Miscellaneous Classes¶
Kernel Generator¶
-
class
MinkowskiEngine.KernelGenerator(kernel_size=-1, stride=1, dilation=1, is_transpose: bool = False, region_type: MinkowskiEngineBackend._C.RegionType = <RegionType.HYPER_CUBE: 0>, region_offsets: Optional[torch.Tensor] = None, expand_coordinates: bool = False, axis_types=None, dimension=-1)¶ -
__init__(kernel_size=-1, stride=1, dilation=1, is_transpose: bool = False, region_type: MinkowskiEngineBackend._C.RegionType = <RegionType.HYPER_CUBE: 0>, region_offsets: Optional[torch.Tensor] = None, expand_coordinates: bool = False, axis_types=None, dimension=-1)¶ region_type(RegionType, optional): defines the kernel shape. Please refer to MinkowskiEngine.Comon for details.region_offset(torch.IntTensor, optional): when theregion_typeisRegionType.CUSTOM, the convolution kernel uses the provided region_offset to define offsets. It should be a matrix of size \(N \times D\) where \(N\) is the number of offsets and \(D\) is the dimension of the space.axis_types(list of RegionType, optional): If given, it uses different methods to create a kernel for each axis. e.g., when it is [RegionType.HYPER_CUBE, RegionType.HYPER_CUBE, RegionType.HYPER_CROSS], the kernel would be rectangular for the first two dimensions and cross shaped for the thrid dimension.
-
axis_types¶
-
cache¶
-
dimension¶
-
expand_coordinates¶
-
get_kernel(tensor_stride, is_transpose)¶
-
kernel_dilation¶
-
kernel_size¶
-
kernel_stride¶
-
kernel_volume¶
-
region_offsets¶
-
region_type¶
-
requires_strided_coordinates¶
-