tacotron¶
tacotron_decoder¶
Modified by blisc to enable support for tacotron models, specfically enables the prenet
- 
class parts.tacotron.tacotron_decoder.TacotronDecoder(decoder_cell, helper, initial_decoder_state, attention_type, spec_layer, stop_token_layer, prenet=None, dtype=tf.float32, train=True)[source]¶
- Bases: - tensorflow.contrib.seq2seq.python.ops.decoder.Decoder- Basic sampling decoder. - 
__init__(decoder_cell, helper, initial_decoder_state, attention_type, spec_layer, stop_token_layer, prenet=None, dtype=tf.float32, train=True)[source]¶
- Initialize TacotronDecoder. - Parameters: - decoder_cell – An RNNCell instance.
- helper – A Helper instance.
- initial_decoder_state – A (possibly nested tuple of…) tensors and TensorArrays. The initial state of the RNNCell.
- attention_type – The type of attention used
- stop_token_layer – An instance of tf.layers.Layer, i.e., tf.layers.Dense. Stop token layer to apply to the RNN output to predict when to stop the decoder
- spec_layer – An instance of tf.layers.Layer, i.e., tf.layers.Dense. Output layer to apply to the RNN output to map the ressult to a spectrogram
- prenet – The prenet to apply to inputs
 - Raises: - TypeError– if cell, helper or output_layer have an incorrect type.
 - 
batch_size¶
- The batch size of input values. 
 - 
initialize(name=None)[source]¶
- Initialize the decoder. - Parameters: - name – Name scope for any created operations. 
 - 
output_dtype¶
- A (possibly nested tuple of…) dtype[s]. 
 - 
output_size¶
- A (possibly nested tuple of…) integer[s] or TensorShape object[s]. 
 - 
step(time, inputs, state, name=None)[source]¶
- Perform a decoding step. - Parameters: - time – scalar int32 tensor.
- inputs – A (structure of) input tensors.
- state – A (structure of) state tensors and TensorArrays.
- name – Name scope for any created operations.
 - Returns: - (outputs, next_state, next_inputs, finished). 
 
- 
tacotron_helper¶
Modified by blisc to enable support for tacotron models Custom Helper class that implements the tacotron decoder pre and post nets
- 
class parts.tacotron.tacotron_helper.TacotronHelper(inputs, prenet=None, time_major=False, sample_ids_shape=None, sample_ids_dtype=None, mask_decoder_sequence=None)[source]¶
- Bases: - tensorflow.contrib.seq2seq.python.ops.helper.Helper- Helper for use during eval and infer. Does not use teacher forcing - 
__init__(inputs, prenet=None, time_major=False, sample_ids_shape=None, sample_ids_dtype=None, mask_decoder_sequence=None)[source]¶
- Initializer. - Parameters: - inputs (Tensor) – inputs of shape [batch, time, n_feats]
- prenet – prenet to use, currently disabled and used in tacotron decoder instead.
- sampling_prob (float) – see tacotron 2 decoder
- anneal_teacher_forcing (float) – see tacotron 2 decoder
- stop_gradient (float) – see tacotron 2 decoder
- time_major (bool) – (float): see tacotron 2 decoder
- mask_decoder_sequence (bool) – whether to pass finished when the decoder passed the sequence_length input or to pass unfinished to dynamic_decode
 
 - 
batch_size¶
- Batch size of tensor returned by sample. - Returns a scalar int32 tensor. 
 - 
next_inputs(time, outputs, state, stop_token_predictions, name=None, **unused_kwargs)[source]¶
- Returns (finished, next_inputs, next_state). 
 - 
sample_ids_dtype¶
- DType of tensor returned by sample. - Returns a DType. 
 - 
sample_ids_shape¶
- Shape of tensor returned by sample, excluding the batch dimension. - Returns a TensorShape. 
 
- 
- 
class parts.tacotron.tacotron_helper.TacotronTrainingHelper(inputs, sequence_length, prenet=None, time_major=False, sample_ids_shape=None, sample_ids_dtype=None, model_dtype=tf.float32, mask_decoder_sequence=None)[source]¶
- Bases: - tensorflow.contrib.seq2seq.python.ops.helper.Helper- Helper funciton for training. Can be used for teacher forcing or scheduled sampling - 
__init__(inputs, sequence_length, prenet=None, time_major=False, sample_ids_shape=None, sample_ids_dtype=None, model_dtype=tf.float32, mask_decoder_sequence=None)[source]¶
- Initializer. - Parameters: - inputs (Tensor) – inputs of shape [batch, time, n_feats]
- sequence_length (Tensor) – length of each input. shape [batch]
- prenet – prenet to use, currently disabled and used in tacotron decoder instead.
- sampling_prob (float) – see tacotron 2 decoder
- time_major (bool) – (float): see tacotron 2 decoder
- mask_decoder_sequence (bool) – whether to pass finished when the decoder passed the sequence_length input or to pass unfinished to dynamic_decode
 
 - 
batch_size¶
- Batch size of tensor returned by sample. - Returns a scalar int32 tensor. 
 - 
next_inputs(time, outputs, state, name=None, **unused_kwargs)[source]¶
- Returns (finished, next_inputs, next_state). 
 - 
sample_ids_dtype¶
- DType of tensor returned by sample. - Returns a DType. 
 - 
sample_ids_shape¶
- Shape of tensor returned by sample, excluding the batch dimension. - Returns a TensorShape. 
 
-