CUTLASS
CUDA Templates for Linear Algebra Subroutines and Solvers
|
Namespaces | |
detail | |
kernel | |
thread | |
Classes | |
struct | BlockForEach |
struct | Gemm |
struct | Gemm< ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, ScalarType, AccumulatorType, arch::OpMultiplyAdd > |
Partial specialization for multiply-add. More... | |
struct | Gemm< ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, ScalarType, AccumulatorType, arch::OpMultiplyAddSaturate > |
Partial specialization for multiply-add-saturate. More... | |
struct | Gemm< ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, ScalarType, AccumulatorType, arch::OpXorPopc > |
Partial specialization for XOR-popc. More... | |
struct | TensorDiagonalForEach |
Launches a kernel calling a functor for each element along a tensor's diagonal. More... | |
struct | TensorForEach |
Launches a kernel calling a functor for each element in a tensor's index space. More... | |
Functions | |
template<typename ElementA , typename LayoutA , typename ElementB , typename LayoutB , typename ElementC , typename LayoutC , typename ScalarType , typename AccumulatorType , typename InnerProductOp = multiply_add<AccumulatorType>, typename ConvertOp = NumericConverter<ElementC, ScalarType>> | |
void | compute_gemm (gemm::GemmCoord problem_size, ScalarType alpha, TensorRef< ElementA, LayoutA > tensor_a, TensorRef< ElementB, LayoutB > tensor_b, ScalarType beta, TensorRef< ElementC, LayoutC > tensor_c, TensorRef< ElementC, LayoutC > tensor_d, AccumulatorType initial_accum) |
template<typename ElementA , typename LayoutA , typename ElementB , typename LayoutB , typename ElementC , typename LayoutC , typename ScalarType , typename AccumulatorType , typename InnerProductOp = multiply_add<AccumulatorType>, typename ConvertOp = NumericConverter<ElementC, ScalarType>> | |
void | compute_gemm (gemm::GemmCoord problem_size, ScalarType alpha, TensorRef< ElementA, LayoutA > tensor_a, TensorRef< ElementB, LayoutB > tensor_b, ScalarType beta, TensorRef< ElementC, LayoutC > tensor_c, AccumulatorType initial_accum) |
template<typename TensorRefCollectionA , typename TensorRefCollectionB , typename TensorRefCollectionC , typename ScalarType , typename AccumulatorType , typename InnerProductOp , typename ConvertOp > | |
void | BatchedGemm (gemm::GemmCoord problem_size, int batch_count, ScalarType alpha, TensorRefCollectionA const &tensor_a, TensorRefCollectionB const &tensor_b, ScalarType beta, TensorRefCollectionC &tensor_c, AccumulatorType initial_accum) |
Computes a batch of GEMMs over a set of matrices of common dimension. More... | |
template<typename TensorRefCollectionA , typename TensorRefCollectionB , typename TensorRefCollectionC , typename ScalarType , typename AccumulatorType > | |
void | BatchedGemm (gemm::GemmCoord problem_size, int batch_count, ScalarType alpha, TensorRefCollectionA const &tensor_a, TensorRefCollectionB const &tensor_b, ScalarType beta, TensorRefCollectionC &tensor_c) |
template<typename Element > | |
bool | BlockCompareEqual (Element const *ptr_A, Element const *ptr_B, size_t capacity, int grid_size=0, int block_size=0) |
Performs a bit-level equality check between two blocks. More... | |
template<typename Element > | |
bool | BlockCompareRelativelyEqual (Element const *ptr_A, Element const *ptr_B, size_t capacity, Element epsilon, Element nonzero_floor, int grid_size=0, int block_size=0) |
Performs a bit-level equality check between two blocks. More... | |
template<typename Element , typename Layout > | |
void | TensorFillRandomGaussian (TensorView< Element, Layout > view, uint64_t seed, Element mean=Element(0), Element stddev=Element(1), int bits=-1) |
Fills a tensor with random values with a Gaussian distribution. More... | |
template<typename Element > | |
void | BlockFillRandomGaussian (Element *ptr, size_t capacity, uint64_t seed, Element mean=Element(0), Element stddev=Element(1), int bits=-1) |
Fills a tensor with random values with a Gaussian distribution. More... | |
template<typename Element , typename Layout > | |
void | TensorFillRandomUniform (TensorView< Element, Layout > view, uint64_t seed, Element max=Element(1), Element min=Element(0), int bits=-1) |
Fills a tensor with random values with a uniform random distribution. More... | |
template<typename Element > | |
void | BlockFillRandomUniform (Element *ptr, size_t capacity, uint64_t seed, Element max=Element(1), Element min=Element(0), int bits=-1) |
Fills a tensor with random values with a uniform random distribution. More... | |
template<typename Element , typename Layout > | |
void | TensorFillDiagonal (TensorView< Element, Layout > view, Element diag=Element(1), Element other=Element(0)) |
Fills a tensor everywhere with a unique value for its diagonal. More... | |
template<typename Element , typename Layout > | |
void | TensorFill (TensorView< Element, Layout > view, Element val=Element(0)) |
Fills a tensor with a uniform value. More... | |
template<typename Element , typename Layout > | |
void | TensorFillIdentity (TensorView< Element, Layout > view) |
Fills a tensor's diagonal with 1 and 0 everywhere else. More... | |
template<typename Element , typename Layout > | |
void | TensorUpdateDiagonal (TensorView< Element, Layout > view, Element diag=Element(1)) |
Writes a uniform value to the diagonal of a tensor without modifying off-diagonal elements. More... | |
template<typename Element , typename Layout > | |
void | TensorUpdateOffDiagonal (TensorView< Element, Layout > view, Element other=Element(1)) |
Writes a uniform value to all elements in the tensor without modifying diagonal elements. More... | |
template<typename Element , typename Layout > | |
void | TensorFillLinear (TensorView< Element, Layout > view, Array< Element, Layout::kRank > const &v, Element s=Element(0)) |
Fills tensor with a linear combination of its coordinate and another vector. More... | |
template<typename Element > | |
void | BlockFillSequential (Element *ptr, int64_t capacity, Element v=Element(1), Element s=Element(0)) |
Fills a block of data with sequential elements. More... | |
template<typename Element > | |
void | BlockFillRandom (Element *ptr, size_t capacity, uint64_t seed, Distribution dist) |
Fills a block of data with sequential elements. More... | |
template<typename Element , typename Layout > | |
void | TensorCopyDiagonalIn (TensorView< Element, Layout > view, Element const *ptr) |
Copies a diagonal in from host memory without modifying off-diagonal elements. More... | |
template<typename Element , typename Layout > | |
void | TensorCopyDiagonalOut (Element *ptr, TensorView< Element, Layout > view) |
Copies the diagonal of a tensor into a dense buffer in host memory. More... | |
void cutlass::reference::device::BatchedGemm | ( | gemm::GemmCoord | problem_size, |
int | batch_count, | ||
ScalarType | alpha, | ||
TensorRefCollectionA const & | tensor_a, | ||
TensorRefCollectionB const & | tensor_b, | ||
ScalarType | beta, | ||
TensorRefCollectionC & | tensor_c, | ||
AccumulatorType | initial_accum | ||
) |
void cutlass::reference::device::BatchedGemm | ( | gemm::GemmCoord | problem_size, |
int | batch_count, | ||
ScalarType | alpha, | ||
TensorRefCollectionA const & | tensor_a, | ||
TensorRefCollectionB const & | tensor_b, | ||
ScalarType | beta, | ||
TensorRefCollectionC & | tensor_c | ||
) |
Computes a general matrix product among matrices (tensors of rank=2) pointed to by TensorRef objects.
bool cutlass::reference::device::BlockCompareEqual | ( | Element const * | ptr_A, |
Element const * | ptr_B, | ||
size_t | capacity, | ||
int | grid_size = 0 , |
||
int | block_size = 0 |
||
) |
bool cutlass::reference::device::BlockCompareRelativelyEqual | ( | Element const * | ptr_A, |
Element const * | ptr_B, | ||
size_t | capacity, | ||
Element | epsilon, | ||
Element | nonzero_floor, | ||
int | grid_size = 0 , |
||
int | block_size = 0 |
||
) |
void cutlass::reference::device::BlockFillRandom | ( | Element * | ptr, |
size_t | capacity, | ||
uint64_t | seed, | ||
Distribution | dist | ||
) |
void cutlass::reference::device::BlockFillRandomGaussian | ( | Element * | ptr, |
size_t | capacity, | ||
uint64_t | seed, | ||
Element | mean = Element(0) , |
||
Element | stddev = Element(1) , |
||
int | bits = -1 |
||
) |
< Element type
< If non-negative, specifies number of fractional bits that are not truncated to zero. Permits reducing precision of data.
seed | seed for RNG |
mean | Gaussian distribution's mean |
stddev | Gaussian distribution's standard deviation |
void cutlass::reference::device::BlockFillRandomUniform | ( | Element * | ptr, |
size_t | capacity, | ||
uint64_t | seed, | ||
Element | max = Element(1) , |
||
Element | min = Element(0) , |
||
int | bits = -1 |
||
) |
< If non-negative, specifies number of fractional bits that are not truncated to zero. Permits reducing precision of data.
seed | seed for RNG |
max | upper bound of distribution |
min | lower bound for distribution |
void cutlass::reference::device::BlockFillSequential | ( | Element * | ptr, |
int64_t | capacity, | ||
Element | v = Element(1) , |
||
Element | s = Element(0) |
||
) |
void cutlass::reference::device::compute_gemm | ( | gemm::GemmCoord | problem_size, |
ScalarType | alpha, | ||
TensorRef< ElementA, LayoutA > | tensor_a, | ||
TensorRef< ElementB, LayoutB > | tensor_b, | ||
ScalarType | beta, | ||
TensorRef< ElementC, LayoutC > | tensor_c, | ||
TensorRef< ElementC, LayoutC > | tensor_d, | ||
AccumulatorType | initial_accum | ||
) |
Computes a general matrix product among matrices (tensors of rank=2) pointed to by TensorRef objects.
Explicitly naming types needed by this template can be cumbersome, particularly for the accumulator type, so a function argument 'initial_accum' is exposed. Passing AccumulatorType(0) as the last function argument can be easier than naming all template arguments explicitly.
void cutlass::reference::device::compute_gemm | ( | gemm::GemmCoord | problem_size, |
ScalarType | alpha, | ||
TensorRef< ElementA, LayoutA > | tensor_a, | ||
TensorRef< ElementB, LayoutB > | tensor_b, | ||
ScalarType | beta, | ||
TensorRef< ElementC, LayoutC > | tensor_c, | ||
AccumulatorType | initial_accum | ||
) |
Computes a general matrix product among matrices (tensors of rank=2) pointed to by TensorRef objects.
This assumes the accumulator type is the same type as the scalars.
void cutlass::reference::device::TensorCopyDiagonalIn | ( | TensorView< Element, Layout > | view, |
Element const * | ptr | ||
) |
< Layout function
< dense buffer of elements
view | destination tensor |
void cutlass::reference::device::TensorCopyDiagonalOut | ( | Element * | ptr, |
TensorView< Element, Layout > | view | ||
) |
< Layout function
< source tensor
ptr | dense buffer of elements |
void cutlass::reference::device::TensorFill | ( | TensorView< Element, Layout > | view, |
Element | val = Element(0) |
||
) |
< Layout function
< value to uniformly fill it with
view | destination tensor |
void cutlass::reference::device::TensorFillDiagonal | ( | TensorView< Element, Layout > | view, |
Element | diag = Element(1) , |
||
Element | other = Element(0) |
||
) |
< Layout function
< value to write off the diagonal
view | destination tensor |
diag | value to write in the diagonal |
void cutlass::reference::device::TensorFillIdentity | ( | TensorView< Element, Layout > | view | ) |
< Layout function
< destination tensor
void cutlass::reference::device::TensorFillLinear | ( | TensorView< Element, Layout > | view, |
Array< Element, Layout::kRank > const & | v, | ||
Element | s = Element(0) |
||
) |
< Layout function
view | destination tensor |
void cutlass::reference::device::TensorFillRandomGaussian | ( | TensorView< Element, Layout > | view, |
uint64_t | seed, | ||
Element | mean = Element(0) , |
||
Element | stddev = Element(1) , |
||
int | bits = -1 |
||
) |
< Layout function
< If non-negative, specifies number of fractional bits that are not truncated to zero. Permits reducing precision of data.
view | destination tensor |
seed | seed for RNG |
mean | Gaussian distribution's mean |
stddev | Gaussian distribution's standard deviation |
void cutlass::reference::device::TensorFillRandomUniform | ( | TensorView< Element, Layout > | view, |
uint64_t | seed, | ||
Element | max = Element(1) , |
||
Element | min = Element(0) , |
||
int | bits = -1 |
||
) |
< Layout function
< If non-negative, specifies number of fractional bits that are not truncated to zero. Permits reducing precision of data.
view | destination tensor |
seed | seed for RNG |
max | upper bound of distribution |
min | lower bound for distribution |
void cutlass::reference::device::TensorUpdateDiagonal | ( | TensorView< Element, Layout > | view, |
Element | diag = Element(1) |
||
) |
< Layout function
view | destination tensor |
void cutlass::reference::device::TensorUpdateOffDiagonal | ( | TensorView< Element, Layout > | view, |
Element | other = Element(1) |
||
) |
< Layout function
view | destination tensor |