13. Example Programs¶
13.1. Hello World - Simple Bell State¶
#include <cudaq.h>
struct bell {
int operator()(int num_iters) __qpu__ {
cudaq::qarray<2> q;
int nCorrect = 0;
for (int i = 0; i < num_iters; i++) {
h(q[0]);
x<cudaq::ctrl>(q[0], q[1]);
auto results = mz(q);
if (results[0] == results[1])
nCorrect++;
reset(q[0]);
reset(q[1]);
}
return nCorrect;
}
};
int main() { printf("N Correct = %d\n", bell{}(100)); }
import cudaq
@cudaq.kernel()
def bell(num_iters : int) -> int:
q = cudaq.qvector(2)
nCorrect = 0
for i in range(num_iters):
h(q[0])
x.ctrl(q[0], q[1])
results = mz(q)
if results[0] == results[1]:
nCorrect = nCorrect + 1
reset(q)
return nCorrect
counts = bell(100)
print(f'N Correct = {counts}')
assert counts == 100
13.2. GHZ State Preparation and Sampling¶
#include <cudaq.h>
__qpu__ ghz(const int n_qubits) {
cudaq::qvector q(n_qubits);
h(q[0]);
for (int i = 0; i < n_qubits - 1; ++i)
// note use of ctrl modifier
x<cudaq::ctrl>(q[i], q[i+1]);
mz(q);
}
int main() {
// Sample the state produced by the ghz kernel
auto counts = cudaq::sample(ghz, 10);
for (auto [bits, count] : counts) {
printf("Observed %s %lu times.\n", bits.c_str(), count);
}
return 0;
}
import cudaq
@cudaq.kernel
def ghz(numQubits:int):
qubits = cudaq.qvector(numQubits)
h(qubits.front())
for i, qubit in enumerate(qubits.front(numQubits - 1)):
x.ctrl(qubit, qubits[i + 1])
counts = cudaq.sample(ghz, 10)
for bits, count : counts:
print('Observed {} {} times.'.format(bits, count))
13.3. Quantum Phase Estimation¶
// Compile and run with:
// ```
// nvq++ phase_estimation.cpp -o qpe.x && ./qpe.x
// ```
#include <cudaq.h>
#include <cudaq/algorithm.h>
#include <stdio.h>
#include <cmath>
// A pure device quantum kernel defined as a free function
// (cannot be called from host code).
__qpu__ void iqft(cudaq::qview<> q) {
int N = q.size();
// Swap qubits
for (int i = 0; i < N / 2; ++i) {
swap(q[i], q[N - i - 1]);
}
for (int i = 0; i < N - 1; ++i) {
h(q[i]);
int j = i + 1;
for (int y = i; y >= 0; --y) {
double denom = (1UL << (j - y));
const double theta = -M_PI / denom;
r1<cudaq::ctrl>(theta, q[j], q[y]);
}
}
h(q[N - 1]);
}
// CUDA-Q kernel call operators can be templated on
// input CUDA-Q kernel expressions. Here we define a general
// Phase Estimation algorithm that is generic on the eigenstate
// preparation and unitary evolution steps.
struct qpe {
// Define the CUDA-Q call expression to take user-specified eigenstate
// and unitary evolution kernels, as well as the number of qubits in the
// counting register and in the eigenstate register.
template <typename StatePrep, typename Unitary>
void operator()(const int nCountingQubits, StatePrep &&state_prep,
Unitary &&oracle) __qpu__ {
// Allocate a register of qubits
cudaq::qvector q(nCountingQubits + 1);
// Extract sub-registers, one for the counting qubits
// another for the eigenstate register
auto counting_qubits = q.front(nCountingQubits);
auto &state_register = q.back();
// Prepare the eigenstate
state_prep(state_register);
// Put the counting register into uniform superposition
h(counting_qubits);
// Perform `ctrl-U^j`
for (int i = 0; i < nCountingQubits; ++i) {
for (int j = 0; j < (1 << i); ++j) {
cudaq::control(oracle, counting_qubits[i], state_register);
}
}
// Apply inverse quantum Fourier transform
iqft(counting_qubits);
// Measure to gather sampling statistics
mz(counting_qubits);
return;
}
};
struct r1PiGate {
void operator()(cudaq::qubit &q) __qpu__ { r1(1., q); }
};
int main() {
for (auto nQubits : std::vector<int>{2, 4, 6, 8}) {
auto counts = cudaq::sample(
qpe{}, nQubits, [](cudaq::qubit &q) __qpu__ { x(q); }, r1PiGate{});
auto mostProbable = counts.most_probable();
double theta = cudaq::to_integer(mostProbable) / (double)(1UL << nQubits);
auto piEstimate = 1. / (2 * theta);
printf("Pi Estimate(nQubits == %d) = %lf \n", nQubits, piEstimate);
}
}
import cudaq, numpy as np
# Compute phase for U |psi> = exp(-2 pi phase) |psi>
# This example will consider U = T, and |psi> = |1>
# Define a Inverse Quantum Fourier Transform kernel
@cudaq.kernel
def iqft(qubits: cudaq.qview):
N = qubits.size()
for i in range(N // 2):
swap(qubits[i], qubits[N - i - 1])
for i in range(N - 1):
h(qubits[i])
j = i + 1
for y in range(i, -1, -1):
r1.ctrl(-np.pi / 2**(j - y), qubits[j], qubits[y])
h(qubits[N - 1])
# Define the U kernel
@cudaq.kernel
def tGate(qubit: cudaq.qubit):
t(qubit)
# Define the state preparation |psi> kernel
@cudaq.kernel
def xGate(qubit: cudaq.qubit):
x(qubit)
# General Phase Estimation kernel for single qubit
# eigen states.
@cudaq.kernel
def qpe(nC: int, nQ: int, statePrep: Callable[[cudaq.qubit], None],
oracle: Callable[[cudaq.qubit], None]):
q = cudaq.qvector(nC + nQ)
countingQubits = q.front(nC)
stateRegister = q.back()
statePrep(stateRegister)
h(countingQubits)
for i in range(nC):
for j in range(2**i):
cudaq.control(oracle, [countingQubits[i]], stateRegister)
iqft(countingQubits)
mz(countingQubits)
# Sample the state to get the phase.
counts = cudaq.sample(qpe, 3, 1, xGate, tGate)
assert len(counts) == 1
assert '100' in counts
13.4. Deuteron Binding Energy Parameter Sweep¶
#include <cudaq.h>
struct deuteron_n2_ansatz {
void operator()(double theta) __qpu__ {
cudaq::qarray<2> q;
x(q[0]);
ry(theta, q[1]);
x<cudaq::ctrl>(q[1], q[0]);
}
};
int main() {
using namespace cudaq::spin;
cudaq::spin_op h = 5.907 - 2.1433 * x(0) * x(1) - 2.1433 * y(0) * y(1) +
.21829 * z(0) - 6.125 * z(1);
// Perform parameter sweep for deuteron N=2 Hamiltonian
const auto param_space = cudaq::linspace(-M_PI, M_PI, 25);
for (const auto& param : param_space) {
// KERNEL::observe(...) <==>
// E(params...) = <psi(params...) | H | psi(params...)>
double energy_at_param = cudaq::observe(deuteron_n2_ansatz{}, h, param);
printf("<H>(%lf) = %lf\n", param, energy_at_param);
}
}
import cudaq
from cudaq import spin
@cudaq.kernel
def ansatz(angle:float):
q = cudaq.qvector(2)
x(q[0])
ry(angle, q[1])
x.ctrl(q[1], q[0])
hamiltonian = 5.907 - 2.1433 * spin.x(0) * spin.x(1) - 2.1433 * spin.y(
0) * spin.y(1) + .21829 * spin.z(0) - 6.125 * spin.z(1)
# Perform parameter sweep for deuteron N=2 Hamiltonian
for angle in np.linspace(-np.pi, np.pi, 25):
# KERNEL::observe(...) <==>
# E(params...) = <psi(params...) | H | psi(params...)>
energyAtParam = cudaq.observe(ansatz, hamiltonian, .59)
print('<H>({}) = {}'.format(angle, energyAtParam))
13.5. Grover’s Algorithm¶
// Compile and run with:
// ```
// nvq++ grover.cpp -o grover.x && ./grover.x
// ```
#include <cmath>
#include <cudaq.h>
#include <numbers>
__qpu__ void reflect_about_uniform(cudaq::qvector<> &qs) {
auto ctrlQubits = qs.front(qs.size() - 1);
auto &lastQubit = qs.back();
// Compute (U) Action (V) produces
// U V U::Adjoint
cudaq::compute_action(
[&]() {
h(qs);
x(qs);
},
[&]() { z<cudaq::ctrl>(ctrlQubits, lastQubit); });
}
struct run_grover {
template <typename CallableKernel>
__qpu__ auto operator()(const int n_qubits, CallableKernel &&oracle) {
int n_iterations = round(0.25 * std::numbers::pi * sqrt(2 ^ n_qubits));
cudaq::qvector qs(n_qubits);
h(qs);
for (int i = 0; i < n_iterations; i++) {
oracle(qs);
reflect_about_uniform(qs);
}
mz(qs);
}
};
struct oracle {
const long target_state;
void operator()(cudaq::qvector<> &qs) __qpu__ {
cudaq::compute_action(
[&]() {
for (int i = 1; i <= qs.size(); ++i) {
auto target_bit_set = (1 << (qs.size() - i)) & target_state;
if (!target_bit_set)
x(qs[i - 1]);
}
},
[&]() {
auto ctrlQubits = qs.front(qs.size() - 1);
z<cudaq::ctrl>(ctrlQubits, qs.back());
});
}
};
int main(int argc, char *argv[]) {
auto secret = 1 < argc ? strtol(argv[1], NULL, 2) : 0b1011;
oracle compute_oracle{.target_state = secret};
auto counts = cudaq::sample(run_grover{}, 4, compute_oracle);
printf("Found string %s\n", counts.most_probable().c_str());
}
@cudaq.kernel
def reflect(qubits: cudaq.qview):
ctrls = qubits.front(qubits.size() - 1)
last = qubits.back()
cudaq.compute_action(lambda: (h(qubits), x(qubits)),
lambda: z.ctrl(ctrls, last))
@cudaq.kernel
def oracle(q: cudaq.qview):
z.ctrl(q[0], q[2])
z.ctrl(q[1], q[2])
@cudaq.kernel
def grover(N: int, M: int, oracle: Callable[[cudaq.qview], None]):
q = cudaq.qvector(N)
h(q)
for i in range(M):
oracle(q)
reflect(q)
mz(q)
counts = cudaq.sample(grover, 3, 1, oracle)
assert len(counts) == 2
assert '101' in counts
assert '011' in counts
13.6. Iterative Phase Estimation¶
// Compile and run with:
// ```
// nvq++ iterative_qpe.cpp -o qpe.x && ./qpe.x
// ```
#include <cudaq.h>
struct iqpe {
void operator()() __qpu__ {
cudaq::qarray<2> q;
h(q[0]);
x(q[1]);
for (int i = 0; i < 8; i++)
r1<cudaq::ctrl>(-5 * M_PI / 8., q[0], q[1]);
h(q[0]);
auto cr0 = mz(q[0]);
reset(q[0]);
h(q[0]);
for (int i = 0; i < 4; i++)
r1<cudaq::ctrl>(-5 * M_PI / 8., q[0], q[1]);
if (cr0)
rz(-M_PI / 2., q[0]);
h(q[0]);
auto cr1 = mz(q[0]);
reset(q[0]);
h(q[0]);
for (int i = 0; i < 2; i++)
r1<cudaq::ctrl>(-5 * M_PI / 8., q[0], q[1]);
if (cr0)
rz(-M_PI / 4., q[0]);
if (cr1)
rz(-M_PI / 2., q[0]);
h(q[0]);
auto cr2 = mz(q[0]);
reset(q[0]);
h(q[0]);
r1<cudaq::ctrl>(-5 * M_PI / 8., q[0], q[1]);
if (cr0)
rz(-M_PI / 8., q[0]);
if (cr1)
rz(-M_PI_4, q[0]);
if (cr2)
rz(-M_PI_2, q[0]);
h(q[0]);
mz(q[0]);
}
};
int main() {
auto counts = cudaq::sample(/*shots*/ 10, iqpe{});
counts.dump();
return 0;
}