Miscellaneous Classes¶
Kernel Generator¶
- 
class MinkowskiEngine.KernelGenerator(kernel_size=-1, stride=1, dilation=1, is_transpose: bool = False, region_type: MinkowskiEngineBackend._C.RegionType = <RegionType.HYPER_CUBE: 0>, region_offsets: Optional[torch.Tensor] = None, expand_coordinates: bool = False, axis_types=None, dimension=-1)¶
- 
__init__(kernel_size=-1, stride=1, dilation=1, is_transpose: bool = False, region_type: MinkowskiEngineBackend._C.RegionType = <RegionType.HYPER_CUBE: 0>, region_offsets: Optional[torch.Tensor] = None, expand_coordinates: bool = False, axis_types=None, dimension=-1)¶
- region_type(RegionType, optional): defines the kernel shape. Please refer to MinkowskiEngine.Comon for details.- region_offset(torch.IntTensor, optional): when the- region_typeis- RegionType.CUSTOM, the convolution kernel uses the provided region_offset to define offsets. It should be a matrix of size \(N \times D\) where \(N\) is the number of offsets and \(D\) is the dimension of the space.- axis_types(list of RegionType, optional): If given, it uses different methods to create a kernel for each axis. e.g., when it is [RegionType.HYPER_CUBE, RegionType.HYPER_CUBE, RegionType.HYPER_CROSS], the kernel would be rectangular for the first two dimensions and cross shaped for the thrid dimension.
 - 
axis_types¶
 - 
cache¶
 - 
dimension¶
 - 
expand_coordinates¶
 - 
get_kernel(tensor_stride, is_transpose)¶
 - 
kernel_dilation¶
 - 
kernel_size¶
 - 
kernel_stride¶
 - 
kernel_volume¶
 - 
region_offsets¶
 - 
region_type¶
 - 
requires_strided_coordinates¶
 
- 
