config

Default configurations for prune modes.

ModeloptConfig FastNASConfig

Bases: ModeloptBaseRuleConfig

Configuration for the "fastnas" mode.

Show default config as JSON
Default config (JSON):

{
   "nn.Conv1d": {
      "*": {
         "channel_divisor": 32,
         "channels_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ],
         "kernel_size": []
      }
   },
   "nn.Conv2d": {
      "*": {
         "channel_divisor": 32,
         "channels_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ],
         "kernel_size": []
      }
   },
   "nn.Conv3d": {
      "*": {
         "channel_divisor": 32,
         "channels_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ],
         "kernel_size": []
      }
   },
   "nn.ConvTranspose1d": {
      "*": {
         "channel_divisor": 32,
         "channels_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ],
         "kernel_size": []
      }
   },
   "nn.ConvTranspose2d": {
      "*": {
         "channel_divisor": 32,
         "channels_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ],
         "kernel_size": []
      }
   },
   "nn.ConvTranspose3d": {
      "*": {
         "channel_divisor": 32,
         "channels_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ],
         "kernel_size": []
      }
   },
   "nn.Linear": {
      "*": {
         "feature_divisor": 32,
         "features_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ]
      }
   },
   "nn.BatchNorm1d": {
      "*": {
         "feature_divisor": 32,
         "features_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ]
      }
   },
   "nn.BatchNorm2d": {
      "*": {
         "feature_divisor": 32,
         "features_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ]
      }
   },
   "nn.BatchNorm3d": {
      "*": {
         "feature_divisor": 32,
         "features_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ]
      }
   },
   "nn.SyncBatchNorm": {
      "*": {
         "feature_divisor": 32,
         "features_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ]
      }
   },
   "nn.InstanceNorm1d": {
      "*": {
         "feature_divisor": 32,
         "features_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ]
      }
   },
   "nn.InstanceNorm2d": {
      "*": {
         "feature_divisor": 32,
         "features_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ]
      }
   },
   "nn.InstanceNorm3d": {
      "*": {
         "feature_divisor": 32,
         "features_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ]
      }
   },
   "nn.LayerNorm": {
      "*": {
         "feature_divisor": 32,
         "features_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ]
      }
   },
   "nn.GroupNorm": {
      "*": {
         "channel_divisor": 32,
         "channels_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ]
      }
   }
}

field nn.BatchNorm1d: DynamicBatchNorm1dConfig | None | Dict[str, DynamicBatchNorm1dConfig | None]

Show details

Configuration for dynamic nn.BatchNorm1d module.

If the "nn.BatchNorm1d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "features_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "feature_divisor": 32
  }
}

To deactivate any dynamic nn.BatchNorm1d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.BatchNorm1d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.BatchNorm2d: DynamicBatchNorm2dConfig | None | Dict[str, DynamicBatchNorm2dConfig | None]

Show details

Configuration for dynamic nn.BatchNorm2d module.

If the "nn.BatchNorm2d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "features_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "feature_divisor": 32
  }
}

To deactivate any dynamic nn.BatchNorm2d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.BatchNorm2d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.BatchNorm3d: DynamicBatchNorm3dConfig | None | Dict[str, DynamicBatchNorm3dConfig | None]

Show details

Configuration for dynamic nn.BatchNorm3d module.

If the "nn.BatchNorm3d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "features_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "feature_divisor": 32
  }
}

To deactivate any dynamic nn.BatchNorm3d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.BatchNorm3d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.Conv1d: DynamicConv1dConfig | None | Dict[str, DynamicConv1dConfig | None]

Show details

Configuration for dynamic nn.Conv1d module.

If the "nn.Conv1d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "channels_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "kernel_size": [],
    "channel_divisor": 32
  }
}

To deactivate any dynamic nn.Conv1d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.Conv1d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.Conv2d: DynamicConv2dConfig | None | Dict[str, DynamicConv2dConfig | None]

Show details

Configuration for dynamic nn.Conv2d module.

If the "nn.Conv2d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "channels_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "kernel_size": [],
    "channel_divisor": 32
  }
}

To deactivate any dynamic nn.Conv2d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.Conv2d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.Conv3d: DynamicConv3dConfig | None | Dict[str, DynamicConv3dConfig | None]

Show details

Configuration for dynamic nn.Conv3d module.

If the "nn.Conv3d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "channels_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "kernel_size": [],
    "channel_divisor": 32
  }
}

To deactivate any dynamic nn.Conv3d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.Conv3d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.ConvTranspose1d: DynamicConvTranspose1dConfig | None | Dict[str, DynamicConvTranspose1dConfig | None]

Show details

Configuration for dynamic nn.ConvTranspose1d module.

If the "nn.ConvTranspose1d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "channels_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "kernel_size": [],
    "channel_divisor": 32
  }
}

To deactivate any dynamic nn.ConvTranspose1d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.ConvTranspose1d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.ConvTranspose2d: DynamicConvTranspose2dConfig | None | Dict[str, DynamicConvTranspose2dConfig | None]

Show details

Configuration for dynamic nn.ConvTranspose2d module.

If the "nn.ConvTranspose2d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "channels_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "kernel_size": [],
    "channel_divisor": 32
  }
}

To deactivate any dynamic nn.ConvTranspose2d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.ConvTranspose2d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.ConvTranspose3d: DynamicConvTranspose3dConfig | None | Dict[str, DynamicConvTranspose3dConfig | None]

Show details

Configuration for dynamic nn.ConvTranspose3d module.

If the "nn.ConvTranspose3d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "channels_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "kernel_size": [],
    "channel_divisor": 32
  }
}

To deactivate any dynamic nn.ConvTranspose3d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.ConvTranspose3d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.GroupNorm: DynamicGroupNormConfig | None | Dict[str, DynamicGroupNormConfig | None]

Show details

Configuration for dynamic nn.GroupNorm module.

If the "nn.GroupNorm" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "channels_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "channel_divisor": 32
  }
}

To deactivate any dynamic nn.GroupNorm module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.GroupNorm layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.InstanceNorm1d: DynamicInstanceNorm1dConfig | None | Dict[str, DynamicInstanceNorm1dConfig | None]

Show details

Configuration for dynamic nn.InstanceNorm1d module.

If the "nn.InstanceNorm1d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "features_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "feature_divisor": 32
  }
}

To deactivate any dynamic nn.InstanceNorm1d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.InstanceNorm1d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.InstanceNorm2d: DynamicInstanceNorm2dConfig | None | Dict[str, DynamicInstanceNorm2dConfig | None]

Show details

Configuration for dynamic nn.InstanceNorm2d module.

If the "nn.InstanceNorm2d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "features_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "feature_divisor": 32
  }
}

To deactivate any dynamic nn.InstanceNorm2d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.InstanceNorm2d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.InstanceNorm3d: DynamicInstanceNorm3dConfig | None | Dict[str, DynamicInstanceNorm3dConfig | None]

Show details

Configuration for dynamic nn.InstanceNorm3d module.

If the "nn.InstanceNorm3d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "features_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "feature_divisor": 32
  }
}

To deactivate any dynamic nn.InstanceNorm3d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.InstanceNorm3d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.LayerNorm: DynamicLayerNormConfig | None | Dict[str, DynamicLayerNormConfig | None]

Show details

Configuration for dynamic nn.LayerNorm module.

If the "nn.LayerNorm" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "features_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "feature_divisor": 32
  }
}

To deactivate any dynamic nn.LayerNorm module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.LayerNorm layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.Linear: DynamicLinearConfig | None | Dict[str, DynamicLinearConfig | None]

Show details

Configuration for dynamic nn.Linear module.

If the "nn.Linear" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "features_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "feature_divisor": 32
  }
}

To deactivate any dynamic nn.Linear module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.Linear layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.SyncBatchNorm: DynamicSyncBatchNormConfig | None | Dict[str, DynamicSyncBatchNormConfig | None]

Show details

Configuration for dynamic nn.SyncBatchNorm module.

If the "nn.SyncBatchNorm" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "features_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "feature_divisor": 32
  }
}

To deactivate any dynamic nn.SyncBatchNorm module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.SyncBatchNorm layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

ModeloptConfig GradNASConfig

Bases: ModeloptBaseRuleConfig

Configuration for the "gradnas" mode.

Show default config as JSON
Default config (JSON):

{
   "nn.Conv1d": {
      "*": {
         "channel_divisor": 32,
         "channels_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ],
         "kernel_size": []
      }
   },
   "nn.Conv2d": {
      "*": {
         "channel_divisor": 32,
         "channels_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ],
         "kernel_size": []
      }
   },
   "nn.Conv3d": {
      "*": {
         "channel_divisor": 32,
         "channels_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ],
         "kernel_size": []
      }
   },
   "nn.ConvTranspose1d": {
      "*": {
         "channel_divisor": 32,
         "channels_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ],
         "kernel_size": []
      }
   },
   "nn.ConvTranspose2d": {
      "*": {
         "channel_divisor": 32,
         "channels_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ],
         "kernel_size": []
      }
   },
   "nn.ConvTranspose3d": {
      "*": {
         "channel_divisor": 32,
         "channels_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ],
         "kernel_size": []
      }
   },
   "nn.Linear": {
      "*": {
         "feature_divisor": 32,
         "features_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ]
      }
   },
   "nn.BatchNorm1d": {
      "*": {
         "feature_divisor": 32,
         "features_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ]
      }
   },
   "nn.BatchNorm2d": {
      "*": {
         "feature_divisor": 32,
         "features_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ]
      }
   },
   "nn.BatchNorm3d": {
      "*": {
         "feature_divisor": 32,
         "features_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ]
      }
   },
   "nn.SyncBatchNorm": {
      "*": {
         "feature_divisor": 32,
         "features_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ]
      }
   },
   "nn.InstanceNorm1d": {
      "*": {
         "feature_divisor": 32,
         "features_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ]
      }
   },
   "nn.InstanceNorm2d": {
      "*": {
         "feature_divisor": 32,
         "features_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ]
      }
   },
   "nn.InstanceNorm3d": {
      "*": {
         "feature_divisor": 32,
         "features_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ]
      }
   },
   "nn.LayerNorm": {
      "*": {
         "feature_divisor": 32,
         "features_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ]
      }
   },
   "nn.GroupNorm": {
      "*": {
         "channel_divisor": 32,
         "channels_ratio": [
            0.05,
            0.1,
            0.15000000000000002,
            0.2,
            0.25,
            0.30000000000000004,
            0.35000000000000003,
            0.4,
            0.45,
            0.5,
            0.55,
            0.6000000000000001,
            0.65,
            0.7000000000000001,
            0.75,
            0.8,
            0.8500000000000001,
            0.9,
            0.9500000000000001,
            1.0
         ]
      }
   }
}

field nn.BatchNorm1d: DynamicBatchNorm1dConfig | None | Dict[str, DynamicBatchNorm1dConfig | None]

Show details

Configuration for dynamic nn.BatchNorm1d module.

If the "nn.BatchNorm1d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "features_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "feature_divisor": 32
  }
}

To deactivate any dynamic nn.BatchNorm1d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.BatchNorm1d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.BatchNorm2d: DynamicBatchNorm2dConfig | None | Dict[str, DynamicBatchNorm2dConfig | None]

Show details

Configuration for dynamic nn.BatchNorm2d module.

If the "nn.BatchNorm2d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "features_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "feature_divisor": 32
  }
}

To deactivate any dynamic nn.BatchNorm2d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.BatchNorm2d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.BatchNorm3d: DynamicBatchNorm3dConfig | None | Dict[str, DynamicBatchNorm3dConfig | None]

Show details

Configuration for dynamic nn.BatchNorm3d module.

If the "nn.BatchNorm3d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "features_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "feature_divisor": 32
  }
}

To deactivate any dynamic nn.BatchNorm3d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.BatchNorm3d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.Conv1d: DynamicConv1dConfig | None | Dict[str, DynamicConv1dConfig | None]

Show details

Configuration for dynamic nn.Conv1d module.

If the "nn.Conv1d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "channels_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "kernel_size": [],
    "channel_divisor": 32
  }
}

To deactivate any dynamic nn.Conv1d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.Conv1d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.Conv2d: DynamicConv2dConfig | None | Dict[str, DynamicConv2dConfig | None]

Show details

Configuration for dynamic nn.Conv2d module.

If the "nn.Conv2d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "channels_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "kernel_size": [],
    "channel_divisor": 32
  }
}

To deactivate any dynamic nn.Conv2d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.Conv2d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.Conv3d: DynamicConv3dConfig | None | Dict[str, DynamicConv3dConfig | None]

Show details

Configuration for dynamic nn.Conv3d module.

If the "nn.Conv3d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "channels_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "kernel_size": [],
    "channel_divisor": 32
  }
}

To deactivate any dynamic nn.Conv3d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.Conv3d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.ConvTranspose1d: DynamicConvTranspose1dConfig | None | Dict[str, DynamicConvTranspose1dConfig | None]

Show details

Configuration for dynamic nn.ConvTranspose1d module.

If the "nn.ConvTranspose1d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "channels_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "kernel_size": [],
    "channel_divisor": 32
  }
}

To deactivate any dynamic nn.ConvTranspose1d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.ConvTranspose1d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.ConvTranspose2d: DynamicConvTranspose2dConfig | None | Dict[str, DynamicConvTranspose2dConfig | None]

Show details

Configuration for dynamic nn.ConvTranspose2d module.

If the "nn.ConvTranspose2d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "channels_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "kernel_size": [],
    "channel_divisor": 32
  }
}

To deactivate any dynamic nn.ConvTranspose2d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.ConvTranspose2d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.ConvTranspose3d: DynamicConvTranspose3dConfig | None | Dict[str, DynamicConvTranspose3dConfig | None]

Show details

Configuration for dynamic nn.ConvTranspose3d module.

If the "nn.ConvTranspose3d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "channels_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "kernel_size": [],
    "channel_divisor": 32
  }
}

To deactivate any dynamic nn.ConvTranspose3d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.ConvTranspose3d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.GroupNorm: DynamicGroupNormConfig | None | Dict[str, DynamicGroupNormConfig | None]

Show details

Configuration for dynamic nn.GroupNorm module.

If the "nn.GroupNorm" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "channels_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "channel_divisor": 32
  }
}

To deactivate any dynamic nn.GroupNorm module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.GroupNorm layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.InstanceNorm1d: DynamicInstanceNorm1dConfig | None | Dict[str, DynamicInstanceNorm1dConfig | None]

Show details

Configuration for dynamic nn.InstanceNorm1d module.

If the "nn.InstanceNorm1d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "features_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "feature_divisor": 32
  }
}

To deactivate any dynamic nn.InstanceNorm1d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.InstanceNorm1d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.InstanceNorm2d: DynamicInstanceNorm2dConfig | None | Dict[str, DynamicInstanceNorm2dConfig | None]

Show details

Configuration for dynamic nn.InstanceNorm2d module.

If the "nn.InstanceNorm2d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "features_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "feature_divisor": 32
  }
}

To deactivate any dynamic nn.InstanceNorm2d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.InstanceNorm2d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.InstanceNorm3d: DynamicInstanceNorm3dConfig | None | Dict[str, DynamicInstanceNorm3dConfig | None]

Show details

Configuration for dynamic nn.InstanceNorm3d module.

If the "nn.InstanceNorm3d" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "features_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "feature_divisor": 32
  }
}

To deactivate any dynamic nn.InstanceNorm3d module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.InstanceNorm3d layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.LayerNorm: DynamicLayerNormConfig | None | Dict[str, DynamicLayerNormConfig | None]

Show details

Configuration for dynamic nn.LayerNorm module.

If the "nn.LayerNorm" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "features_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "feature_divisor": 32
  }
}

To deactivate any dynamic nn.LayerNorm module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.LayerNorm layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.Linear: DynamicLinearConfig | None | Dict[str, DynamicLinearConfig | None]

Show details

Configuration for dynamic nn.Linear module.

If the "nn.Linear" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "features_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "feature_divisor": 32
  }
}

To deactivate any dynamic nn.Linear module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.Linear layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

field nn.SyncBatchNorm: DynamicSyncBatchNormConfig | None | Dict[str, DynamicSyncBatchNormConfig | None]

Show details

Configuration for dynamic nn.SyncBatchNorm module.

If the "nn.SyncBatchNorm" key is not specified, the default configuration (shown in JSON) will be used:

{
  "*": {
    "features_ratio": [
      0.05,
      0.1,
      0.15000000000000002,
      0.2,
      0.25,
      0.30000000000000004,
      0.35000000000000003,
      0.4,
      0.45,
      0.5,
      0.55,
      0.6000000000000001,
      0.65,
      0.7000000000000001,
      0.75,
      0.8,
      0.8500000000000001,
      0.9,
      0.9500000000000001,
      1.0
    ],
    "feature_divisor": 32
  }
}

To deactivate any dynamic nn.SyncBatchNorm module, use None instead of providing a dictionary {}.

To specify layer-specific configurations, you can specify a config for each submodule with the key specifying a glob pattern that matches the submodule name. For example, to convert to a dynamic module for all nn.SyncBatchNorm layers except for those in the "lm_head" submodule use:

{
    "*": {...},
    "*lm_head*": None,
}

Note that glob expressions are processed sequentially in the order they are specified. Later keys in the config will overwrite earlier keys if they match the same submodule name.

If you want to specify the same configuration for all submodules, you can provide an unnested dictionary as well:

{...}

which is short for

{
    "*": {...},
}

ModeloptConfig MCoreGPTMinitronConfig

Bases: ModeloptBaseRuleConfig

Configuration for the "mcore_gpt_minitron" mode.

Show default config as JSON
Default config (JSON):

{}