Best Practices for Tuning the Performance of TensorRT-LLM

This document provides some best practices for tuning the performance of TensorRT-LLM.

How To Measure Performance?

TensorRT-LLM can be benchmarked using the included C++ and Python tools. However, it is strongly recommended to use the C++ benchmarking tool. For detailed performance data and the steps to reproduce those results, see this Document. The TensorRT-LLM backend can also be used to measure the performance of TensorRT-LLM for online serving.

Build Options to Optimize the Performance of TensorRT-LLM Models?

This part summarizes how to build engines to enhance the performance of the runtime and, for some of them, decrease the engine build time.

Note that some of those features and how to enable them may change in the future.

GPT Attention Plugin and Context Fused Multi-Head Attention

The GPT attention plugin and fused multi-head attention kernel are enabled by default. For the context phase, use the --gpt_attention_plugin and --context_fmha arguments with trtllm-build to control.

The TensorRT-LLM GPT attention plugin uses efficient kernels and enables an in-place update of the KV cache. It results in reduced memory consumption as well as the removal of unneeded memory copy operations (compared with the implementation that uses the concat operator to update the KV cache).

Enabling the fused multi-head attention, during the context phase, will trigger a kernel that performs the MHA/MQA/GQA block using a single kernel, for more details, see this Document.

Remove Input Padding

The remove input padding feature is enabled by default, the --remove_input_padding argument in trtllm-build is used to control it.

When input padding is removed, the different tokens are packed together. It reduces both the amount of computations and memory consumption. For more details, see this Document.

Maximum Number of Tokens

It is recommended to tune --max_num_tokens for better performance. The --max_num_tokens could be roughly estimated as:

max_batch_size * max_input_len * alpha + max_batch_size * max_beam_width * (1 - alpha)

where alpha is a floating-point value between 0.0 and 1.0. It stands for a rough estimation of the number of requests in their context phase at each invocation of the forward function during inference. It is recommended to use a value between 0.05 and 0.20 (between 5%-20%) but it may depend on the actual scenario.

The maximum number of tokens equals will not take effects when input padding is not removed. When input padding is removed (see Remove Input Padding), the tokens from different sequences are packed together and the maximum number of the tokens can be set to a different (lower) value, which by default to be max_input_len * max_batch_size. Note that it has to be higher than max_input_len.

There are two aspects that must be considered. Firstly, some input sequences will be shorter than the maximum input length. Secondly, when in-flight sequence batching is enabled, requests in context phase will be executed with requests in generation phase. Those latter requests produce a lot fewer tokens than max_input_len (at most, beam_width tokens).

Using a more realistic value for max_num_tokens allows TensorRT-LLM to allocate more memory to store the KV cache and execute more requests together. It leads to an increased efficiency.

Increasing max_num_tokens appropriately will be beneficial to performance. When increasing --max_num_tokens to some point, GPU utilization will plateau, going beyond that saturation point may hurt both first token latency as well as total end-to-end latency.

See also chunked context.

Paged KV Cache

Paged KV cache is enabled by default, the --paged_kv_cache argument in trtllm-build is used to control it.

The paged KV cache helps manage memory for the KV cache more efficiently (see this Document). It usually leads to an increase in the batch size and an improved efficiency.

In-flight Sequence Batching

In-flight sequence batching is enabled by default with trtllm-build, which requires that the GPT attention plugin, input padding removal and paged KV cache are all enabled together.

In-flight sequence batching schedules sequences in context phase together with sequences in generation phase to increase efficiency and reduce latency, see this Document for more details.

Multi-Block Mode

When the following conditions are met, it is recommended to try the --multi_block_mode argument with trtllm-build and evaluate the impact on performance:

  1. input_seq_len > 1024 (An empirically derived value that indicates that the context length is long enough),

  2. sequence_count * num_head < multiprocessor_count / 2

Multi-block mode can be beneficial when batch_size * num_heads is not large enough to fully utilize the GPU (the number of CUDA thread blocks is low compared to the number of streaming multiprocessors). Hence, the multi-block mode is expected to reduce the latency of the multi-head attention kernel in the generation phase. However, it requires the context length to be long enough for the work performed by each CUDA thread block to remain sufficient for efficiency.

Custom AllReduce Plugin

On NVLink-based nodes, it is recommended to enable the custom AllReduce plugin by using the --use_custom_all_reduce argument with trtllm-build. On PCIE-based nodes, it is not recommended to enabled that plugin.

The custom AllReduce plugin activates a latency-optimized algorithm for the AllReduce operation instead of the native NCCL operator. However, the performance benefits may not be seen on PCIE-based systems.

Embedding Parallelism, Embedding Sharing, and Look-Up Plugin

The embedding parallelism feature enables the sharding of the embedding table across multiple GPUs, so that the memory usage could be reduced and the throughput improved. The embedding sharing feature enables the sharing of the embedding table between look_up and lm_head layers.

The look-up plugin implements the embedding sharing feature and is required to enable the aforementioned features for now (until TensorRT native layers support embedding sharing).

It is recommended to enable the embedding parallelism and sharing features to improve throughput. However, the following conditions have to be satisfied:

  1. The model shares the embedding table between look_up and lm_head layers,

  2. Both look_up plugin and gemm plugin are enabled,

  3. The sharding dimension of the embedding lookup table is set correctly.

To enable the features, use the --use_parallel_embedding, --use_embedding_sharing, --use_lookup_plugin, --use_gemm_plugin arguments, and set correct dimension to --embedding_sharding_dim argument with trtllm-build. See those Examples for details.

Horizontal Fusion in Gated-MLP

Horizontal fusion in Gated-MLP combines two Matmul operations into a single one followed by a separate SwiGLU kernel. However, for FP8 PTQ, the downside is slight reduction of accuracy because one of the quantization scaling factors are discarded.

If both model and batch sizes are large, it is recommended to enable the feature by using the --use_fused_mlp argument with trtllm-build. When the workload is very small, or if you’re using FP8 PTQ and the accuracy after enabling it does not satisfy your requirement, it is not recommended to enable that feature.

GEMM Plugin

The GEMM plugin utilizes NVIDIA cuBLASLt to perform GEMM operations. On FP16 and BF16, it’s recommended to be enabled for better performance and smaller GPU memory usage. On FP8, it’s recommended to be disabled.

BERT Attention Plugin and Context Fused Multi-Head Attention

BERT attention plugin and context fused multi-head attention are both recommended for the BERT model. They are enabled by default using the --bert_attention_plugin and --context_fmha arguments with trtllm-build.

Runtime Options to Optimize the Performance of TensorRT-LLM Models?

This part summarizes the runtime configuration knobs that can be tweaked to enhance the performance of already built engines. Note that currently the configurations can be modified using the Batch Manager API as well as the TensorRT-LLM backend.

GPT Model Type

The GPT model type can be set to V1, inflight_batching and inflight_fused_batching. It is recommended to use inflight_fused_batching to increase throughput and reduce latency.

Max Tokens in Paged KV Cache and KV Cache Free GPU Memory Fraction

The max_tokens_in_paged_kv_cache and kv_cache_free_gpu_mem_fraction parameters can be used to control the maximum number of tokens handled by the KV cache manager. Setting them properly helps better control the amount of available memory for the KV cache manager during inference. Keeping in mind that increasing the amount of memory available to the KV cache manager tends to translate to a higher achievable throughput.

The max_tokens_in_paged_kv_cache flag directly sets the maximum number of tokens in the KV cache manager. When left unset, that value will be computed based on the kv_cache_free_gpu_mem_fraction setting.

The kv_cache_free_gpu_mem_fraction is a floating-point number between 0.0 and 1.0 that indicates the maximum fraction of GPU memory (after loading the model) that will be used for the KV cache. The default value is 0.90 and means that 90% of the free GPU memory will be used to save tokens in the KV cache. Based on that value, TensorRT-LLM can determine the maximum number of tokens in the KV cache manager.

When both parameters are set, the maximum number of tokens in the KV cache manager will be set to the smaller value between max_tokens_in_paged_kv_cache and the value computed from the amount of memory available for the KV cache.

Unless users clearly know the maximum number of tokens in the KV cache needed by the model, it is recommended to leave max_tokens_in_paged_kv_cache unset. For kv_cache_free_gpu_mem_fraction, if no other programs are executed on the same GPU, it is recommended to test with a as high value as 0.95 to target a high throughput. Note that the kv_cache_free_gpu_mem_fraction parameter cannot be set to 1.0 because some amount of memory has to be reserved for inputs and outputs.

Batch Scheduler Policy

There currently are two batch scheduler policies: MAX_UTILIZATION and GUARANTEED_NO_EVICT.

As explained in the GPT Manager Design section, the scheduling policy can be set to MAX_UTILIZATION to pack as many requests as possible at each iteration of the forward loop, when in-flight sequence batching is enabled. It maximizes the utilization of the GPUs by aggressively scheduling requests at the risk of having to pause requests if the KV cache size limit is reached.

For a more conservative approach with respect to the KV cache limitations in terms of memory allocation, schedulerPolicy should be set to GUARANTEED_NO_EVICT to guarantee that a started request is never paused.

If the goal is to maximizes the throughput, users should try MAX_UTILIZATION. However, they need to keep in mind that it may have a negative impact on latency if requests have to be paused.

TensorRT Overlap

When TensorRT overlap is enabled, available requests are partitioned into 2 micro-batches that can be run concurrently. It allows TensorRT-LLM to hide exposed CPU runtime. However, it may not give performance benefits when the size of the model is not big enough to overlap the host overhead, or when the number of requests is too small.

If the goal is to increase throughput, it is recommended to try setting that argument to True. However, it must be noted that it may actually hurt latency.

Maximum Attention Window Size

The max_attention_window_size flag sets the maximum number of tokens that are attended to in order to generate one token when using techniques like sliding window attention. See this Document for more details. It defaults to the maximum sequence length (max_input_length + max_output_length when building the engine), which means that the feature is disabled by default.

When set to a smaller value than max_input_length + max_output_length (during engine build), only the KV cache of the last max_attention_window_size tokens will be stored. If the input sequence length at runtime exceeds the max_attention_window_size value, the accuracy may start dropping, but the runtime performance will be better (due to the reduction in terms of computations and GPU memory allocation). Users can modify that value to increase runtime performance at the expense of reduced accuracy.

Chunked Context

Turning on context chunking by specifying enable_chunked_context in TrtGptModelOptionalParams will increase the chance of batch processing between the context and the generation phase, thereby balancing the calculation amount of each iteration and increasing throughput. When this function is turned on, different performance can be obtained by adjusting max_num_tokens. Usually its recommended value is N * tokens_per_block, and N is an integer that is recommended to start from 1 and increase until the best performance is achieved.