Generation with Quantization

Source https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llm-api/llm_quantization.py.

 1### Generation with Quantization
 2import logging
 3
 4import torch
 5
 6from tensorrt_llm import LLM, SamplingParams
 7from tensorrt_llm.llmapi import CalibConfig, QuantAlgo, QuantConfig
 8
 9major, minor = torch.cuda.get_device_capability()
10post_ada = major > 8 or (major == 8 and minor >= 9)
11
12quant_and_calib_configs = []
13
14# Example 1: Specify int4 AWQ quantization to QuantConfig.
15# We can skip specifying CalibConfig or leave a None as the default value.
16quant_and_calib_configs.append(
17    (QuantConfig(quant_algo=QuantAlgo.W4A16_AWQ), None))
18
19if post_ada:
20    # Example 2: Specify FP8 quantization to QuantConfig.
21    # We can create a CalibConfig to specify the calibration dataset and other details.
22    # Note that the calibration dataset could be either HF dataset name or a path to local HF dataset.
23    quant_and_calib_configs.append(
24        (QuantConfig(quant_algo=QuantAlgo.FP8,
25                     kv_cache_quant_algo=QuantAlgo.FP8),
26         CalibConfig(calib_dataset='cnn_dailymail',
27                     calib_batches=256,
28                     calib_max_seq_length=256)))
29else:
30    logging.error(
31        "FP8 quantization only works on post-ada GPUs, skipped in the example.")
32
33
34def main():
35
36    for quant_config, calib_config in quant_and_calib_configs:
37        # The built-in end-to-end quantization is triggered according to the passed quant_config.
38        llm = LLM(model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
39                  quant_config=quant_config,
40                  calib_config=calib_config)
41
42        # Sample prompts.
43        prompts = [
44            "Hello, my name is",
45            "The president of the United States is",
46            "The capital of France is",
47            "The future of AI is",
48        ]
49
50        # Create a sampling params.
51        sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
52
53        for output in llm.generate(prompts, sampling_params):
54            print(
55                f"Prompt: {output.prompt!r}, Generated text: {output.outputs[0].text!r}"
56            )
57
58    # Got output like
59    # Prompt: 'Hello, my name is', Generated text: 'Jane Smith. I am a resident of the city. Can you tell me more about the public services provided in the area?'
60    # Prompt: 'The president of the United States is', Generated text: 'considered the head of state, and the vice president of the United States is considered the head of state. President and Vice President of the United States (US)'
61    # Prompt: 'The capital of France is', Generated text: 'located in Paris, France. The population of Paris, France, is estimated to be 2 million. France is home to many famous artists, including Picasso'
62    # Prompt: 'The future of AI is', Generated text: 'an open and collaborative project. The project is an ongoing effort, and we invite participation from members of the community.\n\nOur community is'
63
64
65if __name__ == '__main__':
66    main()