation being applied to the qubit. The probability of the qubit remaining in the same state is therefore1 - probability.- __init__()¶
- __init__(self: cudaq.BitFlipChannel, probability: float) None
Initialize the
BitFlipChannelwith the providedprobability.
- class cudaq.PhaseFlipChannel¶
Models the decoherence of the qubit phase. Its constructor expects a float value,
probability, representing the probability of a random Z-180 rotation being applied to the qubit. The probability of the qubit phase remaining untouched is therefore1 - probability.- __init__()¶
- __init__(self: cudaq.PhaseFlipChannel, probability: float) None
Initialize the
PhaseFlipChannelwith the providedprobability.
- class cudaq.DepolarizationChannel¶
Models the decoherence of the qubit state and phase into a mixture of the computational basis states,
|0>and|1>. Its constructor expects a float value,probability, representing the probability that this decay will occur. The qubit will remain untouched, therefore, with a probability of1 - probability.- __init__()¶
- __init__(self: cudaq.DepolarizationChannel, probability: float) None
Initialize the
DepolarizationChannelwith the providedprobability.
- class cudaq.AmplitudeDampingChannel¶
Models the dissipation of energy due to system interactions with the environment. Its constructor expects a float value,
probability, representing the probablity that the qubit will decay to its ground state. The probability of the qubit remaining in the same state is therefore1 - probability.- __init__()¶
- __init__(self: cudaq.AmplitudeDampingChannel, probability: float) None
Initialize the
AmplitudeDampingChannelwith the providedprobability.
- class cudaq.KrausChannel¶
The
KrausChannelis composed of a list ofKrausOperator’s and is applied to a specific qubit or set of qubits.- __getitem__()¶
- __getitem__(self: cudaq.KrausChannel, index: int) cudaq.KrausOperator
Return the
KrausOperatorat the given index in thisKrausChannel.
- append()¶
- append(self: cudaq.KrausChannel, arg0: cudaq.KrausOperator) None
Add a
KrausOperatorto thisKrausChannel.
- class cudaq.KrausOperator¶
The
KrausOperatoris represented by a matrix and serves as an element of a quantum channel such thatSum Ki Ki^dag = I.- property col_count¶
The number of columns in the matrix representation of this
KrausOperator.
- property row_count¶
The number of rows in the matrix representation of this
KrausOperator.
MPI Submodule¶
- cudaq.mpi.all_gather()¶
-
Gather and scatter the
locallist, returning a concatenation of all lists across all ranks. The total global list size must be provided.