Generate Text Asynchronously

Source https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llm-api/llm_inference_async.py.

 1### Generate Text Asynchronously
 2import asyncio
 3
 4from tensorrt_llm import LLM, SamplingParams
 5
 6
 7def main():
 8    # model could accept HF model name or a path to local HF model.
 9    llm = LLM(model="TinyLlama/TinyLlama-1.1B-Chat-v1.0")
10
11    # Sample prompts.
12    prompts = [
13        "Hello, my name is",
14        "The president of the United States is",
15        "The capital of France is",
16        "The future of AI is",
17    ]
18
19    # Create a sampling params.
20    sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
21
22    # Async based on Python coroutines
23    async def task(prompt: str):
24        output = await llm.generate_async(prompt, sampling_params)
25        print(
26            f"Prompt: {output.prompt!r}, Generated text: {output.outputs[0].text!r}"
27        )
28
29    async def main():
30        tasks = [task(prompt) for prompt in prompts]
31        await asyncio.gather(*tasks)
32
33    asyncio.run(main())
34
35    # Got output like follows:
36    # Prompt: 'Hello, my name is', Generated text: '\n\nJane Smith. I am a student pursuing my degree in Computer Science at [university]. I enjoy learning new things, especially technology and programming'
37    # Prompt: 'The president of the United States is', Generated text: 'likely to nominate a new Supreme Court justice to fill the seat vacated by the death of Antonin Scalia. The Senate should vote to confirm the'
38    # Prompt: 'The capital of France is', Generated text: 'Paris.'
39    # Prompt: 'The future of AI is', Generated text: 'an exciting time for us. We are constantly researching, developing, and improving our platform to create the most advanced and efficient model available. We are'
40
41
42if __name__ == '__main__':
43    main()