Source code for sdp.processors.datasets.coraal.data_splits

# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from sdp.processors.base_processor import BaseParallelProcessor, DataEntry


[docs] class TrainDevTestSplitCORAAL(BaseParallelProcessor): """Custom train-dev-test split for CORAAL dataset. Split is done speaker-wise, so the same speakers don't appear in different splits. Args: data_split (str): train, dev or test. Returns: All the same fields as in the input manifest, but only a subset of the data is retained. """ def __init__( self, data_split: str, **kwargs, ): super().__init__(**kwargs) if data_split not in ["train", "dev", "test"]: raise ValueError("data_split has to be either train, dev or test") self.data_split = data_split self.split_map = {} self.split_map["train"] = set( [ 'ATL_se0_ag1_m', 'DCA_se1_ag1_f', 'DCA_se1_ag2_f', 'DCA_se1_ag2_m', 'DCA_se1_ag3_f', 'DCA_se1_ag3_m', 'DCA_se1_ag4_m', 'DCA_se2_ag1_f', 'DCA_se2_ag1_m', 'DCA_se2_ag2_m', 'DCB_se1_ag1_m', 'DCB_se1_ag2_f', 'DCB_se1_ag2_m', 'DCB_se1_ag3_f', 'DCB_se1_ag3_m', 'DCB_se1_ag4_f', 'DCB_se1_ag4_m', 'DCB_se2_ag1_f', 'DCB_se2_ag1_m', 'DCB_se2_ag2_f', 'LES_se0_ag2_f', 'LES_se0_ag2_m', 'PRV_se0_ag1_f', 'PRV_se0_ag2_f', 'ROC_se0_ag1_m', 'ROC_se0_ag2_f', 'VLD_se0_ag2_f', 'VLD_se0_ag2_m', ] ) self.split_map["dev"] = set( [ 'ATL_se0_ag1_f', 'DCA_se1_ag1_m', 'DCB_se1_ag1_f', 'LES_se0_ag3_f', 'PRV_se0_ag1_m', 'ROC_se0_ag1_f', 'VLD_se0_ag3_f', ] ) self.split_map["test"] = set( [ 'ATL_se0_ag2_f', 'ATL_se0_ag2_m', 'DCA_se2_ag3_m', 'DCA_se2_ag4_f', 'DCA_se2_ag4_m', 'DCA_se3_ag1_f', 'DCA_se3_ag1_m', 'DCA_se3_ag2_f', 'DCA_se3_ag2_m', 'DCA_se3_ag3_f', 'DCA_se3_ag3_m', 'DCA_se3_ag4_m', 'DCB_se2_ag2_m', 'DCB_se2_ag3_f', 'DCB_se2_ag3_m', 'DCB_se2_ag4_f', 'DCB_se2_ag4_m', 'DCB_se3_ag1_f', 'DCB_se3_ag1_m', 'DCB_se3_ag2_f', 'DCB_se3_ag3_f', 'DCB_se3_ag3_m', 'DCB_se3_ag4_f', 'DCB_se3_ag4_m', 'LES_se0_ag3_m', 'LES_se0_ag4_f', 'LES_se0_ag4_m', 'PRV_se0_ag2_m', 'PRV_se0_ag3_f', 'PRV_se0_ag3_m', 'ROC_se0_ag2_m', 'ROC_se0_ag3_f', 'ROC_se0_ag3_m', 'VLD_se0_ag3_m', 'VLD_se0_ag4_f', 'VLD_se0_ag4_m', ] ) def process_dataset_entry(self, data_entry): if data_entry["original_file"][:-5] in self.split_map[self.data_split]: return [DataEntry(data=data_entry)] return []