warp.tile_matmul#
- warp.tile_matmul(
- a: Tile[Float, tuple[int, int]],
- b: Tile[Float, tuple[int, int]],
- out: Tile[Float, tuple[int, int]],
- alpha: Float,
- beta: Float,
Kernel
Differentiable
Computes the matrix product and accumulates
out = alpha * a*b + beta * out.- Supported datatypes are:
fp16, fp32, fp64 (real)
vec2h, vec2f, vec2d (complex)
All input and output tiles must have the same datatype. Tile data will automatically be migrated to shared memory if necessary and will use TensorCore operations when available.
Note that computing the adjoints of alpha and beta are not yet supported.
- param a:
A tile with
shape=(M, K)- param b:
A tile with
shape=(K, N)- param out:
A tile with
shape=(M, N)- param alpha:
Scaling factor (default 1.0)
- param beta:
Accumulator factor (default 1.0)
- warp.tile_matmul( ) Tile[Float, tuple[int, int]]
Kernel
Differentiable
Computes the matrix product
out = alpha * a*b.- Supported datatypes are:
fp16, fp32, fp64 (real)
vec2h, vec2f, vec2d (complex)
Both input tiles must have the same datatype. Tile data will automatically be migrated to shared memory if necessary and will use TensorCore operations when available.
Note that computing the adjoints of alpha is not yet supported.
- param a:
A tile with
shape=(M, K)- param b:
A tile with
shape=(K, N)- param alpha:
Scaling factor (default 1.0)
- returns:
A tile with
shape=(M, N)