Control generated text using logits processor#
Source NVIDIA/TensorRT-LLM.
1### Control generated text using logits processor
2from typing import List, Optional
3
4import torch
5
6from tensorrt_llm import LLM
7from tensorrt_llm.sampling_params import (BatchedLogitsProcessor,
8 LogitsProcessor, SamplingParams)
9
10
11# The recommended way to create a customized logits processor:
12# * Subclass LogitsProcessor and implement the processing logics in the __call__ method.
13# * Create an instance and pass to SamplingParams.
14# Alternatively, you can create any callable with the same signature with the __call__ method.
15# This simple callback will output a specific token at each step irrespective of prompt.
16# Refer to ../bindings/executor/example_logits_processor.py for a more
17# sophisticated callback that generates JSON structured output.
18class MyLogitsProcessor(LogitsProcessor):
19
20 def __init__(self, allowed_token_id: int):
21 self.allowed_token_id = allowed_token_id
22
23 def __call__(self, req_id: int, logits: torch.Tensor,
24 token_ids: List[List[int]], stream_ptr: int,
25 client_id: Optional[int]):
26 mask = torch.full_like(logits, fill_value=float("-inf"), device="cpu")
27 mask[:, :, self.allowed_token_id] = 0
28
29 with torch.cuda.stream(torch.cuda.ExternalStream(stream_ptr)):
30 mask = mask.to(logits.device, non_blocking=True)
31 logits += mask
32
33
34# The recommended way to create a customized batched logits processor:
35# * Subclass BatchedLogitsProcessor and implement the processing logics in the __call__ method.
36# * Create an instance and pass to LLM.
37# Alternatively, you can create any callable with the same signature with the __call__ method.
38# A batched logits processor's arguments for all requests in a batch are made available as lists.
39# This helps user optimize the callback for large batch sizes. For example:
40# 1. Process more work on host, e.g. running a JSON state machine, in parallel with model forward pass on device.
41# 2. Coalesce H2D memory transfers for all requests into a single cudaMemcpyAsync call.
42# 3. Launch a single batched kernel, e.g. for updating logits on device.
43class MyBatchedLogitsProcessor(BatchedLogitsProcessor):
44
45 def __init__(self, allowed_token_id: int):
46 self.allowed_token_id = allowed_token_id
47
48 def __call__(self, req_ids: List[int], logits: List[torch.Tensor],
49 token_ids: List[List[List[int]]], stream_ptr: int,
50 client_ids: List[Optional[int]]):
51 # Generate masks for all requests on host
52 masks = []
53 for req_id, req_logits, req_token_ids, client_id in zip(
54 req_ids, logits, token_ids, client_ids):
55 mask = torch.full_like(req_logits,
56 fill_value=float("-inf"),
57 device="cpu")
58 mask[:, :, self.allowed_token_id] = 0
59 masks.append(mask)
60
61 # Move masks to device and add to logits using non-blocking operations
62 with torch.cuda.stream(torch.cuda.ExternalStream(stream_ptr)):
63 for req_logits, mask in zip(logits, masks):
64 req_logits += mask.to(req_logits.device, non_blocking=True)
65
66
67def main():
68
69 # Batched logits processor should be specified when initializing LLM.
70 llm = LLM(
71 model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
72 batched_logits_processor=MyBatchedLogitsProcessor(allowed_token_id=42))
73
74 # Sample prompts
75 prompts = [
76 "Hello, my name is",
77 "The president of the United States is",
78 ]
79
80 # Generate text
81 for prompt_id, prompt in enumerate(prompts):
82 # Use non-batched logits processor callback only for odd-numbered prompts
83 if prompt_id % 2 == 0:
84 sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
85 else:
86 # Each prompt can be specified with a logits processor at runtime
87 sampling_params = SamplingParams(
88 temperature=0.8,
89 top_p=0.95,
90 logits_processor=MyLogitsProcessor(allowed_token_id=42))
91
92 for output in llm.generate([prompt], sampling_params):
93 print(
94 f"Prompt: {output.prompt!r}, Generated text: {output.outputs[0].text!r}"
95 )
96
97 # Got output like
98 # Prompt: 'Hello, my name is', Generated text: '\n\nJane Smith. I am a student pursuing my degree in Computer Science at [university]. I enjoy learning new things, especially technology and programming'
99 # Prompt: 'The president of the United States is', Generated text: "''''''''''''''''''''''''''''''''"
100
101 # Use batched processor with batch size = 2
102 sampling_params = SamplingParams(apply_batched_logits_processor=True)
103 for output in llm.generate(prompts, sampling_params):
104 print(
105 f"Prompt: {output.prompt!r}, Generated text: {output.outputs[0].text!r}"
106 )
107
108 # Got output like
109 # Prompt: 'Hello, my name is', Generated text: "''''''''''''''''''''''''''''''''"
110 # Prompt: 'The president of the United States is', Generated text: "''''''''''''''''''''''''''''''''"
111
112
113if __name__ == '__main__':
114 main()