High Performance Linpack (HPL)
The NVIDIA HPC-Benchmarks provides a multiplatform (x86 and aarch64) container image based on NVIDIA Optimized Frameworks container images that includes NVIDIA’s HPL benchmark. HPL-NVIDIA solves a random dense linear system in double precision arithmetic on distributed-memory computers and is based on the netlib HPL benchmark. Please visit the NVIDIA HPC-Benchmarks page in the NGC Catalog for detailed instructions.
The HPL-NVIDIA benchmark uses the same input format as the standard Netlib HPL benchmark. Please see the Netlib HPL benchmark for getting started with the HPL software concepts and best practices.
Downloading and using the container
The container image works well with Signularity, Docker, or Pyxis/Enroot. Instructions for running with Singularity are provided below. For a general guide on pulling and running containers, see Running A Container in the NVIDIA Containers For Deep Learning Frameworks User’s Guide. For more information about using NGC, refer to the NGC Container User Guide.
Running the benchmarks
The script hpl-aarch64.sh
can be invoked on a command line or through a Slurm batch script to launch HPL-NVIDIA for NVIDIA Grace CPU. As of HPC-Benchmarks 23.10, hpl-aarch64.sh
accepts the following parameters:
- Required parameters:
--dat path
: Path toHPL.dat
input file
- Optional parameters:
--cpu-affinity <string>
: A colon-separated list of cpu index ranges--mem-affinity <string>
: A colon separated list of memory indices--ucx-affinity <string>
: A colon separated list of UCX devices--ucx-tls <string>
: UCX transport to use--exec-name <string>
: HPL executable file
Several sample input files are available in the container at /workspace/hpl-linux-aarch64
.
Run with Singularity
The instructions below assume Singularity 3.4.1 or later.
Save the HPC-Benchmark container as a local Singularity image file:
singularity pull --docker-login hpc-benchmarks:23.10.sif docker://nvcr.io/nvidia/hpc-benchmarks:23.10
If prompted for a Docker username or password, just press “enter” to continue with guest access:
Enter Docker Username: # press "enter" key to skip
Enter Docker Password: # press "enter" key to skip
This command saves the container in the current directory as hpc-benchmarks:23.10.sif
.
Use one of the following commands to run HPL-NVIDIA with a sample input file on one NVIDIA Grace CPU Superchip.
-
To run from a local command line, i.e. not using Slurm:
singularity run ./hpc-benchmarks:23.10.sif \ mpirun -np 2 --bind-to none \ ./hpl-aarch64.sh --dat ./hpl-linux-aarch64/sample-dat/HPL_2mpi.dat \ --cpu-affinity 0-71:72-143 --mem-affinity 0:1
-
To run via Slurm:
srun -N 1 --ntasks-per-node=2 singularity run ./hpc-benchmarks:23.10.sif \ ./hpl-aarch64.sh --dat ./hpl-linux-aarch64/sample-dat/HPL_2mpi.dat \ --cpu-affinity 0-71:72-143 --mem-affinity 0:1
Reference Results
These figures are provided as guidelines and should not be interpreted as performance targets.
The score below was taken on a Grace CPU Superchip with 480GB of CPU memory:
================================================================================
T/V N NB P Q Time Gflops
--------------------------------------------------------------------------------
WC00L2L2 168880 448 1 2 616.41 5.2093e+03