warp.transform_to_matrix#
- warp.transform_to_matrix(
- xform: Transformation[float32],
Kernel
Differentiable
Convert a transformation to a 4x4 matrix.
\[\begin{split}M = \begin{bmatrix} R_{00} & R_{01} & R_{02} & p_x \\ R_{10} & R_{11} & R_{12} & p_y \\ R_{20} & R_{21} & R_{22} & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}\end{split}\]Where:
\(R\) is the 3x3 rotation matrix created from the orientation quaternion of the input transform.
\(p\) is the 3D position vector \([p_x, p_y, p_z]\) of the input transform.
- Args:
xform (Transformation[Float]): Transformation to convert.
- Returns:
Matrix[4, 4, Float]: The matrix.