Llm Mgmn Trtllm Bench#
Source NVIDIA/TensorRT-LLM.
1#!/bin/bash
2#SBATCH -A <account>
3#SBATCH -p <partition>
4#SBATCH -t 01:00:00
5#SBATCH -N 2
6#SBATCH --ntasks-per-node=8
7#SBATCH -o logs/trtllm-bench.out
8#SBATCH -e logs/trtllm-bench.err
9#SBATCH -J trtllm-bench
10
11### Run trtllm-bench with pytorch backend on Slurm
12
13# NOTE, this feature is experimental and may not work on all systems.
14# The trtllm-llmapi-launch is a script that launches the LLM-API code on
15# Slurm-like systems, and can support multi-node and multi-GPU setups.
16
17# Note that, the number of MPI processes should be the same as the model world
18# size. e.g. For tensor_parallel_size=16, you may use 2 nodes with 8 gpus for
19# each, or 4 nodes with 4 gpus for each or other combinations.
20
21# This docker image should have tensorrt_llm installed, or you need to install
22# it in the task.
23
24# The following variables are expected to be set in the environment:
25# You can set them via --export in the srun/sbatch command.
26# CONTAINER_IMAGE: the docker image to use, you'd better install tensorrt_llm in it, or install it in the task.
27# MOUNT_DIR: the directory to mount in the container
28# MOUNT_DEST: the destination directory in the container
29# WORKDIR: the working directory in the container
30# SOURCE_ROOT: the path to the TensorRT-LLM source
31# PROLOGUE: the prologue to run before the script
32# LOCAL_MODEL: the local model directory to use, NOTE: downloading from HF is
33# not supported in Slurm mode, you need to download the model and put it in
34# the LOCAL_MODEL directory.
35
36export prepare_dataset="$SOURCE_ROOT/benchmarks/cpp/prepare_dataset.py"
37export data_path="$WORKDIR/token-norm-dist.txt"
38
39echo "Preparing dataset..."
40srun -l \
41 -N 1 \
42 -n 1 \
43 --container-image=${CONTAINER_IMAGE} \
44 --container-name="prepare-name" \
45 --container-mounts=${MOUNT_DIR}:${MOUNT_DEST} \
46 --container-workdir=${WORKDIR} \
47 --export=ALL \
48 --mpi=pmix \
49 bash -c "
50 $PROLOGUE
51 python3 $prepare_dataset \
52 --tokenizer=$LOCAL_MODEL \
53 --stdout token-norm-dist \
54 --num-requests=100 \
55 --input-mean=128 \
56 --output-mean=128 \
57 --input-stdev=0 \
58 --output-stdev=0 > $data_path
59 "
60
61echo "Running benchmark..."
62# Just launch trtllm-bench job with trtllm-llmapi-launch command.
63
64srun -l \
65 --container-image=${CONTAINER_IMAGE} \
66 --container-mounts=${MOUNT_DIR}:${MOUNT_DEST} \
67 --container-workdir=${WORKDIR} \
68 --export=ALL,PYTHONPATH=${SOURCE_ROOT} \
69 --mpi=pmix \
70 bash -c "
71 set -ex
72 $PROLOGUE
73 export PATH=$PATH:~/.local/bin
74
75 # This is optional
76 cat > /tmp/pytorch_extra_args.txt << EOF
77pytorch_backend_config:
78 use_cuda_graph: false
79 enable_overlap_scheduler: true
80 cuda_graph_padding_enabled: false
81 print_iter_log: true
82enable_attention_dp: false
83EOF
84
85 # launch the benchmark
86 trtllm-llmapi-launch \
87 trtllm-bench \
88 --model $MODEL_NAME \
89 --model_path $LOCAL_MODEL \
90 throughput \
91 --dataset $data_path \
92 --backend pytorch \
93 --tp 16 \
94 --extra_llm_api_options /tmp/pytorch_extra_args.txt \
95 $EXTRA_ARGS
96 "