warp.tile_matmul#
- warp.tile_matmul(
- a: Tile[Float, tuple[int, int]],
- b: Tile[Float, tuple[int, int]],
- out: Tile[Float, tuple[int, int]],
- alpha: Float,
- beta: Float,
Kernel
Differentiable
Compute the matrix product
a*b.Compute
out = alpha * a*b + beta * out.- Supported datatypes are:
fp16, fp32, fp64 (real)
vec2h, vec2f, vec2d (complex)
All input and output tiles must have the same datatype. Tile data will automatically be migrated to shared memory if necessary and will use TensorCore operations when available.
Note that computing the adjoints of alpha and beta are not yet supported.
- Parameters:
a – A tile with
shape=(M, K)b – A tile with
shape=(K, N)out – A tile with
shape=(M, N)alpha – Scaling factor (default 1.0)
beta – Accumulator factor (default 1.0)
- warp.tile_matmul( ) Tile[Float, tuple[int, int]]
Kernel
Differentiable
Compute the matrix product
a*b.Compute
out = alpha * a*b.- Supported datatypes are:
fp16, fp32, fp64 (real)
vec2h, vec2f, vec2d (complex)
Both input tiles must have the same datatype. Tile data will automatically be migrated to shared memory if necessary and will use TensorCore operations when available.
Note that computing the adjoints of alpha is not yet supported.
- Parameters:
a – A tile with
shape=(M, K)b – A tile with
shape=(K, N)alpha – Scaling factor (default 1.0)
- Returns:
A tile with
shape=(M, N)