earth2mip.s2s package#
Submodules#
earth2mip.s2s.score module#
- earth2mip.s2s.score.plot(df, output, timeUnit='yearmonthdate')#
- earth2mip.s2s.score.score(terciles, truth)#
area-weighted RPSS scores
Regions: global, northern hemisphere, and southern hemisphere
- Parameters:
terciles (Dataset) – predicted terciles. must have longitude, latitude, forecast_time coordinates/dims.
truth (Dataset) – true terciles. same format as terciles
- Returns:
dataframe with scores for different regions and climatology. Example:
lead_time forecast_time t2m valid_time week source region tp 0 21.0 2018-01-02 1.455134 2018-01-23 1.0 sfno Global NaN 1 35.0 2018-01-02 1.357457 2018-02-06 1.0 sfno Global NaN 2 21.0 2018-01-02 1.308716 2018-01-23 NaN clim Global 1.310107 3 35.0 2018-01-02 1.306281 2018-02-06 NaN clim Global 1.312259 4 21.0 2018-01-02 1.331612 2018-01-23 1.0 sfno Northern Hem. NaN 5 35.0 2018-01-02 1.211101 2018-02-06 1.0 sfno Northern Hem. NaN 6 21.0 2018-01-02 1.184829 2018-01-23 NaN clim Northern Hem. 1.237482 7 35.0 2018-01-02 1.180459 2018-02-06 NaN clim Northern Hem. 1.241959 8 21.0 2018-01-02 1.575785 2018-01-23 1.0 sfno Southern Hem. NaN 9 35.0 2018-01-02 1.497714 2018-02-06 1.0 sfno Southern Hem. NaN 10 21.0 2018-01-02 1.431765 2018-01-23 NaN clim Southern Hem. 1.381933 11 35.0 2018-01-02 1.430871 2018-02-06 NaN clim Southern Hem. 1.381818
- Return type:
DataFrame
earth2mip.s2s.terciles module#
- earth2mip.s2s.terciles.apply(path, tercile_edges, output)#
- earth2mip.s2s.terciles.compute_edges(path, output)#