Generate Text Asynchronously
Source https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llm-api/llm_inference_async.py.
1### Generate Text Asynchronously
2import asyncio
3
4from tensorrt_llm import LLM, SamplingParams
5
6
7def main():
8 # model could accept HF model name or a path to local HF model.
9 llm = LLM(model="TinyLlama/TinyLlama-1.1B-Chat-v1.0")
10
11 # Sample prompts.
12 prompts = [
13 "Hello, my name is",
14 "The president of the United States is",
15 "The capital of France is",
16 "The future of AI is",
17 ]
18
19 # Create a sampling params.
20 sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
21
22 # Async based on Python coroutines
23 async def task(prompt: str):
24 output = await llm.generate_async(prompt, sampling_params)
25 print(
26 f"Prompt: {output.prompt!r}, Generated text: {output.outputs[0].text!r}"
27 )
28
29 async def main():
30 tasks = [task(prompt) for prompt in prompts]
31 await asyncio.gather(*tasks)
32
33 asyncio.run(main())
34
35 # Got output like follows:
36 # Prompt: 'Hello, my name is', Generated text: '\n\nJane Smith. I am a student pursuing my degree in Computer Science at [university]. I enjoy learning new things, especially technology and programming'
37 # Prompt: 'The president of the United States is', Generated text: 'likely to nominate a new Supreme Court justice to fill the seat vacated by the death of Antonin Scalia. The Senate should vote to confirm the'
38 # Prompt: 'The capital of France is', Generated text: 'Paris.'
39 # Prompt: 'The future of AI is', Generated text: 'an exciting time for us. We are constantly researching, developing, and improving our platform to create the most advanced and efficient model available. We are'
40
41
42if __name__ == '__main__':
43 main()