Complex Numbers

template <typename T> struct thrust::complex;
typedef see below value_type;
_CCCL_HOST_DEVICE complex(const T & re);
_CCCL_HOST_DEVICE complex(const T & re,   const T & im);
template <typename U> _CCCL_HOST_DEVICE complex(const complex< U > & z);
_CCCL_HOST _CCCL_DEVICE complex(const std::complex< T > & z);
template <typename U> _CCCL_HOST _CCCL_DEVICE complex(const std::complex< U > & z);
_CCCL_HOST_DEVICE complex & operator=(const T & re);
complex & operator=(const complex< T > & z) = default;
template <typename U> _CCCL_HOST_DEVICE complex & operator=(const complex< U > & z);
_CCCL_HOST _CCCL_DEVICE complex & operator=(const std::complex< T > & z);
template <typename U> _CCCL_HOST _CCCL_DEVICE complex & operator=(const std::complex< U > & z);
template <typename U> _CCCL_HOST_DEVICE complex< T > & operator+=(const complex< U > & z);
template <typename U> _CCCL_HOST_DEVICE complex< T > & operator-=(const complex< U > & z);
template <typename U> _CCCL_HOST_DEVICE complex< T > & operator*=(const complex< U > & z);
template <typename U> _CCCL_HOST_DEVICE complex< T > & operator/=(const complex< U > & z);
template <typename U> _CCCL_HOST_DEVICE complex< T > & operator+=(const U & z);
template <typename U> _CCCL_HOST_DEVICE complex< T > & operator-=(const U & z);
template <typename U> _CCCL_HOST_DEVICE complex< T > & operator*=(const U & z);
template <typename U> _CCCL_HOST_DEVICE complex< T > & operator/=(const U & z);
_CCCL_HOST_DEVICE T real() const;
_CCCL_HOST_DEVICE T imag() const;
_CCCL_HOST_DEVICE T real() const;
_CCCL_HOST_DEVICE T imag() const;
_CCCL_HOST_DEVICE void real(T re);
_CCCL_HOST_DEVICE void imag(T im);
_CCCL_HOST_DEVICE void real(T re);
_CCCL_HOST_DEVICE void imag(T im);
_CCCL_HOST operator std::complex< T >() const;
template <typename T> _CCCL_HOST_DEVICE T abs(const complex< T > & z);
template <typename T> _CCCL_HOST_DEVICE T arg(const complex< T > & z);
template <typename T> _CCCL_HOST_DEVICE T norm(const complex< T > & z);
template <typename T> _CCCL_HOST_DEVICE complex< T > conj(const complex< T > & z);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > polar(const T0 & m,   const T1 & theta = T1());
template <typename T> _CCCL_HOST_DEVICE complex< T > proj(const T & z);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator+(const complex< T0 > & x,   const complex< T1 > & y);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator+(const complex< T0 > & x,   const T1 & y);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator+(const T0 & x,   const complex< T1 > & y);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator-(const complex< T0 > & x,   const complex< T1 > & y);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator-(const complex< T0 > & x,   const T1 & y);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator-(const T0 & x,   const complex< T1 > & y);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator*(const complex< T0 > & x,   const complex< T1 > & y);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator*(const complex< T0 > & x,   const T1 & y);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator*(const T0 & x,   const complex< T1 > & y);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator/(const complex< T0 > & x,   const complex< T1 > & y);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator/(const complex< T0 > & x,   const T1 & y);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator/(const T0 & x,   const complex< T1 > & y);
template <typename T> _CCCL_HOST_DEVICE complex< T > operator+(const complex< T > & y);
template <typename T> _CCCL_HOST_DEVICE complex< T > operator-(const complex< T > & y);
template <typename T> _CCCL_HOST_DEVICE complex< T > exp(const complex< T > & z);
template <typename T> _CCCL_HOST_DEVICE complex< T > log(const complex< T > & z);
template <typename T> _CCCL_HOST_DEVICE complex< T > log10(const complex< T > & z);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > pow(const complex< T0 > & x,   const complex< T1 > & y);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > pow(const complex< T0 > & x,   const T1 & y);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > pow(const T0 & x,   const complex< T1 > & y);
template <typename T> _CCCL_HOST_DEVICE complex< T > sqrt(const complex< T > & z);
template <typename T> _CCCL_HOST_DEVICE complex< T > cos(const complex< T > & z);
template <typename T> _CCCL_HOST_DEVICE complex< T > sin(const complex< T > & z);
template <typename T> _CCCL_HOST_DEVICE complex< T > tan(const complex< T > & z);
template <typename T> _CCCL_HOST_DEVICE complex< T > cosh(const complex< T > & z);
template <typename T> _CCCL_HOST_DEVICE complex< T > sinh(const complex< T > & z);
template <typename T> _CCCL_HOST_DEVICE complex< T > tanh(const complex< T > & z);
template <typename T> _CCCL_HOST_DEVICE complex< T > acos(const complex< T > & z);
template <typename T> _CCCL_HOST_DEVICE complex< T > asin(const complex< T > & z);
template <typename T> _CCCL_HOST_DEVICE complex< T > atan(const complex< T > & z);
template <typename T> _CCCL_HOST_DEVICE complex< T > acosh(const complex< T > & z);
template <typename T> _CCCL_HOST_DEVICE complex< T > asinh(const complex< T > & z);
template <typename T> _CCCL_HOST_DEVICE complex< T > atanh(const complex< T > & z);
template <typename T,   typename CharT,   typename Traits> std::basic_ostream< CharT, Traits > & operator<<(std::basic_ostream< CharT, Traits > & os,   const complex< T > & z);
template <typename T,   typename CharT,   typename Traits> _CCCL_HOST std::basic_istream< CharT, Traits > & operator>>(std::basic_istream< CharT, Traits > & is,   complex< T > & z);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE bool operator==(const complex< T0 > & x,   const complex< T1 > & y);
template <typename T0,   typename T1> _CCCL_HOST _CCCL_DEVICE bool operator==(const complex< T0 > & x,   const std::complex< T1 > & y);
template <typename T0,   typename T1> _CCCL_HOST _CCCL_DEVICE bool operator==(const std::complex< T0 > & x,   const complex< T1 > & y);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE bool operator==(const T0 & x,   const complex< T1 > & y);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE bool operator==(const complex< T0 > & x,   const T1 & y);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE bool operator!=(const complex< T0 > & x,   const complex< T1 > & y);
template <typename T0,   typename T1> _CCCL_HOST _CCCL_DEVICE bool operator!=(const complex< T0 > & x,   const std::complex< T1 > & y);
template <typename T0,   typename T1> _CCCL_HOST _CCCL_DEVICE bool operator!=(const std::complex< T0 > & x,   const complex< T1 > & y);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE bool operator!=(const T0 & x,   const complex< T1 > & y);
template <typename T0,   typename T1> _CCCL_HOST_DEVICE bool operator!=(const complex< T0 > & x,   const T1 & y);

Member Classes

Struct thrust::complex

Types

Typedef value_type

typedef Tvalue_type; value_type is the type of complex's real and imaginary parts.

Functions

Function complex

_CCCL_HOST_DEVICE complex(const T & re); Construct a complex number with an imaginary part of 0.

Function Parameters: re: The real part of the number.

Function complex

_CCCL_HOST_DEVICE complex(const T & re,   const T & im); Construct a complex number from its real and imaginary parts.

Function Parameters:

  • re The real part of the number.
  • im The imaginary part of the number.

Function complex

complex() = default; Default construct a complex number.

Function complex

complex(const complex< T > & z) = default; This copy constructor copies from a complex with a type that is convertible to this complex'svalue_type.

Function Parameters: z: The complex to copy from.

Function complex

template <typename U> _CCCL_HOST_DEVICE complex(const complex< U > & z); This converting copy constructor copies from a complex with a type that is convertible to this complex'svalue_type.

Template Parameters: U: is convertible to value_type.

Function Parameters: z: The complex to copy from.

Function complex

_CCCL_HOST _CCCL_DEVICE complex(const std::complex< T > & z); This converting copy constructor copies from a std::complex with a type that is convertible to this complex'svalue_type.

Function Parameters: z: The complex to copy from.

Function complex

template <typename U> _CCCL_HOST _CCCL_DEVICE complex(const std::complex< U > & z); This converting copy constructor copies from a std::complex with a type that is convertible to this complex'svalue_type.

Template Parameters: U: is convertible to value_type.

Function Parameters: z: The complex to copy from.

Function operator=

_CCCL_HOST_DEVICE complex & operator=(const T & re); Assign re to the real part of this complex and set the imaginary part to 0.

Function Parameters: re: The real part of the number.

Function operator=

complex & operator=(const complex< T > & z) = default; Assign z.real() and z.imag() to the real and imaginary parts of this complex respectively.

Function Parameters: z: The complex to copy from.

Function operator=

template <typename U> _CCCL_HOST_DEVICE complex & operator=(const complex< U > & z); Assign z.real() and z.imag() to the real and imaginary parts of this complex respectively.

Template Parameters: U: is convertible to value_type.

Function Parameters: z: The complex to copy from.

Function operator=

_CCCL_HOST _CCCL_DEVICE complex & operator=(const std::complex< T > & z); Assign z.real() and z.imag() to the real and imaginary parts of this complex respectively.

Function Parameters: z: The complex to copy from.

Function operator=

template <typename U> _CCCL_HOST _CCCL_DEVICE complex & operator=(const std::complex< U > & z); Assign z.real() and z.imag() to the real and imaginary parts of this complex respectively.

Template Parameters: U: is convertible to value_type.

Function Parameters: z: The complex to copy from.

Function operator+=

template <typename U> _CCCL_HOST_DEVICE complex< T > & operator+=(const complex< U > & z); Adds a complex to this complex and assigns the result to this complex.

Template Parameters: U: is convertible to value_type.

Function Parameters: z: The complex to be added.

Function operator-=

template <typename U> _CCCL_HOST_DEVICE complex< T > & operator-=(const complex< U > & z); Subtracts a complex from this complex and assigns the result to this complex.

Template Parameters: U: is convertible to value_type.

Function Parameters: z: The complex to be subtracted.

Function operator*=

template <typename U> _CCCL_HOST_DEVICE complex< T > & operator*=(const complex< U > & z); Multiplies this complex by another complex and assigns the result to this complex.

Template Parameters: U: is convertible to value_type.

Function Parameters: z: The complex to be multiplied.

Function operator/=

template <typename U> _CCCL_HOST_DEVICE complex< T > & operator/=(const complex< U > & z); Divides this complex by another complex and assigns the result to this complex.

Template Parameters: U: is convertible to value_type.

Function Parameters: z: The complex to be divided.

Function operator+=

template <typename U> _CCCL_HOST_DEVICE complex< T > & operator+=(const U & z); Adds a scalar to this complex and assigns the result to this complex.

Template Parameters: U: is convertible to value_type.

Function Parameters: z: The complex to be added.

Function operator-=

template <typename U> _CCCL_HOST_DEVICE complex< T > & operator-=(const U & z); Subtracts a scalar from this complex and assigns the result to this complex.

Template Parameters: U: is convertible to value_type.

Function Parameters: z: The scalar to be subtracted.

Function operator*=

template <typename U> _CCCL_HOST_DEVICE complex< T > & operator*=(const U & z); Multiplies this complex by a scalar and assigns the result to this complex.

Template Parameters: U: is convertible to value_type.

Function Parameters: z: The scalar to be multiplied.

Function operator/=

template <typename U> _CCCL_HOST_DEVICE complex< T > & operator/=(const U & z); Divides this complex by a scalar and assigns the result to this complex.

Template Parameters: U: is convertible to value_type.

Function Parameters: z: The scalar to be divided.

Function real

_CCCL_HOST_DEVICE T real() const; Returns the real part of this complex.

Function imag

_CCCL_HOST_DEVICE T imag() const; Returns the imaginary part of this complex.

Function real

_CCCL_HOST_DEVICE T real() const; Returns the real part of this complex.

Function imag

_CCCL_HOST_DEVICE T imag() const; Returns the imaginary part of this complex.

Function real

_CCCL_HOST_DEVICE void real(T re); Sets the real part of this complex.

Function Parameters: re: The new real part of this complex.

Function imag

_CCCL_HOST_DEVICE void imag(T im); Sets the imaginary part of this complex.

Function Parameters: im: The new imaginary part of this complex.e

Function real

_CCCL_HOST_DEVICE void real(T re); Sets the real part of this complex.

Function Parameters: re: The new real part of this complex.

Function imag

_CCCL_HOST_DEVICE void imag(T im); Sets the imaginary part of this complex.

Function Parameters: im: The new imaginary part of this complex.

Function operator std::complex< T >

_CCCL_HOST operator std::complex< T >() const; Casts this complex to a std::complex of the same type.

Function abs

template <typename T> _CCCL_HOST_DEVICE T abs(const complex< T > & z); Returns the magnitude (also known as absolute value) of a complex.

Function Parameters: z: The complex from which to calculate the absolute value.

Function arg

template <typename T> _CCCL_HOST_DEVICE T arg(const complex< T > & z); Returns the phase angle (also known as argument) in radians of a complex.

Function Parameters: z: The complex from which to calculate the phase angle.

Function norm

template <typename T> _CCCL_HOST_DEVICE T norm(const complex< T > & z); Returns the square of the magnitude of a complex.

Function Parameters: z: The complex from which to calculate the norm.

Function conj

template <typename T> _CCCL_HOST_DEVICE complex< T > conj(const complex< T > & z); Returns the complex conjugate of a complex.

Function Parameters: z: The complex from which to calculate the complex conjugate.

Function polar

template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > polar(const T0 & m,   const T1 & theta = T1()); Returns a complex with the specified magnitude and phase.

Function Parameters:

  • m The magnitude of the returned complex.
  • theta The phase of the returned complex in radians.

Function proj

template <typename T> _CCCL_HOST_DEVICE complex< T > proj(const T & z); Returns the projection of a complex on the Riemann sphere. For all finite complex it returns the argument. For complexs with a non finite part returns (INFINITY,+/-0) where the sign of the zero matches the sign of the imaginary part of the argument.

Function Parameters: z: The complex argument.

Function operator+

template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator+(const complex< T0 > & x,   const complex< T1 > & y); Adds two complex numbers.

The value types of the two complex types should be compatible and the type of the returned complex is the promoted type of the two arguments.

Function Parameters:

  • x The first complex.
  • y The second complex.

Function operator+

template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator+(const complex< T0 > & x,   const T1 & y); Adds a scalar to a complex number.

The value type of the complex should be compatible with the scalar and the type of the returned complex is the promoted type of the two arguments.

Function Parameters:

  • x The complex.
  • y The scalar.

Function operator+

template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator+(const T0 & x,   const complex< T1 > & y); Adds a complex number to a scalar.

The value type of the complex should be compatible with the scalar and the type of the returned complex is the promoted type of the two arguments.

Function Parameters:

  • x The scalar.
  • y The complex.

Function operator-

template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator-(const complex< T0 > & x,   const complex< T1 > & y); Subtracts two complex numbers.

The value types of the two complex types should be compatible and the type of the returned complex is the promoted type of the two arguments.

Function Parameters:

  • x The first complex (minuend).
  • y The second complex (subtrahend).

Function operator-

template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator-(const complex< T0 > & x,   const T1 & y); Subtracts a scalar from a complex number.

The value type of the complex should be compatible with the scalar and the type of the returned complex is the promoted type of the two arguments.

Function Parameters:

  • x The complex (minuend).
  • y The scalar (subtrahend).

Function operator-

template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator-(const T0 & x,   const complex< T1 > & y); Subtracts a complex number from a scalar.

The value type of the complex should be compatible with the scalar and the type of the returned complex is the promoted type of the two arguments.

Function Parameters:

  • x The scalar (minuend).
  • y The complex (subtrahend).

Function operator*

template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator*(const complex< T0 > & x,   const complex< T1 > & y); Multiplies two complex numbers.

The value types of the two complex types should be compatible and the type of the returned complex is the promoted type of the two arguments.

Function Parameters:

  • x The first complex.
  • y The second complex.

Function operator*

template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator*(const complex< T0 > & x,   const T1 & y); Multiplies a complex number by a scalar.

Function Parameters:

  • x The complex.
  • y The scalar.

Function operator*

template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator*(const T0 & x,   const complex< T1 > & y); Multiplies a scalar by a complex number.

The value type of the complex should be compatible with the scalar and the type of the returned complex is the promoted type of the two arguments.

Function Parameters:

  • x The scalar.
  • y The complex.

Function operator/

template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator/(const complex< T0 > & x,   const complex< T1 > & y); Divides two complex numbers.

The value types of the two complex types should be compatible and the type of the returned complex is the promoted type of the two arguments.

Function Parameters:

  • x The numerator (dividend).
  • y The denomimator (divisor).

Function operator/

template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator/(const complex< T0 > & x,   const T1 & y); Divides a complex number by a scalar.

The value type of the complex should be compatible with the scalar and the type of the returned complex is the promoted type of the two arguments.

Function Parameters:

  • x The complex numerator (dividend).
  • y The scalar denomimator (divisor).

Function operator/

template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > operator/(const T0 & x,   const complex< T1 > & y); Divides a scalar by a complex number.

The value type of the complex should be compatible with the scalar and the type of the returned complex is the promoted type of the two arguments.

Function Parameters:

  • x The scalar numerator (dividend).
  • y The complex denomimator (divisor).

Function operator+

template <typename T> _CCCL_HOST_DEVICE complex< T > operator+(const complex< T > & y); Unary plus, returns its complex argument.

Function Parameters: y: The complex argument.

Function operator-

template <typename T> _CCCL_HOST_DEVICE complex< T > operator-(const complex< T > & y); Unary minus, returns the additive inverse (negation) of its complex argument.

Function Parameters: y: The complex argument.

Function exp

template <typename T> _CCCL_HOST_DEVICE complex< T > exp(const complex< T > & z); Returns the complex exponential of a complex number.

Function Parameters: z: The complex argument.

Function log

template <typename T> _CCCL_HOST_DEVICE complex< T > log(const complex< T > & z); Returns the complex natural logarithm of a complex number.

Function Parameters: z: The complex argument.

Function log10

template <typename T> _CCCL_HOST_DEVICE complex< T > log10(const complex< T > & z); Returns the complex base 10 logarithm of a complex number.

Function Parameters: z: The complex argument.

Function pow

template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > pow(const complex< T0 > & x,   const complex< T1 > & y); Returns a complex number raised to another.

The value types of the two complex types should be compatible and the type of the returned complex is the promoted type of the two arguments.

Function Parameters:

  • x The base.
  • y The exponent.

Function pow

template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > pow(const complex< T0 > & x,   const T1 & y); Returns a complex number raised to a scalar.

The value type of the complex should be compatible with the scalar and the type of the returned complex is the promoted type of the two arguments.

Function Parameters:

  • x The base.
  • y The exponent.

Function pow

template <typename T0,   typename T1> _CCCL_HOST_DEVICE complex< typename detail::promoted_numerical_type< T0, T1 >::type > pow(const T0 & x,   const complex< T1 > & y); Returns a scalar raised to a complex number.

The value type of the complex should be compatible with the scalar and the type of the returned complex is the promoted type of the two arguments.

Function Parameters:

  • x The base.
  • y The exponent.

Function sqrt

template <typename T> _CCCL_HOST_DEVICE complex< T > sqrt(const complex< T > & z); Returns the complex square root of a complex number.

Function Parameters: z: The complex argument.

Function cos

template <typename T> _CCCL_HOST_DEVICE complex< T > cos(const complex< T > & z); Returns the complex cosine of a complex number.

Function Parameters: z: The complex argument.

Function sin

template <typename T> _CCCL_HOST_DEVICE complex< T > sin(const complex< T > & z); Returns the complex sine of a complex number.

Function Parameters: z: The complex argument.

Function tan

template <typename T> _CCCL_HOST_DEVICE complex< T > tan(const complex< T > & z); Returns the complex tangent of a complex number.

Function Parameters: z: The complex argument.

Function cosh

template <typename T> _CCCL_HOST_DEVICE complex< T > cosh(const complex< T > & z); Returns the complex hyperbolic cosine of a complex number.

Function Parameters: z: The complex argument.

Function sinh

template <typename T> _CCCL_HOST_DEVICE complex< T > sinh(const complex< T > & z); Returns the complex hyperbolic sine of a complex number.

Function Parameters: z: The complex argument.

Function tanh

template <typename T> _CCCL_HOST_DEVICE complex< T > tanh(const complex< T > & z); Returns the complex hyperbolic tangent of a complex number.

Function Parameters: z: The complex argument.

Function acos

template <typename T> _CCCL_HOST_DEVICE complex< T > acos(const complex< T > & z); Returns the complex arc cosine of a complex number.

The range of the real part of the result is [0, Pi] and the range of the imaginary part is [-inf, +inf]

Function Parameters: z: The complex argument.

Function asin

template <typename T> _CCCL_HOST_DEVICE complex< T > asin(const complex< T > & z); Returns the complex arc sine of a complex number.

The range of the real part of the result is [-Pi/2, Pi/2] and the range of the imaginary part is [-inf, +inf]

Function Parameters: z: The complex argument.

Function atan

template <typename T> _CCCL_HOST_DEVICE complex< T > atan(const complex< T > & z); Returns the complex arc tangent of a complex number.

The range of the real part of the result is [-Pi/2, Pi/2] and the range of the imaginary part is [-inf, +inf]

Function Parameters: z: The complex argument.

Function acosh

template <typename T> _CCCL_HOST_DEVICE complex< T > acosh(const complex< T > & z); Returns the complex inverse hyperbolic cosine of a complex number.

The range of the real part of the result is [0, +inf] and the range of the imaginary part is [-Pi, Pi]

Function Parameters: z: The complex argument.

Function asinh

template <typename T> _CCCL_HOST_DEVICE complex< T > asinh(const complex< T > & z); Returns the complex inverse hyperbolic sine of a complex number.

The range of the real part of the result is [-inf, +inf] and the range of the imaginary part is [-Pi/2, Pi/2]

Function Parameters: z: The complex argument.

Function atanh

template <typename T> _CCCL_HOST_DEVICE complex< T > atanh(const complex< T > & z); Returns the complex inverse hyperbolic tangent of a complex number.

The range of the real part of the result is [-inf, +inf] and the range of the imaginary part is [-Pi/2, Pi/2]

Function Parameters: z: The complex argument.

Function operator<<

template <typename T,   typename CharT,   typename Traits> std::basic_ostream< CharT, Traits > & operator<<(std::basic_ostream< CharT, Traits > & os,   const complex< T > & z); Writes to an output stream a complex number in the form (real, imaginary).

Function Parameters:

  • os The output stream.
  • z The complex number to output.

Function operator>>

template <typename T,   typename CharT,   typename Traits> _CCCL_HOST std::basic_istream< CharT, Traits > & operator>>(std::basic_istream< CharT, Traits > & is,   complex< T > & z); Reads a complex number from an input stream.

The recognized formats are:

  • real
  • (real)
  • (real, imaginary)

The values read must be convertible to the complex'svalue_type

Function Parameters:

  • is The input stream.
  • z The complex number to set.

Function operator==

template <typename T0,   typename T1> _CCCL_HOST_DEVICE bool operator==(const complex< T0 > & x,   const complex< T1 > & y); Returns true if two complex numbers are equal and false otherwise.

Function Parameters:

  • x The first complex.
  • y The second complex.

Function operator==

template <typename T0,   typename T1> _CCCL_HOST _CCCL_DEVICE bool operator==(const complex< T0 > & x,   const std::complex< T1 > & y); Returns true if two complex numbers are equal and false otherwise.

Function Parameters:

  • x The first complex.
  • y The second complex.

Function operator==

template <typename T0,   typename T1> _CCCL_HOST _CCCL_DEVICE bool operator==(const std::complex< T0 > & x,   const complex< T1 > & y); Returns true if two complex numbers are equal and false otherwise.

Function Parameters:

  • x The first complex.
  • y The second complex.

Function operator==

template <typename T0,   typename T1> _CCCL_HOST_DEVICE bool operator==(const T0 & x,   const complex< T1 > & y); Returns true if the imaginary part of the complex number is zero and the real part is equal to the scalar. Returns false otherwise.

Function Parameters:

  • x The scalar.
  • y The complex.

Function operator==

template <typename T0,   typename T1> _CCCL_HOST_DEVICE bool operator==(const complex< T0 > & x,   const T1 & y); Returns true if the imaginary part of the complex number is zero and the real part is equal to the scalar. Returns false otherwise.

Function Parameters:

  • x The complex.
  • y The scalar.

Function operator!=

template <typename T0,   typename T1> _CCCL_HOST_DEVICE bool operator!=(const complex< T0 > & x,   const complex< T1 > & y); Returns true if two complex numbers are different and false otherwise.

Function Parameters:

  • x The first complex.
  • y The second complex.

Function operator!=

template <typename T0,   typename T1> _CCCL_HOST _CCCL_DEVICE bool operator!=(const complex< T0 > & x,   const std::complex< T1 > & y); Returns true if two complex numbers are different and false otherwise.

Function Parameters:

  • x The first complex.
  • y The second complex.

Function operator!=

template <typename T0,   typename T1> _CCCL_HOST _CCCL_DEVICE bool operator!=(const std::complex< T0 > & x,   const complex< T1 > & y); Returns true if two complex numbers are different and false otherwise.

Function Parameters:

  • x The first complex.
  • y The second complex.

Function operator!=

template <typename T0,   typename T1> _CCCL_HOST_DEVICE bool operator!=(const T0 & x,   const complex< T1 > & y); Returns true if the imaginary part of the complex number is not zero or the real part is different from the scalar. Returns false otherwise.

Function Parameters:

  • x The scalar.
  • y The complex.

Function operator!=

template <typename T0,   typename T1> _CCCL_HOST_DEVICE bool operator!=(const complex< T0 > & x,   const T1 & y); Returns true if the imaginary part of the complex number is not zero or the real part is different from the scalar. Returns false otherwise.

Function Parameters:

  • x The complex.
  • y The scalar.