Source code for tensorrt_llm.hlapi.llm

import os
import shutil
import tempfile
from pathlib import Path
from typing import Any, List, Optional, Sequence, Union

from tqdm import tqdm
from transformers import PreTrainedTokenizerBase

from .. import bindings as tllm
from ..bindings import executor as tllm
from ..builder import EngineConfig
from ..executor import GenerationExecutor, GenerationResult, LoRARequest
from ..logger import logger
from .llm_utils import (LLMARGS_REMAINING_ARGS_DOCSTRING, CachedModelLoader,
                        LlmArgs, LlmBuildStats, ModelLoader,
                        _ModelRuntimeContext)
from .mpi_session import (MpiCommSession, MpiPoolSession, MpiSession,
                          external_mpi_comm_available)
from .tokenizer import TokenizerBase
# TODO[chunweiy]: move the following symbols back to utils scope, and remove the following import
from .utils import (SamplingParams, append_docstring, exception_handler,
                    get_device_count)


[docs] class RequestOutput(GenerationResult): """The output data of a completion request to the LLM. Fields: request_id (int): The unique ID of the request. prompt (str): The prompt string of the request. prompt_token_ids (List[int]): The token ids of the prompt. outputs (List[CompletionOutput]): The output sequences of the request. context_logits (torch.Tensor): The logits on the prompt token ids. finished (bool): Whether the whole request is finished. """
[docs] def __init__(self, generation_result: GenerationResult, prompt: Optional[str] = None, tokenizer: Optional[TokenizerBase] = None) -> None: self.__dict__.update(generation_result.__dict__) self.prompt = prompt self.tokenizer = tokenizer
[docs] def handle_response(self, response): super().handle_response(response) if self.tokenizer is not None: for beam_output in self.outputs: beam_output.text = self.tokenizer.decode(beam_output.token_ids)
def _repr_fields(self): return [ 'request_id', 'prompt', 'prompt_token_ids', 'outputs', 'finished' ]
PromptInputs = Union[str, List[int]] LLM_END_DOCSTRING = '\n'.join( [' ' * 4 + _ for _ in LLMARGS_REMAINING_ARGS_DOCSTRING.split('\n')])
[docs] @append_docstring(LLM_END_DOCSTRING) class LLM: '''LLM class is the main class for running a LLM model. Args: model(str): The model name or a local path to the model directory. It could be a HuggingFace(HF) model name, a local path to the HF model, or a local path to the TRT-LLM engine or checkpoint. tokenizer(Optional[Union[str, Path, TokenizerBase, PreTrainedTokenizerBase]]): The tokenizer name or a local path to the tokenizer directory. skip_tokenizer_init: If true, skip initialization of tokenizer and detokenizer. generate and generate_async will accept prompt token ids as input only. tensor_parallel_size(int): The number of processes for tensor parallelism. dtype(str): The data type for the model weights and activations. trust_remote_code(bool): Download the model and tokenizer from trust remote code (e.g, Hugging Face) revision(Optional[str]): The revision of the model. tokenzier_revision(Optional[str]): The revision of the tokenizer. '''
[docs] def __init__(self, model: str, tokenizer: Optional[Union[str, Path, TokenizerBase, PreTrainedTokenizerBase]] = None, skip_tokenizer_init: bool = False, tensor_parallel_size: int = 1, dtype: str = "auto", trust_remote_code: bool = False, revision: Optional[str] = None, tokenizer_revision: Optional[str] = None, **kwargs: Any): self._executor_cls = kwargs.pop("executor_cls", GenerationExecutor) self.mpi_session: Optional[MpiSession] = None try: self.args = LlmArgs.from_kwargs( model=model, tokenizer=tokenizer, skip_tokenizer_init=skip_tokenizer_init, tensor_parallel_size=tensor_parallel_size, dtype=dtype, trust_remote_code=trust_remote_code, revision=revision, tokenizer_revision=tokenizer_revision, **kwargs) except Exception as e: logger.error( f"Failed to parse the arguments for the LLM constructor: {e}") raise e if self.args.parallel_config.is_multi_gpu: if get_device_count() < self.args.parallel_config.world_size: raise RuntimeError( f"Only {get_device_count()} GPUs are available, but {self.args.parallel_config.world_size} are required." ) logger.info( f'start MpiSession with {self.args.parallel_config.world_size} workers' ) if not external_mpi_comm_available( self.args.parallel_config.world_size): self.mpi_session = MpiPoolSession( n_workers=self.args.parallel_config.world_size) else: self.mpi_session = MpiCommSession( n_workers=self.args.parallel_config.world_size) try: # Due to the Executor can only accept a engine path, we need to save the engine to a directory self._engine_dir: Optional[Path] = None self._executor: Optional[GenerationExecutor] = None self._workspace = tempfile.TemporaryDirectory("llm-workspace") self.runtime_context: Optional[_ModelRuntimeContext] = None self.llm_build_stats = LlmBuildStats() self._build_model() self._tokenizer = self._try_load_tokenizer() except Exception as e: if self.mpi_session is not None: self.mpi_session.shutdown() raise e exception_handler.register(self, '_shutdown')
@property def workspace(self) -> Path: return Path(self._workspace.name)
[docs] def generate( self, inputs: Union[PromptInputs, Sequence[PromptInputs]], sampling_params: Optional[Union[SamplingParams, List[SamplingParams]]] = None, use_tqdm: bool = True, lora_request: Optional[Union[LoRARequest, Sequence[LoRARequest]]] = None, ) -> Union[RequestOutput, List[RequestOutput]]: ''' Generate output for the given prompts in the synchronous mode. Synchronous generation accepts either single prompt or batched prompts. Args: inputs (Union[PromptInputs, Sequence[PromptInputs]]): The prompt text or token ids. Note, it must be single prompt or batched prompts. sampling_params (Optional[Union[SamplingParams, List[SamplingParams]]]): The sampling params for the generation, a default one will be used if not provided. use_tqdm (bool): Whether to use tqdm to display the progress bar. lora_request (Optional[Union[LoRARequest, Sequence[LoRARequest]]]): LoRA request to use for generation, if any. Returns: Union[RequestOutput, List[RequestOutput]]: The output data of the completion request to the LLM. ''' if isinstance(inputs, str) or isinstance(inputs[0], str): unbatched = isinstance(inputs, str) else: unbatched = isinstance(inputs[0], int) if unbatched: inputs = [inputs] futures = [] for i, request_inputs in enumerate(inputs): if isinstance(sampling_params, list): sp = sampling_params[i] else: sp = sampling_params if isinstance(lora_request, list): lora_req = lora_request[i] else: lora_req = lora_request future = self.generate_async(request_inputs, sampling_params=sp, lora_request=lora_req, streaming=False) futures.append(future) for future in tqdm(futures, desc="Processed requests", dynamic_ncols=True, disable=not use_tqdm): future.result() if unbatched: futures = futures[0] return futures
[docs] def generate_async( self, inputs: PromptInputs, sampling_params: Optional[SamplingParams] = None, lora_request: Optional[LoRARequest] = None, streaming: bool = False, ) -> RequestOutput: ''' Generate output for the given prompt in the asynchronous mode. Asynchronous generation accepts single prompt only. Args: inputs (PromptInputs): The prompt text or token ids; must be single prompt. sampling_params (Optional[SamplingParams]): The sampling params for the generation, a default one will be used if not provided. lora_request (Optional[LoRARequest]): LoRA request to use for generation, if any. streaming (bool): Whether to use the streaming mode for the generation. Returns: RequestOutput: The output data of the completion request to the LLM. ''' sampling_params = self._prepare_sampling_params(sampling_params) if isinstance(inputs, str): prompt_token_ids = self._prepare_prompt_token_ids( inputs, sampling_params) prompt = inputs elif isinstance(inputs, list) and isinstance(inputs[0], int): prompt_token_ids = inputs prompt = None else: raise TypeError( f"The inputs must be type str or list of int, but got {type(inputs)}" ) self._check_arguments(prompt_token_ids, sampling_params) result = self._executor.generate_async( prompt_token_ids, sampling_params=sampling_params, lora_request=lora_request, streaming=streaming, ) return RequestOutput(result, prompt, self.tokenizer)
def _prepare_prompt_token_ids(self, prompt: str, sampling_params: SamplingParams) -> List[int]: if self.tokenizer is None: raise ValueError("tokenizer is required to tokenize string prompt") return self.tokenizer.encode( prompt, add_special_tokens=sampling_params.add_special_tokens) def _prepare_sampling_params( self, sampling_params: Optional[SamplingParams] = None) -> SamplingParams: if sampling_params is None: if self.tokenizer is None: raise ValueError( "tokenizer is required to initialize a default sampling_params, or you can explicitly specify a sampling_params" ) return SamplingParams(end_id=self.tokenizer.eos_token_id, pad_id=self.tokenizer.pad_token_id) elif isinstance(sampling_params, SamplingParams): if sampling_params.end_id is None: if self.tokenizer is None: raise ValueError( "tokenizer is required to reset end_id if it is None, or you can explicitly specify the end_id for sampling_params" ) return sampling_params.setup(self.tokenizer) else: raise TypeError( f"The sampling_params must be type SamplingParams or None, but got {type(sampling_params)}" ) def _check_arguments(self, prompt_token_ids: List[int], sampling_params: SamplingParams) -> None: build_config = self.args.build_config prompt_len = len(prompt_token_ids) if prompt_len + sampling_params.max_tokens > build_config.max_seq_len: raise ValueError( f"The sum of prompt length ({prompt_len}) and max_tokens ({sampling_params.max_tokens}) should not exceed " f"max_seq_len ({build_config.max_seq_len})") if sampling_params.beam_width > build_config.max_beam_width: raise ValueError( f"sampling_params's beam_width ({sampling_params.beam_width}) should not exceed max_beam_width ({build_config.max_beam_width})" ) def _build_model(self): model_loader = CachedModelLoader(self.args, mpi_session=self.mpi_session, workspace=self.workspace, llm_build_stats=self.llm_build_stats) self._engine_dir = model_loader() # update the model_dir to a local dir for the runtime, such as tokenizer loading. self.args.model = self._engine_dir assert self.args.is_local_model executor_config = tllm.ExecutorConfig( max_beam_width=self.args.build_config.max_beam_width, scheduler_config=self.args.scheduler_config, batching_type=tllm.BatchingType.INFLIGHT) if self.args.kv_cache_config is not None: executor_config.kv_cache_config = self.args.kv_cache_config if self.args.peft_cache_config is not None: executor_config.peft_cache_config = self.args.peft_cache_config elif self.args.build_config.plugin_config.lora_plugin: engine_config = EngineConfig.from_json_file(self._engine_dir / "config.json") lora_config = engine_config.build_config.lora_config max_lora_rank = lora_config.max_lora_rank num_lora_modules = engine_config.pretrained_config.num_hidden_layers * \ len(lora_config.lora_target_modules + lora_config.missing_qkv_modules) executor_config.peft_cache_config = tllm.PeftCacheConfig( num_device_module_layer=max_lora_rank * num_lora_modules * self.args.max_loras, num_host_module_layer=max_lora_rank * num_lora_modules * self.args.max_cpu_loras, ) if self.args.decoding_config is not None: executor_config.decoding_config = self.args.decoding_config if self.args.logits_post_processor_map: executor_config.logits_post_processor_config = tllm.LogitsPostProcessorConfig( processor_map=self.args.logits_post_processor_map) executor_config.normalize_log_probs = self.args.normalize_log_probs executor_config.enable_chunked_context = self.args.enable_chunked_context executor_config.max_beam_width = self.args.build_config.max_beam_width self._executor = self._executor_cls.create( self._engine_dir, executor_config=executor_config, model_world_size=self.args.parallel_config.world_size, mpi_session=self.mpi_session, reuse_mpi_comm=external_mpi_comm_available( self.args.parallel_config.world_size)) def _try_load_tokenizer(self) -> Optional[TokenizerBase]: if self.args.skip_tokenizer_init: return None if self.args.tokenizer is not None: assert isinstance(self.args.tokenizer, TokenizerBase) return self.args.tokenizer if self.runtime_context is not None: return self.runtime_context.tokenizer return ModelLoader.load_hf_tokenizer(self.args.model_dir, self.args.trust_remote_code) @property def tokenizer(self) -> Optional[TokenizerBase]: return self._tokenizer
[docs] def save(self, engine_dir: str): ''' Save the built engine to the given path. Args: engine_dir (str): The path to save the engine. Returns: None ''' logger.info(f"Save model to {engine_dir}") if self._engine_dir is None: raise RuntimeError("The engine is not built yet.") if self._engine_dir.absolute() != os.path.abspath(engine_dir): shutil.copytree(self._engine_dir, engine_dir, dirs_exist_ok=True)
def _shutdown(self): if hasattr(self, "_executor") and self._executor is not None: self._executor.shutdown() if self.mpi_session is not None: self.mpi_session.shutdown() self.mpi_session = None def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback) -> bool: del exc_value, traceback self._shutdown() return False # propagate exceptions def __getstate__(self): raise RuntimeError("LLM object can not be pickled.") def __del__(self): self._shutdown()