earth2mip.networks package#
earth2mip.networks.dlwp module#
- class earth2mip.networks.dlwp.DLWPInference(dlwp, center, scale)#
Bases:
Module
- Parameters:
center (array) –
scale (array) –
- property channel_names#
- cuda(device=None)#
Moves all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- property device: device#
- property dtype: dtype#
- property grid: LatLonGrid#
- history_time_step = datetime.timedelta(seconds=21600)#
- property in_channel_names#
- property n_history#
- n_history_levels = 2#
- normalize(x)#
- property out_channel_names#
- time_step = datetime.timedelta(seconds=21600)#
- to(device)#
Moves and/or casts the parameters and buffers.
This can be called as
- to(device=None, dtype=None, non_blocking=False)
- to(dtype, non_blocking=False)
- to(tensor, non_blocking=False)
- to(memory_format=torch.channels_last)
Its signature is similar to
torch.Tensor.to()
, but only accepts floating point or complexdtype
s. In addition, this method will only cast the floating point or complex parameters and buffers todtype
(if given). The integral parameters and buffers will be moveddevice
, if that is given, but with dtypes unchanged. Whennon_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Parameters:
device (
torch.device
) – the desired device of the parameters and buffers in this moduledtype (
torch.dtype
) – the desired floating point or complex dtype of the parameters and buffers in this moduletensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module
memory_format (
torch.memory_format
) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- Returns:
self
- Return type:
Module
Examples:
>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
- unnormalize(x)#
- earth2mip.networks.dlwp.load(package, *, pretrained=True, device='cuda')#
- Parameters:
package (Package) –
earth2mip.networks.fcn module#
FCN adapter from Modulus
- earth2mip.networks.fcn.load(package, *, pretrained=True, device='cuda')#
earth2mip.networks.fcnv2_sm module#
FCN v2 Small adapter
This model is an outdated version of FCN v2 (SFNO), a more recent one is present in Modulus.
- earth2mip.networks.fcnv2_sm.load(package, *, pretrained=True, device='cuda')#
earth2mip.networks.graphcast module#
- earth2mip.networks.graphcast.load_time_loop(package, pretrained=True, device='cuda:0')#
- Return type:
- earth2mip.networks.graphcast.load_time_loop_operational(package, pretrained=True, device='cuda:0')#
- Return type:
- earth2mip.networks.graphcast.load_time_loop_small(package, pretrained=True, device='cuda:0')#
- Return type:
earth2mip.networks.pangu module#
Pangu Weather adapter
adapted from https://raw.githubusercontent.com/ecmwf-lab/ai-models-panguweather/main/ai_models_panguweather/model.py
# (C) Copyright 2023 European Centre for Medium-Range Weather Forecasts. # This software is licensed under the terms of the Apache Licence Version 2.0 # which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. # In applying this licence, ECMWF does not waive the privileges and immunities # granted to it by virtue of its status as an intergovernmental organisation # nor does it submit to any jurisdiction.
- class earth2mip.networks.pangu.PanguInference(model_6, model_24)#
Bases:
Module
- Parameters:
model_6 (PanguStacked) –
model_24 (PanguStacked) –
- cuda(device=None)#
Moves all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- property device: device#
- dtype: dtype = torch.float32#
- property grid: LatLonGrid#
- history_time_step = datetime.timedelta(0)#
- property in_channel_names#
- property n_history#
- n_history_levels = 1#
- normalize(x)#
- property out_channel_names#
- run_steps_with_restart(x, n, normalize=True, time=None)#
Yield (time, unnormalized data, restart) tuples
restart = (time, unnormalized data)
- time_step = datetime.timedelta(seconds=21600)#
- to(device)#
Moves and/or casts the parameters and buffers.
This can be called as
- to(device=None, dtype=None, non_blocking=False)
- to(dtype, non_blocking=False)
- to(tensor, non_blocking=False)
- to(memory_format=torch.channels_last)
Its signature is similar to
torch.Tensor.to()
, but only accepts floating point or complexdtype
s. In addition, this method will only cast the floating point or complex parameters and buffers todtype
(if given). The integral parameters and buffers will be moveddevice
, if that is given, but with dtypes unchanged. Whennon_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Parameters:
device (
torch.device
) – the desired device of the parameters and buffers in this moduledtype (
torch.dtype
) – the desired floating point or complex dtype of the parameters and buffers in this moduletensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module
memory_format (
torch.memory_format
) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- Returns:
self
- Return type:
Module
Examples:
>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
- class earth2mip.networks.pangu.PanguStacked(model)#
Bases:
object
- Parameters:
model (PanguWeather) –
- channel_names()#
- forward(x)#
- to()#
- class earth2mip.networks.pangu.PanguWeather(path)#
Bases:
object
- area = [90, 0, -90, 360]#
- download_files = ['pangu_weather_24.onnx', 'pangu_weather_6.onnx']#
- download_url = 'https://get.ecmwf.int/repository/test-data/ai-models/pangu-weather/{file}'#
- expver = 'pguw'#
- grid = [0.25, 0.25]#
- param_level_pl = (['z', 'q', 't', 'u', 'v'], [1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100, 50])#
- param_sfc = ['msl', 'u10m', 'v10m', 't2m']#
- earth2mip.networks.pangu.load(package, *, pretrained=True, device="doesn't matter")#
Load the sub-stepped pangu weather inference
- earth2mip.networks.pangu.load_24(package, *, pretrained=True, device='cuda:0')#
Load a 24 hour time-step pangu weather
- earth2mip.networks.pangu.load_6(package, *, pretrained=True, device='cuda:0')#
Load a 6 hour time-step pangu weather
- earth2mip.networks.pangu.load_single_model(package, *, time_step_hours=24, pretrained=True, device='cuda:0')#
Load a single time-step pangu weather
- Parameters:
time_step_hours (int) –
Module contents#
- earth2mip.networks.get_model(model, registry=<earth2mip.model_registry.ModelRegistry object>, device='cpu', metadata=None)#
Function to construct an inference model and load the appropriate checkpoints from the model registry
- Parameters:
model (The model name to open in the
registry
. If a url is passed (e.g.) – s3://bucket/model), then this location will be opened directly. Supported urls protocols include s3:// for PBSS access, and file:// for local files.registry (A model registry object. Defaults to the global model registry) –
metadata (If provided, this model metadata will be used to load the model.) – By default this will be loaded from the file
metadata.json
in the model package.device (the device to load on, by default the 'cpu') –
- Return type:
Inference model